Upper limit on spontaneous supercurrents in Sr₂RuO₄

www.kirtleyscientific.com

Spontaneous supercurrents predicted to occur at edges of p_x+ip_v superconductors

each Cooper pair has angular momentum- edges not cancelled out

for Sr_2RuO_4 - 2.8µA/plane

alternate view:

sub-gap surface states not at zero energy- carry current

H-J Kwon, V.M. Yakovenko and K. Sengupta, condmat/0111071 M. Masumoto and M. Sigrist, J. Phys. Soc. Jpn. **68**, 994 (1999)

Spontaneous currents and fields at edge of $p_x \pm i p_y$ superconductor

Spontaneous currents and fields at domain boundaries of $p_x \pm ip_y$ superconductor

He3 Scanning SQUID microscope

Scanning SQUID microscopy of "conventional" d-wave superconductor - YBCO

11.2μm pickup loop T=4.2K

magnetic signals at edges

K.A. Moler et al. PRB 55, 12753 (1997)

 $0.07\Phi_0$

SQUID microscope image of ab face of Sr_2RuO_4 single crystal- T=0.27K 8µm pickup loop

Three cooldowns of ab face in slightly difference fields

SSM image of ac face of Sr₂RuO₄

Stanford dilution refridgerator based scanning SQUID microscope

P. Bjornsson et al., RSI 72, 4153 (2001).

SQUID microscope image of Sr_2RuO_4 single crystal ac face

P. Bjornsson et al., PRB 72, 012504 (2005)

0.25

0.2

0.15

0.1

0.05

-0.05

-0.1

-0.15

-0.2

-0.25

0

Hall bar images of Sr₂RuO₄ single crystal -ab face

Predicted magnetic signal above p_x±ip_y superconductor

(assuming B_z at surface same as B_z in bulk)

$$b_{z}(k_{x},k_{y},z) = b_{z}(k_{x},k_{y},0)e^{-Kz} \quad K = (k_{x}^{2} + k_{y}^{2})^{1/2}$$

$$b_{z}(k_{x},k_{y},0) = \frac{1}{(2\pi)^{1/2}} \int_{-\infty}^{\infty} dx \int_{-\infty}^{\infty} dy \ e^{i(k_{x}x+k_{y}y)} B_{x}(x,y,0)$$

$$\Phi = \int_{-L/2}^{L/2} dx \int_{-L/2}^{L/2} dx \ B_{z}(x,y,z)$$

What about the effects of surface screening?

 $0.5\mu m$ Hall bar $1.2\mu m$ above the surface

Conclusions:

1. Sharp, large spontaneous currents are not observed

2. Explanation A: Large spontaneous currents exist but the domain sizes are (conservatively) less than a few microns

to be compared with

1 micron - van Harlingen - Illinois Urbana-Champaign
 50-100 microns - Kaptitulnik - Stanford
 1mm - Ying Liu - Penn State

3. Explanation B: Large spontaneous currents don't exist
a. Not (simple) px±ipy
b. ?