Dec. 19, 2007, KITP-UCSB Multi-Gap Superconductivity of Sr₂RuO₄

Kyoto University

Yoshi Maeno

K. Deguchi (now @ Nagoya Univ.)

Z.Q. Mao (now @ Tulane Univ.)

Superconducting gap Structure of Sr₂RuO₄:

- 1. Multi-gap superconductivity due to two kinds of FSs.
- The active sc band ("Y-FS") has gap minima along the <100> directions.
- 3. The passive sc bands (" α and β -FSs") most likely have gap ZEROs along the <110> directions (or horizontal zeros only on α and β FSs).

Evidence of Multi-Gap Superconductivity

The entropy release at low T exceeds that for a single-band line-node gap. A single-band, line-node state is thermodynamically incompatible with the experiment.

The jump at T_c is smaller than the line-node case.

0.73 (obs.) < 0.95 (line node)

Evidence of Multi-Gap Superconductivity

Multi-gap structure (with active γ -FS) is consistent with the data.

Gap amplitudes Δ_{γ} and $\Delta_{\alpha\beta}$ depend on the bands.

Agterberg, Rice, Sigrist, PRL **78**, 3374 (1997).

Determination of the Gap Anisotropy

Vector Magnet on a Rotating Stage by Kazuhiko DEGUCHI

Field-orientation dependence of the specific heat \rightarrow gap anisotropy

Gap structure consistent with experiments

Polar angle θ dependence of $C_e(\varphi)$ - "Horizontal"? or "vertical"? gap zero on the passive FS -OSC is strong when only γ contributes to the OSC.

Gap structure consistent with experiments

Passive band has Δ_{min} =0 along [110] or horiz. line node.
DOS oscillations disappear at low T and H.
T²-dependence of C_P suggests Δ_{min} =0 (gap zero).
No need to introduce *horizontal* line node.

Success of Microscopic Mechanism Theory Based on Realistic Fermi Surfaces

Third-Order Perturbation Theory

T. Nomura and K. Yamada, J. Phys. Soc. Jpn. **71**, 404 (2002).

Also by Kuroki, Aoki *et al.*; Yanase, Ogata *et al*.

Conclusion: Gap structure of Sr₂RuO₄

	y - band	α,β-bands
Roles	Active	Passive
Symmetry	$d = z \triangle_0(k_x +$	· ik _y)
Gap structure	Y Min. along [100].	Zero along [110].
Physical Origin of Gap Anisotropy	Odd parity and FS proximity to BZ boundary	Incommensurate AF fluctuation

