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A long lived radio flare:
A relatively strong
remnant lasting a few

years with comfortable

follow up options.
Nakar & TP, Nature 2011




Stephan Sequence of events
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Short ¥-ray Bursts

(Eichler, Livio, TP & Schramm, 1989)
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(Short) GRB

@ In spite of significant circumstantial
evidence - the origin of short GRBs
Is still uncertain.

@ Short GRBs are beamed - A generic
observer wont detect a burst.

@ Will a GRB sattelite be available
when Advanced LIGO/Virgo are
operational ?




(Short) GRB Afterglow

@ Afterglow on a day time scale
(at 300 Mpc & 1 day):

@ X-ray ~ 1071° erg/s/cm?
@ optical mp~21

@ A promising candidate on a
scale of 1 day if the GRB
points towarsd us.



Orphan Afterglow

@ X-ray and optical are foo weak (Nakar, Granot, TP,
2003).

@ Radio orphan afterglow is subdominant compared to
the



Orphan Afterglow
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@ X-ray and optical are foo weak (Nakar, Granot, TP,
2003).

@ Radio orphan afterglow is subdominant compared to
the
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A significant Mass
IS ejected during
a NS¢ merger.
This will produce
EM signature

(analogue to SN
and SNR)




t= 14.0 ms

t=13.2ms

t= 134 ms t=12.2 ms
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Typical Parameters

@ Mass and Energy
ejection increases
significantly with
mass asymmeitry.

Mass Velocity Energy

0.01-0.1 m,|0.1-0.2 c| 0.1-1 x 10°! erg

This fotal enegy Is comparable to a supernova

with a lower mass but much faster
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Radioactive material within the ejected outflow
powers a

photosphere

Maximum when
the system
becomes
transparent




Radioactive material within the ejected outflow
powers a

hO'l' —_—14-14
i Comparable to
a weak SN
Maximum when -0
the system
becomes
transparent
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Radio Flares

(Nakar & TP, Nature 2011; TP Nakar & Rossowg,

@ Mildly relativistic outflow
with E 2 10*° ergs

@ Interaction of the outflow
with the surrounding
matter

@ -> A radio flare




Supernova <@»> Macronova
A few months One day

Supernova  NS2 (Radio)
Remnant == Remnant

10* years A few years



Dynamics and light Curve

Maximal flare

\Sedov-Taylor A

. (Newtonian)
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Dynamics
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GRB afterglow and
Radio Supernova
e.g. 1998bW (Chevalier 98)
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Tycho's supernova
remnant seen at radio
wavelengths




GRB afterglow and
Radio Supernova
e.g. 1998bW (Chevalier 98)

'..:‘:‘.._-..;"" :tf . i
J 5 > b ‘ e,=£.e

. ¥ ‘ N(3¥) eg=B°/5=€ge

e/
b , : | \\ N(¥)oc ¥P  for o ¥n
i ; *} P=2.5 -3

| Sl | y ¥ (mp/moe (1)
s — - v=(3/41)eB ¥

sz(GTC/e)NeB

Tycho's supernova The shock wave accelerates
remnant seen at radio the electrons and amplifies
wavelengths the Magnetic field.







Radio Fluxes

Vm dec = Vm(taec) = 1 GHz n“%},{i’_lei_l(l"o —1)*2,

Findec ~ 0.5 mJy Egn'/e;~ (To — 1)72d37.

2 24p  2(p-—1)
TATP) . ik 7(1-}; 15p—10
Va,dee = Va(ldec) = 1 GHz Eyq " neE+P ey _f fe.‘—? (I'g — 1)%=w,




Radio Fluxes

External density

Vm dec = Vm(ldec) =~ 1 “ n1/2€;3/_2_153,—1(lﬂ0 - 1)5/21

2 24p  2(p-—1)
TATP) . ik 7(1-}; 15p—10
Va,dee = Va(ldec) = 1 GHz Eyq " neE+P ey _f fe.‘—? (I'g — 1)%=w,




Radio Fluxes

External density Outflow velocity

: 1/2

2p-1) 15p—10

m 1443p 2+ ;
Va,dec = Va(tdec) ~ 1 GHZ Edgl F 71 8(4+p) 68 _f ee:_+{ (FO — 1)8(4+p) .




Findec ~ 0.5 mJy Egn'/e;,~(To — 1)72d37.

@ All known ns? are in the galactic disk

@ Typical density in the disk is n~1cm= (40%
n=0.6cm=3, 10% n>> lcm=3, 50% n~103cm=3)

@ Some will have only a weak radio but many
will have a strong radio remnant.

® To these we should add an unknown fraction
that escape the host galaxies.



The external density

Findec = 0.5 mJy Hfon' e~

@ All known ns? are in the galactic disk

@ Typical density in the disk is n~1cm= (40%
n=0.6cm=3, 10% n>> lcm=3, 50% n~103cm=3)

@ Some will have only a weak radio but many
will have a strong radio remnant.

® To these we should add an unknown fraction
that escape the host galaxies.



Schematic light curve

. a few months

.l.




Numerical Lightcurves

(TP, Nakar & Rosswog, 2012) m

At 300 Mpc

$
B
Fi pmi 50.3=1 lady '«
treak = 2-5 years
1.4 GHz
Fu peak = 0.05 mJy
'I'peak =~ 1.5-5 vyears

(Piran, Nakar & Rosswog, 2012) EV LA 1

Dominated by v>0.3c not included ; :
in the hydro simulation '}' e . - s




Detectability

Radio Obs Field 1 hr ns2 1 hr ns? 10 hr nsbh 1 hr nsbh 10 hr
Facility Freq. of view rms horizonT horizonTT horizonf horizonf
(GHz) (deg®) pJy mn=1lcm™2 n=0.1cm™>? n=Ilcm~

/,f;/(‘A

.

EVLA® 1.4 0.25 7 /360 Mpc) 200Mpc 1.8 Gpc 1.4 Gpc

3 3

n=0.1cm™

ASKAP? 1.4 30 30 f 170 Mpc | 100 Mpc 850Mpc 700 Mpc
MeerKAT® 1.4 1.5 35 | 160 Mpc | 90 Mpc 800 Mpc 650 Mpc
Apertifd 1.4 8 50 | 135 Mpc | 75 Mpc 670 Mpc 550 Mpc
LOFAR® 0.15 20 1000 §\ 70 Mpc 40 Mpc 300Mpc 250 Mpc

MeerKAT ASKAP

EVLA Apertif ~ LOFAR




Blind Radio Search

g 1 5l

A mildly-relativstic Rate and Survey limit

component may density based 0.ImJy
increase the rate on Galactic ns?2

A blind search may determine the event rate
even before ALIGO/Virgo become operational

26
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A mildly-relafivsfic Rate and Survey limit
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increase the rate on Galactic ns?2

A blind search may determine the event rate
even before ALIGO/Virgo become operational
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Relativistic merger Simulations
Hotokezaka and Shibata (Kyoto U) 2012

Amount of ejected material depends strongly
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Average velocity 0.2-0.3c
Max velocity 0.7-0.8c



Even stronger signal!

150 MHz

Mildly Relativistic outflow:
Stronger and peaks at one month



Summary

Short GRB Macronova Radio Flare
- )
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Band Y - rays Optical UV Radio (1.4GHz)
Duration <2 secC < day ~months-years
Horizon a few Gpc 500 Mpc 0.3-1 Gpc

®Association ? ®Micro-physics ? ® External density ?
Drawbacks |eBeaming eIdentification among ® Some may have a
®Available Satellite many optical transients |weak radio remnant.
eNumerous opftical eStrong signal
Advanfages ®A very strong signal |transient searches exist |®Quiet radio sky (?)
®Needs a quick response |®Long duration




