The Electromagnetic signals that follow the Gravitational Waves

## Tsvi Piran

The Hebrew University of Jerusalem, Israel Ehud Nakar + Stephan Rosswog

Rattle and Shine - KITP July 30 2012

### Rattle and Shine KITP 2012



### Rattle and Shine KITP 2012



#### GRAVITATIONAL WAVES AND γ-RAY BURSTS

CHRISTOPHER S. KOCHANEK<sup>1</sup> AND TSVI PIRAN<sup>2</sup>
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138
Received 1993 June 1; accepted 1993 August 18





A long lived radio flare: A relatively strong remnant lasting a few years with comfortable follow up options. Nakar & TP, Nature 2011





# Short &-ray Bursts

(Eichler, Livio, TP & Schramm, 1989)



GRB 050709

Elliptical host

Old stellar population

A coincident detection of a short GRB and GW (Kochaneck & TP 1993)



# (Short) GRB

- In spite of significant circumstantial evidence the origin of short GRBs is still uncertain.
- Short GRBs are beamed A generic observer won't detect a burst.
- Will a GRB sattelite be available when Advanced LIGO/Virgo are operational?







# (Short) GRB Afterglow

- Afterglow on a day time scale (at 300 Mpc & 1 day):
  - X-ray ~ 10<sup>-10</sup> erg/s/cm²
  - optical m<sub>R</sub>~21
- A promising candidate on a scale of 1 day if the GRB points towarsd us.

## Orphan Afterglow



- X-ray and optical are too weak (Nakar, Granot, TP, 2003).
- Radio orphan afterglow is subdominant compared to the "radio remenant".

## Orphan Afterglow





- X-ray and optical are too weak (Nakar, Granot, TP, 2003).
- Radio orphan afterglow is subdominant compared to the "radio remenant".



A significant Mass is ejected during a NS<sup>2</sup> merger. This will produce EM signature (analogue to SN and SNR)

## NS<sup>2</sup> Merger outflow (Rosswog +, 2012)



# Typical Parameters



Mass and Energy ejection increases significantly with mass asymmetry.

| Mass                    | Velocity  | Energy                       |  |  |
|-------------------------|-----------|------------------------------|--|--|
| 0.01-0.1 m <sub>o</sub> | 0.1-0.2 c | 0.1-1 x 10 <sup>51</sup> erg |  |  |

This total enegy is comparable to a supernova with a lower mass but much faster



# Radioactive material within the ejected outflow powers a weak <u>short lived</u> supernova

### - Macronova

photosphere

Maximum when the system becomes transparent



$${}^{m}X \rightarrow {}^{k}Y + {}^{j}Z + \gamma$$

# Radioactive material within the ejected outflow powers a weak <u>short lived</u> supernova

### - Macronova



Merger



Radio Flare

Expanding ejecta

Radio Flare



Macronova







# Radio Flares

(Nakar & TP, Nature 2011; TP Nakar & Rossowg,

- Mildly relativistic outflow with E ≥  $10^{49}$  ergs
- Interaction of the outflow with the surrounding matter

@-> A radio flare



Supernova ( Macronova

A few months

One day

Supernova Remnant



NS2 (Radio) Remnant

10<sup>4</sup> years

A few years

# Dynamics and light Curve



## Dynamics

$$R_{dec} = \left(\frac{3E}{8\pi n m_p c^2 (\Gamma_0 - 1)}\right)^{1/3} = 0.9 \times 10^{17} \text{ cm } E_{49}^{1/3} n^{-1/3} (\Gamma_0 - 1)^{-1/3},$$

$$t_{dec} = \frac{R_{dec}}{c\beta_0} \approx 30 \text{ day } E_{49}^{1/3} n^{-1/3} (\Gamma_0 - 1)^{-5/6}.$$

$$\Gamma - 1 \approx \left(\Gamma_0 - 1\right) \left\{ \begin{array}{cc} 1 & R \leq R_{dec} \; , \\ \left(R/R_{dec}\right)^{-1/3} & R \geq R_{dec} \; . \end{array} \right.$$



# GRB afterglow and Radio Supernova e.g. 1998bw (Chevalier 98)



Tycho's supernova remnant seen at radio wavelengths

# GRB afterglow and Radio Supernova e.g. 1998bw (Chevalier 98)



Tycho's supernova remnant seen at radio wavelengths

The shock wave accelerates the electrons and amplifies the Magnetic field.

 $e_e = \varepsilon_e e$   $e_B = B^2/8\pi = \varepsilon_B e$   $N(\chi) \propto \chi^{-P}$  for  $\chi > \chi_m$  p = 2.5 - 3  $\chi_m = (m_p/m_e)e_e (\Gamma - 1)$   $V = (3/4\pi)eB \chi^2$   $F_V = (\sigma_T c/e)N_eB$ 

# The Spectrum





 $V_m \approx 1 \text{Ghz}$ 

## Radio Fluxes

$$\nu_{m,dec} \equiv \nu_m(t_{dec}) \approx 1 \text{ GHz } n^{1/2} \epsilon_{B,-1}^{1/2} \epsilon_{e,-1}^2 (\Gamma_0 - 1)^{5/2},$$

$$F_{m,dec} \approx 0.5 \text{ mJy } E_{49} n^{1/2} \epsilon_{B,-1}^{1/2} (\Gamma_0 - 1)^{-1/2} d_{27}^{-2}.$$

$$\nu_{a,dec} \equiv \nu_a(t_{dec}) \approx 1 \text{ GHz } E_{49}^{\frac{2}{3(4+p)}} n^{\frac{14+3p}{6(4+p)}} \epsilon_{B,-1}^{\frac{2+p}{2(4+p)}} \epsilon_{e,-1}^{\frac{2(p-1)}{4+p}} (\Gamma_0 - 1)^{\frac{15p-10}{6(4+p)}}.$$

## Radio Fluxes

### External density

$$\nu_{m,dec} \equiv \nu_m(t_{dec}) \approx 1 \text{ GHz } n^{1/2} \epsilon_{B,-1}^{1/2} \epsilon_{e,-1}^2 (\Gamma_0 - 1)^{5/2},$$

$$F_{m,dec} \approx 0.5 \text{ mJy } E_{9} n^{1/2} \epsilon \Big|_{3,-1}^{2} (\Gamma_0 - 1)^{-1/2} d_{27}^{-2}.$$

$$\nu_{a,dec} \equiv \nu_a(t_{dec}) \approx 1 \text{ GHz } E_{49}^{\frac{2}{3(4+p)}} n^{\frac{14+3p}{6(4+p)}} \epsilon_{B,-1}^{\frac{2+p}{2(4+p)}} \epsilon_{e,-1}^{\frac{2(p-1)}{4+p}} (\Gamma_0 - 1)^{\frac{15p-10}{6(4+p)}}.$$

## Radio Fluxes

### External density

Outflow velocity

$$\nu_{m,dec} \equiv \nu_m(t_{dec}) \approx 1 \text{ GHz } n^{1/2} \epsilon_{B,-1}^{1/2} \epsilon_{e,-1}^2 (\Gamma_0 - 1)^{5/2},$$

$$F_{m,dec} \approx 0.5 \text{ mJy } E_{10} n^{1/2} \epsilon_{1,-1}^{2} (\Gamma_0 - 1)^{-1/2} \epsilon_{27}^{-2}$$

$$\nu_{a,dec} \equiv \nu_a(t_{dec}) \approx 1 \text{ GHz } E_{49}^{\frac{2}{3(4+p)}} n^{\frac{14+3p}{6(4+p)}} \epsilon_{B,-1}^{\frac{2+p}{2(4+p)}} \epsilon_{e,-1}^{\frac{2(p-1)}{4+p}} (\Gamma_0 - 1)^{\frac{15p-10}{6(4+p)}}.$$

$$F_{m,dec} \approx 0.5 \text{ mJy } E_{49} n^{1/2} \epsilon_{B,-1}^{1/2} (\Gamma_0 - 1)^{-1/2} d_{27}^{-2}.$$

- All known ns² are in the galactic disk
- Typical density in the disk is n~ 1cm<sup>-3</sup> (40% n=0.6cm<sup>-3</sup>, 10% n>> 1cm<sup>-3</sup>, 50% n~ 10<sup>-3</sup>cm<sup>-3</sup>)
- Some will have only a weak radio but many will have a strong radio remnant.
- To these we should add an unknown fraction that escape the host galaxies.

# The external density

$$F_{m,dec} \approx 0.5 \text{ mJy } E_{19} n^{1/2} \epsilon_{1,-1}^{1/2} (\Gamma_0 - 1)^{-1/2} d_{27}^{-2}.$$

- All known ns² are in the galactic disk
- Typical density in the disk is n~ 1cm<sup>-3</sup> (40% n=0.6cm<sup>-3</sup>, 10% n>> 1cm<sup>-3</sup>, 50% n~ 10<sup>-3</sup>cm<sup>-3</sup>)
- Some will have only a weak radio but many will have a strong radio remnant.
- To these we should add an unknown fraction that escape the host galaxies.

# Schematic light curve





Numerical Lightcurves

(TP, Nakar & Rosswog, 2012) At 300 Mpc



(Piran, Nakar & Rosswog, 2012)

Dominated by v>0.3c not included in the hydro simulation

### 150 MHz

 $F_{\nu}$  peak  $\approx 0.3=1$  mJy

t<sub>peak</sub> ≈ 2-5 years

1.4 GHz

 $F_{\nu}$  peak  $\approx 0.05$  mJy

t<sub>peak</sub> ≈ 1.5-5 years



# Detectability

| Radio<br>Facility                                         | Obs<br>Freq.<br>(GHz) | Field of view $(\deg^2)$ | $1~{ m hr} \ { m rms} \ \mu { m Jy}$ | $ns^2 1 hr$ $horizon^{\dagger}$ $n = 1cm^{-3}$ | $ns^2$ 10 hr<br>horizon <sup>††</sup><br>$n = 0.1cm^{-3}$ | nsbh 1 hr<br>horizon <sup>†</sup><br>$n = 1 \text{cm}^{-3}$ | nsbh 10 hr<br>horizon <sup>††</sup><br>$n = 0.1 \text{cm}^{-3}$ |
|-----------------------------------------------------------|-----------------------|--------------------------|--------------------------------------|------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------|
| $\mathrm{EVLA}^a$ $\mathrm{ASKAP}^b$ $\mathrm{MeerKAT}^c$ | 1.4<br>1.4<br>1.4     | $0.25 \\ 30 \\ 1.5$      | 7<br>30<br>35                        | 360 Mpc<br>170 Mpc<br>160 Mpc                  | 200Mpc<br>100 Mpc<br>90 Mpc                               | 1.8 Gpc<br>850Mpc<br>800 Mpc                                | 1.4 Gpc<br>700 Mpc<br>650 Mpc                                   |
| ${ m Apertif}^d$ ${ m LOFAR}^e$                           | $1.4 \\ 0.15$         | 8<br>20                  | 50<br>1000                           | 135 Mpc<br>70 Mpc                              | 75 Mpc<br>40 Mpc                                          | 670 Mpc<br>300Mpc                                           | 550 Mpc<br>250 Mpc                                              |



**EVLA** 











LOFAR

## Blind Radio Search

$$N_{all-sky}^{ns^2} \sim 20 \mathcal{R}_{300}^{ns^2} \mathcal{F}_{-1}^{-3/2}$$

A mildly-relativstic component may increase the rate

Rate and density based 0.1mJy on Galactic ns<sup>2</sup>

Survey limit

A blind search may determine the event rate even before ALIGO/Virgo become operational

## Blind Radio Search



$$N_{all-sky}^{ns^2} \sim 20 \mathcal{R}_{300}^{ns^2} \mathcal{F}_{-1}^{-3/2}$$

A mildly-relativstic component may increase the rate

Rate and density based 0.1mJy on Galactic ns<sup>2</sup>

Survey limit

A blind search may determine the event rate even before ALIGO/Virgo become operational

# Relativistic merger Simulations

Hotokezaka and Shibata (Kyoto U) 2012



Average velocity 0.2-0.3c Max velocity 0.7-0.8c

# Even stronger signal!



Mildly Relativistic outflow: Stronger and peaks at one month

# Summary

|            | Short GRB                                                                   | Macronova                                                                                  | Radio Flare                                                                       |  |
|------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|
|            |                                                                             |                                                                                            |                                                                                   |  |
| Band       | $\gamma$ - rays                                                             | Optical UV                                                                                 | Radio (1.4GHz)                                                                    |  |
| Duration   | <2 sec                                                                      | < day                                                                                      | ~months-years                                                                     |  |
| Horizon    | a few Gpc                                                                   | 500 Mpc                                                                                    | 0.3-1 Gpc                                                                         |  |
| Drawbacks  | <ul><li>Association ?</li><li>Beaming</li><li>Available Satellite</li></ul> | <ul><li>Micro-physics ?</li><li>Identification among many optical transients</li></ul>     | <ul><li>External density?</li><li>Some may have a weak radio remnant.</li></ul>   |  |
| Advantages | •A very strong signal                                                       | <ul><li>Numerous optical transient searches exist</li><li>Needs a quick response</li></ul> | <ul><li>Strong signal</li><li>Quiet radio sky (?)</li><li>Long duration</li></ul> |  |