## Nucleosynthesis from Compact Object Mergers

Gail McLaughlin

North Carolina State University

- General remarks about nucleosynthesis
- Nuclei produced from ejection of tidal tails
- Nuclei produced from accretion disk winds
- Remarks

## Nucleosynthesis from compact object mergers

#### Two types of environments

- ejection from tidal tails
- accretion disk "wind"

#### Three primary types of nucleosynthesis

- r-process
- p-process
- <sup>56</sup>Ni and other iron group nuclei

## Different merger configurations





figure from Surman 2008

figure from Korobkin 2012

Material can be ejected from tidal tails, off the edges of the disk or in a wind off of the disk.

## A couple of questions

Ejected material from mergers will certainly make some nuclei.

- 1. How much stuff is ejected?
- 2. What sort of nuclei are made?

## How much stuff?

Estimates depend on the hydrodynamic + thermodynamic + neutrino calculation, but some recent estimates:

- 1. winds:  $\sim 2 \times 10^{-3} M_{\odot}$  Wanajo and Janka 2011  $10^{-4} M_{\odot}$  Dessart et al 2009
- 2. tidal tail ejection:  $10^{-2}$  to  $10^{-3}\,M_\odot$  Goriely et al 2011  $7.6\times10^{-3}\,M_\odot$  to  $3.9\times10^{-2}\,M_\odot$  Korobkin 2012
- 3. thermonuclear winds: up to  $10^{-1} M_{\odot}$  Metzger

## Hot ejection: winds

#### Characteristics

- ullet entropy per baryon, s/k is at least 20 or higher
- weak rates significant, i.e.  $e^+$ ,  $e^-$ ,  $\nu_e$ ,  $\bar{\nu}_e$  capture on n,p
- neutron to proton ratio determined by all the weak rates
- practical place to look for this: above trapped neutrino surfaces  $T\sim 3-6\,\mathrm{MeV}$

## Cold ejection: tidal tails

- $\bullet$  entropy per baryon, s/k is usually less than 20
- ullet nucleosynthesis calculations typically commence at  $10^{10} K$
- weak rates not so crucial (pauli blocking, few  $\nu$ s)
- material retains neutron richness from original neutron star
- practical place to look for this: tidal ejection, ejection from edges

## We are looking for the r-process elements

e. g. Uranium-238 Z=92, N=146  $\rightarrow$  need lots of neutrons

$$A(Z, N) + n \leftrightarrow A + 1(Z, N + 1) + \gamma$$

$$A(Z, N) \to A(Z + 1, N - 1) + e^{-} + \bar{\nu}_{e}$$

rapid neutron capture as compared with beta decay

At what temperatures does this happen?  $(n, \gamma) (\gamma, n)$  equilibrium above  $T \approx 10^9 \text{K}$ 

## Cold Ejection and Fission Cycling

#### Fission cycling



Korobkin et al

- ullet cold ejection has low  $Y_e$
- many neutrons
- fission cycling
- consistent peak ratio

## Cold Ejection and Fission Cycling

#### Fission cycling



Beun et al 2008

- ullet cold ejection has low  $Y_e$
- many neutrons
- fission cycling
- consistent peak ratio

#### Neutrinos in wind outflows

A strong neutrino flux of all flavors comes from the disk

Electron type neutrinos are influential in determining numbers of neutrons and protons in winds above the disk.

• 
$$\nu_e + n \leftrightarrow p + e^-$$

• 
$$\bar{\nu}_e + p \leftrightarrow n + e^+$$

Neutrinos and antineutrinos can also capture on nuclei.

## Simple model of wind nucleosynthesis

#### Black Hole Neutron Star Merger





Schematic of events in outflow

R-process occurs in the wind, but simplified emission surface of neutrinos

## Hot ejection

## Accretion Disk $\nu_e$ temperatures





Surman et al 2008

Caballero et al

## u general relativistic effects - high entropy trajectory

## Iron group elements

- yellow No GR
- red  $\nu$  GR, no rot., a = 0

Stellar wind type trajectory with s/k = 40,  $\beta = 2$ 

Caballero et al 2011



# u general relativistic effects low entropy fast trajectories

- yellow No GR, flat disk
- red  $\nu$  GR, no rot., a = 0
- blue  $\nu$  GR, rot., a=0
- green  $\nu$  GR, rot., a=0.6

Neutrino wind type trajectory with s/k=20, t=5ms.

Caballero et al 2011



## Expect behavior similar to collapsar type disks: Nickel - 56

 $n,p \rightarrow^4 He \rightarrow iron peak nuclei \rightarrow heavier nuclei$ 



## Expect behavior similar to collapsar type disks:

## Neutrinos enhanced light p-nucleosynthesis

Thought to occur in supernovae and in accretion disk outflows

 $\nu$ -p process

p-rich nuclei



Frohlich et al 2007, Kizivat et al 2010



## Implications of Nucleosynthesis from compact object mergers

#### Three primary types of nucleosynthesis

- 1. r-process tidal tails, maybe  $\nu$  winds
- 2. p-process  $\nu$  winds
- 3.  $^{56}\mathrm{Ni}$  and other iron group nuclei  $\nu$  winds

## Implications of r-process from compact object mergers

#### Potentially one can make a lot of r-process

- 1.  $10^{-1}~{\rm M}_{\odot}$  to  $10^{-3}~{\rm M}_{\odot}$  per merger
- 2. together with a Galactic merger rates  $10^{-4}~{\rm yr}^{-1}$
- 3. makes  $10^5~{\rm M}_{\odot}$  to  $10^3~{\rm M}_{\odot}$  over  $10^{10}~{\rm years}$
- 4. amount of Galactic r-process mass with A > 100 is  $\sim 10^4~{\rm M}_{\odot}$
- 5. making a significant amount of r-process (if not overproduction)

#### Implications of r-process from compact object mergers

#### r-process is seen in halo stars

- 1. if this comes from mergers they must evolve quickly
- 2. ejecta must become more mixed in ISM than predicted Qian 2000

#### Most robust mechanism for producing the r-process is tidal tails

- 1. fission cycling
- 2. consistent abundance pattern
- 3. good because the pattern in halo stars is the same as in the solar system
- 4. bad if you don't get the right pattern

## Halo star data:

## Consistent main r-process pattern that looks solar

What does this suggest?

Two r-process sites?

Figure from Cowan and Sneden (2004)



Mergers must evolve quickly or there are two r-process sites that produce exactly the same pattern.

#### Lets revisit a merger pattern

#### Fission cycling



- has main peaks
- has a rare earth peak
- big hole before the rare earth peak

Korobkin et al

Why is the material on the sides of the rare earth peak tilted?

#### Watching the rare earth region form

 $(n,\gamma)$ ,  $(\gamma,n)$  equilibrium should persist to very low neutron to seed ratio or there is too much late time neutron capture



Mumpower et al 2012

## Reconciling the solar system pattern with mergers

#### Option 1

- outflow with very slowly declining temperature or low neutron density
- hard with tidal tails

#### Option 2

- arrange fission products so they fill in the whole
- not an aesthetically pleasing solution

Option 3: Mergers are not the primary source of the r-process

## **Conclusions**

- Mergers make r-process through tidal tails
- Mergers make additional nuclei through winds likely nickel
- Merger r-process abundance patterns have features of excess neutron capture
- More effort is needed to see if mergers can evolve quickly enough for halo stars
- Unless you don't make all the r-process material in the solar system this way
- But then this limits the amount that can be ejected from mergers