Electromagnetic Counterparts of Neutron Star Binary Mergers

Brian Metzger NASA Einstein Fellow Princeton University

In Collaboration with

Edo Berger (Harvard), Tony Piro (Caltech), Todd Thompson (OSU) Almudena Arcones & Gabriel Martinez-Pinedo (GSI Darmstadt) Eliot Quataert, Siva Darbha, Daniel Perley, Josh Bloom, Dan Kasen (UC Berkeley) **"Rattle & Shine," KITP Santa Barbara, July 30, 2012**

Sky Error Regions of Advanced GW Detector Arrays

Gamma-Rays

Serml

Gamma-ray Space Telescope

GBM FOV ~ 60%

BAT FOV ~ 15% XRT slews in ~min

Optical ("Now")

Palomar Transient Factory (PTF): new 7.8 deg² camera on the Palomar 48 inch Schmidt telescope

Quarter sky to m_{AB} < 21 every ~3 days

I (ultimately 4) I.8 m mirrors w/ Gigapixel Cameras

84 deg² "medium deep" survey to m_{AB} < 25 every few days

Radio

Optical (Future)

Large Synoptic Survey Telescope (LSST)

~All sky m_{AB}<24.5 every ~3 d - Online >~2020

- ◆ Improve "Confidence" in GW Detection; Dig Deeper into GW Data
- Independently Constrain Binary Parameters
- Astrophysical Context (e.g. Identify Host Galaxy & Environment)
- Other Science: e.g. Cosmology (Redshift \Rightarrow H₀), Test Strong-Field GR

- Improve "Confidence" in GW Detection; Dig Deeper into GW Data
- Independently Constrain Binary Parameters
- Astrophysical Context (e.g. Identify Host Galaxy & Environment)
- Other Science: e.g. Cosmology (Redshift \Rightarrow H₀), Test Strong-Field GR

Four "Cardinal Virtues" of a Promising Counterpart

- 1) **Detectable** with present or upcoming facilities.
- 2) Accompany a **high fraction** of GW events.
- 3) Be unambiguously **identifiable** (a "smoking gun").
- 4) Allow for an accurate (~arcsec) sky localization.

- Improve "Confidence" in GW Detection; Dig Deeper into GW Data
- Independently Constrain Binary Parameters
- Astrophysical Context (e.g. Identify Host Galaxy & Environment)
- Other Science: e.g. Cosmology (Redshift \Rightarrow H₀), Test Strong-Field GR

Four "Cardinal Virtues" of a Promising Counterpart

- 1) **Detectable** with present or upcoming facilities.
- 2) Accompany a **high fraction** of GW events.
- 3) Be unambiguously **identifiable** (a "smoking gun").
- 4) Allow for an accurate (~arcsec) sky localization.

Numerical Simulation - Two 1.4 M_o NSs

(see talks by Shibata, Rosswog, Etienne, Ramirez-Ruiz, Lovelace, Pretorius, Kiuchi, Foucart)

Courtesy M. Shibata (Tokyo U

Remnant Accretion Disk

(e.g. Ruffert & Janka 1999; Shibata & Taniguchi 2006; Chawla et al. 2010; Duez et al. 2010; see talks by Ott, Reddy)

- Disk Mass ~ 10⁻³ 0.1 M_☉ & Size ~ 10-100 km
- Midplane Hot (T > MeV) & Dense ($\rho \sim 10^8 10^{12} \text{ g cm}^{-3}$)
- Cooling via Neutrinos: ($\tau_v >>1$, $\tau_v \sim 0.01-100$)

Accretion Rate $\dot{M} \sim 10^{-2} - 10 M_{\odot} \text{ s}^{-1}$

$$t_{\rm visc} \sim 0.1 \left(\frac{M_{\bullet}}{3M_{\odot}}\right)^{1/2} \left(\frac{\alpha}{0.1}\right)^{-1} \left(\frac{R_d}{100 \text{ km}}\right)^{3/2} \left(\frac{H/R}{0.5}\right)^{-2} \text{ s}$$

Short GRB Central Engine?

(e.g. Narayan et al. 1992)

Relativistic Jets and Short GRBs

Collapse of the Hyper-massive Magnetar Lehner et al. 2012

Long GRBs = Death of Massive Stars Star-Forming Host Galaxies (z_{avg}~2-3)

Supernova Connection GRB 030329 ⇔ SN 2003dh

Long GRBs = Death of Massive Stars Star-Forming Host Galaxies (z_{avg}~2-3)

Supernova Connection GRB 030329 ⇔ SN 2003dh

Not that Short After All....

- 1/4 Swift Short Bursts have X-ray Tails
- Rapid Variability ⇒ Ongoing Engine Activity
- Energy up to ~30 times Burst Itself!

BATSE Examples (Norris & Bonnell 2006)

Why Two Timescales? Why the Delay?

Lee et al. (2004)

Late Accretion from the Disk?

Popham et al. (1999); Narayan et al. (2001); Lee et al. (2004, 2005); Setiawan et al. (2004, 2006); Metzger et al. (2008, 2009)

As Disk Viscously Spreads.....

Its Temperature Decreases

Late Time Disk Outflows

After t ~ 0.1-1 seconds, $R \sim 500 \text{ km } \& T < 1 \text{ MeV}$

Recombination: n + p ⇒ He

 $E_{BIND} \sim GM_{BH}m_n/2R \sim 3 \text{ MeV nucleon}^{-1}$

 $\Delta E_{NUC} \sim 7 \text{ MeV nucleon}^{-1}$

Thick Disks Marginally Bound

Late Time Disk Outflows

After t ~ 0.1-1 seconds, $R \sim 500 \text{ km \& T} < 1 \text{ MeV}$

Recombination: n + p ⇒ He

 $E_{BIND} \sim GM_{BH}m_n/2R \sim 3 \text{ MeV nucleon}^{-1}$ $\Delta E_{NUC} \sim 7 \text{ MeV nucleon}^{-1}$

Powerful Winds Blow Apart Disk

Thick Disks Marginally Bound

10^{52} (e.g.s) 10^{51} (e.g.s) 10^{50} (e.g.s) 10^{50} (e.g.s) 10^{50} (e.g.s) 10^{50} (e.g.s) (f.g.s) (f.g.s)

Accretion of the Initial Disk Cannot Power Late Time Activity in SGRBs

~20-50% of Initial Disk Ejected Back into Space!

BH

(agrees with full 2D sims - Lee et al. 2009)

Late Fall Back Accretion?

(e.g. Faber et al. 2006, Rosswog 2007; Lee & Ramirez-Ruiz 2007; Lee et al. 2009; Chawla et al. 2010)

Alternative Explanation: Surviving Neutron Star Remnant?

(Metzger et al. 2008; Bucciantini et al. 2011)

- Requires: low total mass binary, stiff EOS*, and/or mass loss during merger *supported by recent discovery of 2M_o NS by Demorest et al. 2011
- Magnetic field amplified by rotational energy ⇒ "Magnetar"

Short GRBs are Rare within the A-LIGO Volume

Detectable fraction by all sky γ-ray telescope

$$f_{\gamma} \sim 3.4 \times \frac{\overline{\theta}_{j}^{2}}{2} \sim 0.07 \left(\frac{\overline{\theta}_{j}}{0.2}\right)^{2}$$

- Improve "Confidence" in GW Detection; Dig Deeper into GW Data
- Independently Constrain Binary Parameters
- Astrophysical Context (e.g. Identify Host Galaxy & Environment)
- Other Science: e.g. Cosmology (Redshift \Rightarrow H₀), Test Strong-Field GR

Four "Cardinal Virtues" of a Promising Counterpart

- 1) **Detectable** with present or upcoming facilities.
- 2) Accompany a **high fraction** of GW events.
- 3) Be unambiguously **identifiable** (a "smoking gun").
- 4) Allow for an accurate (~arcsec) sky localization.

On Axis Optical Afterglow ($\theta_{obs} < \theta_j$)

Afterglow models for different jet energy E_j and ISM density n (from van Eerten & MacFadyen 2011)

detections/upper limits constrain jet energy and ISM density:

$$\left(\frac{E_j}{10^{50} \text{ ergs}}\right)^{4/3} \left(\frac{n}{\text{ cm}^{-3}}\right)^{1/2} < 0.1 \text{ (avg 0.01)}$$

Afterglow models for different jet energy E_j and ISM density n (from van Eerten & MacFadyen 2011)

Detection fraction:

θi

 θ_{obs}

$$f_{opt} < 3.4 \times \frac{(2\overline{\theta}_j)^2}{2} \sim 0.25 \left(\frac{\overline{\theta}_j}{0.2}\right)^2$$

Afterglow models for different jet energy E_j and ISM density n (from van Eerten & MacFadyen 2011)

Off Axis Radio Emission?

(Nakar & Piran 2012; see talks by Rosswog, Piran)

- Improve "Confidence" in GW Detection; Dig Deeper into GW Data
- Independently Constrain Binary Parameters
- Astrophysical Context (e.g. Identify Host Galaxy & Environment)
- Other Science: e.g. Cosmology (Redshift \Rightarrow H₀), Test Strong-Field GR

Four "Cardinal Virtues" of a Promising Counterpart

- 1) **Detectable** with present or upcoming facilities.
- 2) Accompany a **high fraction** of GW events.
- 3) Be unambiguously **identifiable** (a "smoking gun").
- 4) Allow for an accurate (~arcsec) sky localization.

Sources of Neutron-Rich Ejecta

Tidal Tails (Dynamical Ejecta)

(e.g. Janka et al. 1999; Rosswog 2005; Giacomazzo et al. 2009; Rezzolla et al. 2010)

Accretion Disk Outflows

Neutrino-Driven Winds (Early)

(McLaughlin & Surman 05; BDM+08; Dessart et al. 2009; talk by McLaughlin)

Thermonuclear-Driven Winds (Late)

(BDM, Piro & Quataert 2008; Lee et al. 2009)

 ${
m M}_{
m ej}$ ~ 10⁻³ - 10⁻¹ ${
m M}_{\odot}$

Sources of Neutron-Rich Ejecta

Tidal Tails (Dynamical Ejecta)

(e.g. Janka et al. 1999; Rosswog 2005; Giacomazzo et al. 2009; Rezzolla et al. 2010)

Accretion Disk Outflows

Neutrino-Driven Winds (Early)

(McLaughlin & Surman 05; BDM+08; Dessart et al. 2009; talk by McLaughlin)

Thermonuclear-Driven Winds (Late)

(BDM, Piro & Quataert 2008; Lee et al. 2009)

6000

4000

2000

-2000 -4000

y [km]

 $\log(\text{density} [g/(\text{ccm})])$ at t= 40.320 ms

-6000 -4000 -2000 0 2000 4000 6000 × [km] Rosswog 2005

Rapid Neutron Capture (R-Process) Nucleosynthesis

(Lattimer et al. 1977; Meyer 1989; Freiburghaus et al. 1999; Goriely et al. 2005)

Decompressing NS Matter ⇒ A ~ 100 Nuclei + Free Neutrons

R-Process Network (neutron captures, photo-dissociations, α - and β -decays, fission)

Final Abundance Distribution

Radioactive Heating Rate in Merger Ejecta

(Li & Paczynski 1998; Kulkarni 2005; BDM et al. 2010; Roberts et al. 2011; Goriely et al. 2011)

Dominant β -Decays at t ~ 1 day: ^{132,134,135} I, ^{128,129}Sb,¹²⁹Te,¹³⁵Xe

$$f = 3 \times 10^{-6}$$

How Supernovae Shine (Arnett 1982)
Spherical ejecta w mass M, velocity v, thermal energy E = f Mc², & opacity K

$$R = v t \qquad \rho = \frac{M}{4\pi/3}R^{3}$$

$$\tau \sim K\rho R \qquad t_{diff} \sim \tau R/c$$
Emission peaks when t = t_{diff} \Rightarrow t_{peak} ~ 2 weeks $\left(\frac{V}{10^{4} \text{ km s}^{-1}}\right)^{-1/2} \left(\frac{M}{M_{\odot}}\right)^{1/2}$

$$L_{peak} \sim \frac{E(t_{peak})}{t_{peak}} \sim 10^{43} \text{ ergs s}^{-1} \left(\frac{f}{10^{-5}}\right) \left(\frac{V}{10^{4} \text{ km s}^{-1}}\right)^{1/2} \left(\frac{M}{M_{\odot}}\right)^{1/2}$$

Type la Supernova:

v ~10⁴ km s⁻¹, M_{ej} ~ M_☉, f_{Ni→Co} ~ 10⁻⁵ ⇒ t_{peak} ~ week, L ~ 10⁴³ erg s⁻¹ **NS Merger:** v ~ 0.1 c, M_{ej} ~ 10⁻² M_☉, f~ 3×10⁻⁶ ⇒ t_{peak}~ 1 day, L ~ 10⁴² erg s⁻¹

Monte Carlo Radiative Transfer (SEDONA; Kasen et al. 2006)

Peak Luminosity ~3×10⁴¹ erg s⁻¹ @ t ~ 1 day for M_{ei} = 10⁻² M_{\odot}

CAVEAT: Fe composition assumed for opacity What does a pure r-process photosphere look like? (see talks by Kasen, Hungerford, Rosswog, Piran)

Optical Search Following a GW Trigger

⇒ Requires search depth r ~ 22-24 and cadence <~ 1 day (see talk by Kasliwal)

GRB 080503: Candidate Kilonova

(Perley, BDM et al. 2009)

Best-Fit Kilonova Parameters: v ~ 0.1 c, M_{ej} ~ few 10⁻² M_{\odot} , **z ~ 0.2**

Pre-Coalescence Counterparts?

- Tidal Cracking of NS Crust (e.g. Troja et al. 2011; Tsang, Read, et al. 2012)
- NS Magnetosphere(s) Particle acceleration or Poynting Flux (e.g. Hansen & Lyutikov 2001; Postnov & Pshirkov 2009; Moortgat & Kuijpers 2004; McWilliams & Levin 2011; Piro et al. 2012).

 (see talk by Piro)
 Collapse of HyperMassive Magnetar (Lehner et al. 2012)

What Wavelength?

- If γ-rays, should have been seen already.
 - Short GRB "precursors" seconds-minutes before burst. (Troja et al. 2010)
 - Local Isotropic Population of short GRBs?
- Coherent radio burst? (LOFAR)
 - Challenging to predict (cf. radio pulsars).
 - Easily self-absorbed by ambient plasma.

Timeline of NS-NS/NS-BH Mergers

1. Pre-Cursors: X-ray / [Coherent] Radio (crust cracking, NS B-field)	t(minus) ~ hrs-ms
✓NS Crust Properties ✓Magnetospheric Plasma Physics	
2. Chirp enters LIGO Bandpass	t(minus) ~ mins-hr
3. Last Orbit, Plunge & BH Formation (if prompt) ✓Dynamical GR ✓Nuclear-Density Equation of State	t ~ 1-10 ms
4. Accretion of Remnant Disk, Jet Formation (γ-ray burst) ✓Weak Interactions, ✓Relativistic MHD, ✓Collisionless Shocks	t ~ 0.1-1 s
5. He-Recombination + Disk Evaporation	t ~ 0.3-3 s
6. R-Process Nucleosynthesis in Merger Ejecta - √Nuclear properties far from β-stability	t ~ few s
7a. Late "Fall-Back" Accretion (ongoing weaker jet, X-rays)	t >~ few s
7b. Long-Lived Neutron Star (magnetar?, X-rays)	
8. Supernova-like Transient "Kilonova" (Optical, UV-lines?)	t ~1 hrs-days
✓ Radiative transfer through "exotic" heavy nuclei (opacities)	
9. On[Off]-Axis GRB Afterglow (X-ray, Optical, Radio)	t ~ hrs-yrs

Comparison of EM Counterparts					
Counterpart	λ	Telescope	Strengths	Weaknesses	
Pre-cursors	X, R	Swift LOFAR	(1) Probes final in-spiral.	(1) Predictions uncertain.(2) Why not detected already?	
Short GRB	γ	Fermi Swift	 (1) They exist. (2) Smoking gun. (3) wide FOV of γ satellites. 	 (1) Merger association uncertain. (2) Hard to localize. (3) Small % of GW chirps. 	
Off-Axis Afterglow	X	Swift XRT A-STAR LobsterISS	(1) Detectable at 200 Mpc.(2) Fast slewing Swift XRT.	 (1) Fade rapidly. (2) Lack of wide FOV instrument. (3) Small % of GW chirps. 	
	0	ZTF, Pan- Starrs, Subaru, LSST	 (1) Detectable at 200 Mpc. (2) Detectable by small telescope (on-axis merger). (3) Good localization. 	(1) Only % of GW chirps.(2) False positives.	
	R	EVLA, ASKAP, Apertif	 (1) ~Isotropic. (2) Slowly evolving. (3) Fewer false positives. (4) Good localization. 	 (1) Requires high ISM density. (2) Slowly evolving. (3) Source confusion. 	
R-Process Powered SN (kilonova)	0	PTF, Pan- STARRs, Subaru, LSST	 (1) ~Isotropic. (2) Detectable at 200 Mpc. (3) Physics robust (thermal!) (4) Good localization. (5) Spectroscopic signature. 	(1) Not detected yet.(2) False positives.	

Comparison of EM Counterparts					
Counterpart	λ	Telescope	Strengths	Weaknesses	
Pre-cursors	X, R	Swift LOFAR	(1) Probes final in-spiral.	(1) Predictions uncertain.(2) Why not detected already?	
Short GRB	γ	Fermi Swift	 (1) They exist. (2) Smoking gun. (3) wide FOV of γ satellites. 	(1) Merger association uncertain.(2) Hard to localize.(3) Small % of GW chirps.	
Off-Axis Afterglow	X	Swift XRT A-STAR LobsterISS	(1) Detectable at 200 Mpc.(2) Fast slewing Swift XRT.	 (1) Fade rapidly. (2) Lack of wide FOV instrument. (3) Small % of GW chirps. 	
	0	ZTF, Pan- Starrs, Subaru, LSST	 (1) Detectable at 200 Mpc. (2) Detectable by small telescope (on-axis merger). (3) Good localization. 	(1) Only % of GW chirps.(2) False positives.	
	R	EVLA, ASKAP, Apertif	 (1) ~Isotropic. (2) Slowly evolving. (3) Fewer false positives. (4) Good localization. 	 (1) Requires high ISM density. (2) Slowly evolving. (3) Source confusion. 	
R-Process Powered SN (kilonova)	0	PTF, Pan- STARRs, Subaru, LSST	 (1) ~Isotropic. (2) Detectable at 200 Mpc. (3) Physics robust (thermal!) (4) Good localization. (5) Spectroscopic signature. 	(1) Not detected yet.(2) False positives.	

Comparison of EM Counterparts				
Counterpart	λ	Telescope	Strengths	Weaknesses
Pre-cursors	X, R	Swift LOFAR	(1) Probes final in-spiral.	(1) Predictions uncertain.(2) Why not detected already?
Short GRB	γ	Fermi Swift	(1) They exist.(2) Smoking gun.	 (1) Merger association uncertain. (2) Hard to localize. of GW chirps.
Off-Axis Afterglow	Х	Swift XF A-STAR Lobster	I his is Go	idly. vide FOV instrument. of GW chirps.
	0	ZTF, Pa Starrs, Subaru, LSST	telescope (on-axis merger). (3) Good localization.	of GW chirps. sitives.
	R	EVLA, ASKAP, Apertif	 (1) ~Isotropic. (2) Slowly evolving. (3) Fewer false positives. (4) Good localization. 	 (1) Requires high ISM density. (2) Slowly evolving. (3) Source confusion.
R-Process Powered SN (kilonova)	0	PTF, Pan- STARRs, Subaru, LSST	 (1) ~Isotropic. (2) Detectable at 200 Mpc. (3) Physics robust (thermal!) (4) Good localization. (5) Spectroscopic signature. 	(1) Not detected yet.(2) False positives.