Precession during merger

R. O'Shaughnessy (UWM)

J. Healy, L. London, D. Shoemaker (Georgia Tech)

Chirps and Mergers, KITP/UCSB 2012-08-03

Key concepts of talk

Title

"Precession during merger: Strong polarization changes are observationally accessible features of strong-field gravity during binary black hole merger"

Translation

- A: (GW) Polarization changes during, after merger
- B: Tracks a direction (and line of sight)
- C: It is detectable
- D: Simple interpretation (precession)
 Encodes astrophysics (transverse spins) in merger, ringdown

Fiducial example

One of ~ 100 distinct **precessing** simulations

[Maya; Cactus+carpet+Einstein toolkit]

Locations

Waveform (one direction)

Fiducial example

Precession modulates GW

Analogy: Single-spin precession, early inspiral

Polarization changes during merger

Experiments see one line of sight

Measure R,L

...if sensitive to both linear polarizations

Polarization changes during merger

Polarization follows "peak"

A: Polarization changes

B: Traces path of "L"

... each line of sight

... works after merger

To include merger:

'Peak' or "L" -> 'preferred location'

Schmidt et al 2011

ROS et al 2011 [arxiv: 1109.5224]

Boyle et al 2012

$$z(t) \equiv \frac{\psi_{4,L}^*(t)}{\psi_{4,R}(t)}$$

Detectable

- A: Polarization changes during, after merger
- B: Tracks a direction (and line of sight)
- C: It is detectable
 - Argument 1: Direction changes significantly "in band"
 - Argument 2: Waveform modulated ("clearly not like nonprecessing")

Large, fast direction changes

View from "above" final J

Before [0 M]

Little change over a few orbits

Large, fast direction changes

View from "above" final J

After [90 M]

What is going on?

"Precession" after merger

$$\partial_t \hat{V} = \Omega \hat{J} \times \hat{V}$$
 "precession rate"

BH perturbation view: Multimodal (m=2,1,...), quasi-coherent

"Precession rate" [points]

QNM frequency differences

$$\omega_{22,0} - \omega_{21,0} - \omega_{22,1} - \omega_{21,1}$$

Significant modulations

How significant?

Fraction of amplitude lostvs nonprecessing reference

$$\frac{|\langle \psi | \psi_{ref} \rangle|}{\sqrt{\langle \psi | \psi \rangle \langle \psi_{ref} | \psi_{ref} \rangle}}$$

Compare with nonprecessing [BH-NS : Brown et al arXiv:1203.6060]

Lose amplitude in direct proportion to precession—induced modulations

What reference? Itself!

Boyle et al 2012

- Go to corotating frame
- Use (I,m) = (2,2) mode in corotating frame

$$\psi = U(R)\psi_{\rm corot}$$

Schmidt et al 2011 ROS et al 2011 [arxiv: 1109.5224]

Significant modulations

Figure key

- Gradient: "orbital plane" [estimate]
- Contours: Fraction of power "lost"
 - Comparison: > ~2% = detectable effect [SNR 10]

Most lines of sight

- a nonprecessing search loses power
- if detectable, enough lost to measure some precessing parameters

Summary

- A: Polarization changes during, after merger
- B: Tracks a direction (and line of sight)
- C: It is detectable
- D: Simple interpretation (precession)
 Encodes astrophysics in merger, ringdown (spin-orbit misalignment, ...)

Conclusions

- Short precessing merger signals modulated
 - Measurable
 - Precession = "natural" coordinate/parameter

- Implications
 - Simulation placement
 - Searches and parameter estimation
 - Phenomenological precession fitting
 - Astrophysics
 - Spin-orbit misalignment from merger, ringdown?
 - Testing GR
 - Strong field dynamics ...even with short merger signal alone

Equation support

Complex overlap

Maximize over time and polarization

$$(\Psi_A|\Psi_B) \equiv \int_{-\infty}^{\infty} \frac{2df}{(2\pi f)^4 S_h} \Psi_A^*(f) \Psi_B(f)$$

Preferred orientation

Rotation group generators

$$\langle L_{(a}L_{b)}\rangle = \frac{\langle \psi_4^*(\hat{n},t)\mathcal{L}_{(a}\mathcal{L}_{b)}\psi_4(\hat{n},t)\rangle_{\text{angles}}}{\langle |\psi_4|^2\rangle_{\text{angles}}}$$

Polarization projection: Frequency domain

$$\tilde{\psi}_{4,R}(f) \equiv \begin{cases} \tilde{\psi}_4(f) & f > 0\\ 0 & f < 0 \end{cases}$$

• (Complex) polarization amplitude

$$z(t) \equiv \frac{\psi_{4,L}^*(t)}{\psi_{4,R}(t)}$$

 An estimate of the peak location O, from line of sight frame (n,x,y)

$$z_O(t) = \frac{[\hat{O} \cdot (\hat{x}_n + i\hat{y}_n)]^4}{(1 + \hat{O} \cdot \hat{n})^4}$$

Spin and waveforms

Generic precession:

Misaligned binaries precess

[ACST]

$$\partial_t X = \Omega_X \times X$$

$$X = S_{1,2}, L$$

 $\partial_t X = \Omega_X \times X \qquad X = S_{1,2}, L$...often around nearly-constant **J** direction

(Leading order): Propagation of L modulates waveform

J loss decreases L:

More spin-dominated

More "freedom" for L at late times...

less freedom early or

Other spin effect: Duration (=SNR,amplitude

Angular momentum "barrier", more emission

Precession: modulated wave

Secular part:

```
- phase:
```

chirps, but at different rate

depends on line of sight

(somewhat)

Modulating part:

- magnitude depends on opening cone only, not mass, spin (once cone known)
 - good approx: precession cone opens slowly
 - model:

complex (fourier) amplitude z

- usually several cycles in band
 - number depends on mass, spin, NOT geometry

Separation of timescales:

- ...+ use LIGO-like detectors (relatively) narrowband
- -> a) <u>ignore</u> increasing opening angle (usually suppressed below radiation time)
 - b) average SNR across the lighthouse
 - c) factor overlap: masses, geometry

e.g., Brown et al arXiv:1203.6060

Measurable effects

- Each path (& modulation) distinct
 ...if you precess (in band), measurable
 ...need one loud or many faint
- Different regimes:
 - BH-NS: [Brown et al arXiv:1203.6060]
 Many L cycles, each faint.
 Can be strongly modulated
 Measurable: ~ "mean" precession path of L
 - BH-BH (>100 Msun):Any at cycles at all? Too short?Merger epoch, so no precession?