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Main results

first two orders of 1/c expansion of the GGE free energy

? non-perturbative in the fugacities µ3, µ5, . . .

? quantum corrections on gravity side

mismatch between heavy primary states and the GGE

? breakdown of ergodicity in 2d CFTs



Motivation

thermalization in 1D systems after a quantum quench
Cardy, Calabrese

CFT thermal physics ⇔ black hole physics

Eigenstate Thermalization Hypothesis in CFT

infinite number of conserved charges Q2k−1

Bazhanov, Lukyanov, Zamolodchikov



Crash-course of 2d CFTs

Virasoro algebra

T (z) =
∑

n
Ln
zn+2 , classically Ln = zn+1∂z

[Ln, Lm] = (n−m)Ln+m +
c

12
δn+m(n3 − n).

lowest weight representation

primary |∆〉, Ln|∆〉 = 0, n > 0

descendant states L−m1 . . . L−mk |∆〉

qKdV charges

H = Q1 =

∫ `

0
duT (u), Q3 =

∫ `

0
duT (u)2, . . .



ETH in CFT

quantization of CFT on a cylinder S1 ×R

operator-states correspondence

〈∆|O|∆〉 is algebraically related to heavy-heavy-light OPE
coefficient

thermodynamic limit

∆/`2 − fixed, `→∞

Eigenstate Thermalization Hypothesis in CFT

〈∆|Oδ|∆〉 = aO
(
∆/`2

)δ/2
Lashkari, AD, Liu



ETH in CFT

ETH is inconsistent if applied to all energy eigenstates

〈∆|O|∆〉 = aO∆δ/2/`δ

〈∆ + n|O|∆ + n〉 6= aO (∆ + n)δ/2`δ

for O from the vacuum conformal family ETH is automatic

a priory eigenstate expectation value is not related to thermal

this talk: mismatch at finite c for O from the vacuum family

〈∆|O|∆〉 6= Tr(O e−βH−µ3Q3−...)/Z



Q-charges of a primary state

Q-charges of primary state |E〉 are completely
determined by its dimension E

only highest power of T (u) contributes to expectation
value in the thermodynamic limit

〈E|q2k−1|E〉 = `−1〈E|Q2k−1|E〉 =
Ek

`2k

matching with the GGE

−`−1∂µ2k−1
logZ = (−`−1∂β logZ)k

matching of Q’s is necessary and sufficient for matching
of all O from the vacuum family



Gibbs free energy

Z = Tr e−βH , H =
L0 − c/24

`
constant in H does not contribute in the thermodynamic
limit

L0 is degenerate, L0|∆ + n〉 = (∆ + n)|∆ + n〉
density of primaries is given by Cardy formula

Z =
∑

∆

∑
n

P (n)e−
β
l
(∆+n) =∫

d∆ dn eπ
√

2(c−1)∆
3

+π
√

2n
3
−β
`

(∆+n) =∫
dE eπ

√
2cE

3
−β
`
E = e

cπ2`
6β2 , E =

cπ2`2

6β2



GGE

eF ≡ Z = Tr e−βH−µ3Q3−µ5Q5−...

free energy depends on µ2k−1 only in combination

t2k−1 =

(
c π2

6β2

)k−1
µ2k−1

β

free energy is a polynomial in µ2k−1, c

F =
cπ2`2

6β2

(
f0 +

f1

c
+
f2

c2
+ . . .

)
f0 = 1− t3 + 4t23 + . . .

f1 = −22

5
t3 + . . .



Structure of Q2k−1

`3Q3 = L2
0 −

c+ 2

12
L0 +

c(5c+ 22)

2880
+ 2

∞∑
n=1

L−nLn

`5Q5 = L3
0 −

c+ 4

8
L2
0 +

(c+ 2)(3c+ 20)

576
L0 −

c(3c+ 14)(7c+ 68)

290304
+

∑
: Ln1Ln2Ln3 : +

∞∑
n=1

(
(c+ 11)

6
n2 − 4 + c

4

)
L−nLn +

3

2

+∞∑
r=1

L1−2rL2r−1

only Lk0 terms contributes extensively in the c→∞ limit∫
dE eπ

√
2cE

3
−β
`
E−µ3

`3
E2−µ5

`5
E3−... = e

cπ2`
6β2 f0
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GGE at infinite c

saddle point approximation is exact

s0 = 2
√
e− e− t3e2 − t5e3 − . . .

f0 = s0(e),
∂s0

∂e

∣∣∣∣
e

= 0

GGE e.v. exactly match primary ones for any µ2k−1

E∗ =
cπ2`

6β
e, ∆∗ =

(c− 1)π2`

6β
e, n∗ =

π2`

6β
e

`−1〈Q2k−1〉GGE = (E∗/`2)k

(f0 + 3t3∂t3f0 + 5t5∂t5f0 + . . . )k + ∂t2k−1
f0 = 0
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all qKdV charges split into two

Q2k−1 = Q̂2k−1(L0) + Q̃2k−1

Q̃2k−1 acting on |∆ + n〉 is a polynomial in c,∆
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Q̃ restricted to |∆ + n〉
Q̃3 is not more than linear in c

Q̃3 = c Q̃c
3 + ∆ Q̃∆

3 + Q̃
(0)
3 =

2

`3

∞∑
n=1

L−nLn

Q̃5 is not more than quadratic in c

Q̃5 = c2Q̃cc
5 + c∆Q̃c∆

5 + ∆2Q̃∆∆
5 + c Q̃c

5 + ∆Q̃∆
5 + Q̃

(0)
5

all leading order in c matrices are lower-triangular!

`3Q̃c3|mi,∆〉 = λ|mi,∆〉+ . . . , λ =
1

6

(∑
i

m3
i −mi

)
`3Q̃∆

3 |mi,∆〉 = ν|mi,∆〉+ . . . , ν = 4n

(1)



Only µ3 turned on

expectation value of Q̃3

`3〈Q̃3〉∆,n =
1

P (n)

∑
{mi}=n

c

6

(∑
i

m3
i −mi

)
+ 4∆n+O(c0)

=
2c

5
n2 + 4∆n+ 4n2 +O(`3)

∆∗ is fixed by leading (infinite) order in c, ∆∗ = cπ2`
6β
e

n∗ is determined by summing over Young tableaux

e
π2`
6β

f1 = e
−π

2

√
∆∗
6c

∑
{mi}

e−
β
`
n−6

µ3
`3
n∆∗−µ3

`3
c
6

∑
im

3
i



Summing over Young tableaux

free boson representation, rk

5 = 1 + 1 + 3

m1 = 1,m2 = 1,m3 = 3, r1 = 2, r2 = 0, r3 = 1, r4 = 0, . . .

n =
∑
i

mi =
∑
k

rk k,
∑
i

m3
i =

∑
k

rk k
3

free boson partition functions

Z =
∑
{mi}

e−
x
`
n− y

`3

∑
im

3
i =

∏
k

∑
rk

e
−
(
x
`
k+ y

`3
k3
)
rk =

= exp

{
−
∑
k

log
(

1− e−
x
`
k− y

`3
k3
)}



Nonperturbative f1 as a function µ3

exact answer in the thermodynamic limit

f1 = −
√
e− 6

π2

∫ ∞
0

dk log
(

1− e−(1+6t3e)k−t3k3/π2
)

knowing 1pt function 〈Q3〉∆,n or equivalently Tr
(
qL0Q3

)
∆

over a particular Verma module fixes full non-perturbative

answer



Turning on µ5

eigenvalues of `3Q̃cc
5 = 1

12

(∑
i
m5
i

6
− 5m3

i

12
− mi

4

)
eigenvalues of `3Q̃c∆

5 =
∑

i
5
6
m3
i −mi

eigenvalues of `3Q̃∆∆
5 = 12n

non-perturbative answer for f1(t3, t5)

f1 = −
√
e−

6

π2

∫ ∞
0

dk log
(

1− e−(1+6t3e+15t5e2)k−(t3+5t5e)k3/π2− 1
2
t5k5/π4

)



Mismatch of GGE and primary state

discrepancy between GGE and primary eigenstate is given
by the e.v. of Q̃

`−1 (〈Q3〉GGE − 〈E|Q3|E〉) = `−1〈Q̃3〉GGE

at leading order in c, Q̃3 can be substituted by its
lower-triangular part and GGE average can be substituted
by an average over Young tableuax in a sector with fixed
∆∗, n∗

Z̃`3〈Q̃3〉GGE =∑
{mi}=n∗

( c
6

∑
m3
i + 4∆∗n∗

)
e
−µ3
`3

( c6
∑
im

3
i+4∆∗n∗)−µ5

`5

(
c2

72

∑
im

5
i+...

)

+O(c0) (2)



Mismatch of GGE and primary state

e.v. of Q̃3 is strictly positive unless n∗ = 0

`−1〈Q̃3〉GGE =
a(t2k−1)c (n∗)2 + 4∆∗n∗

`4
+O(c0) > 0

the mismatch between primaries and GGE has to vanish if
n∗ = 0, i.e. if primaries dominate the GGE; we have
shown it vanishes if and only if

effective descendant level n = n∗/`2 can’t vanish because
of P (n)

L = π

√
2n

3
−
(
n
(
β + 6µ3∆∗/`2 + . . .

)
+ n2 (2cµ3/5 + . . . ) + . . .

)



Conclusions

In the thermodynamic GGE simplifies. First 1/c correction
to free energy reduces to a sum over Young tableaux,
which can be calculated explicitly

we hope to extend our results to all qKdV charges to
obtain f1(t3, t5, t7, . . . )

Beyond infinite c (primary) eigenstate does not match
GGE no matter the choice of qKdV fugacities. This
signals breakdown of ergodicity in 2d CFTs: there are
initial configurations that are not described by GGE upon
equilibration


