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Quasi-integrable systems:

four famous examples

Planetary systems

Weakly nonlinear waves

The Fermi-Pasta-Ulam chain

Quantum chains



1. Planetary systems

→ Kepler (Laplace-Lagrange) (integrable) + perturbation see Laskar



Very short Lyapunov times. Unstable? Moser

Mercury 1.4M
Venus 7.2 M
Earth 4.8M
Mars 4.5M
Jupiter 8.4 M
Saturn 6.4M
Uranus 7.5M
Neptune 6.7M

with some grains of salt (what is an individual Lyapunov?)



Diffusion of the eccentricity of Mercury, slightly different runs
Laskar

n.b. a thousand Lyapunov times



2. Weakly interacting waves
Zakharov, Nazarenko...

Düring, Rica, Josserand,...

→ Plane waves (integrable) + perturbation



3. The Fermi-Pasta-Ulam chain
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→ Toda (integrable) + perturbation (Benettin and Ponno)



The Fermi-Pasta-Ulam chain

Trajectories



4. Quantum chains

Bertini, Essler, Groha, Robinson; DeLuca and Mussardo; ...

→ Various integrable limits



Plus the simplest example:

T1 2T

P ∝ e−β1E1−β2E2 = e−β+E+−β−E−

E+ is conserved, E− is slowly evolving

2β+ = 1/T1 + 1/T2 and 2β− = 1/T1 − 1/T2

clearly, temperatures associated with nonconserved quantities go to infinity



Integrable systems
N independent constants of motion

Action (I1, ...IN ) and Angle (θ1, ..., θN ) variables

Flow is laminar, restricted to tori Ii = const, θi = ωit



Action (I1, ...IN ) and Angle (θ1, ..., θN ) variables



Action-angle representation

q̇i =
∂H

∂pi

ṗi = −∂H
∂qi

—————————————————-

İi = −
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∂Ii
= ωi(I)



Small perturbation:

θ

diffusion in I

u

‘stability’ = lack of ergodicity



We perturb with weak, additive noise

q̇i =
∂H

∂pi

ṗi = −∂H
∂qi

+ ε
1
2 ξi(t)

consider the simple case in which the ξ(t) are white noises:

〈ξ(t)〉 = 0, and 〈ξ(t)ξ(t′)〉 = 2δ(t− t′).



In the action-angle variables, the noise is no longer additive, and
reads:

İi = ε
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1
2

∑
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{θi, qk}ξk(t)



Lyapunov time is puzzlingly short ∼ ε−
1
3

diffusion in I

uθ

No KAM threshold! mostly chaos on the torus

Nguyen Thu Lam and JK



We concentrate for a

while on FPU



Constants of motion of FPU: differences of eigenvalues of
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Thermalization of FPU analogous to Benettin and Ponno

Evolution of Toda constants of motion J1, ..., JN



Generalized Gibbs Ensemble Rigol, Dunjko, Olshanii, Yurovsky

P ∝ e−
∑
βqJq

Binning into a large subextensive set 

constants Toda

analogous to hydrodynamic limit

Coarse-graining is an optional, but the only way to get non-fluctuating quantities, self-averaging and equivalence of ensembles
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From Toda torus to Toda torus

Evolution of Toda constants of motion J1, ..., JN



An algorithm:
Compute time derivative of binned quasi-constants of
motion ‘within a torus’

Evolve the quasi-constants linearly

Find a point with new constants (GGE or ‘generalized
microcanonical’) and iterate

Works with FPU.
What about planets? And quantum?

A numerical version of wave turbulence...



Diffusion of the eccentricity of Mercury, slightly different runs
Laskar

Is it possible to apply the numerical strategy for this case, computing
at each level rate of change and diffusion constants of orbital

parameters?
Here we do not have determinism!



A fluctuation theorem



A conduction problem, we expect a fluctuation
theorem

∆Ε

1 2T T

of the type P (heat)/P (− heat) = e(β1−β2) heat

Indeed: see Jarzynski and Wojcik

P (∆E−)
P (−∆E−)

= eβ−∆E−



small size

or time

larger size or time work/T

P(work/T)



With the analogy with quasi-constants of motion,
we are led to the quantum and classical more

general result
T Goldfriend and JK, see Hickey and Genway also J. Mur-Petit, A. Relao, R. A. Molina, D. Jaksch

P (∆Q)
P (−∆Q)

= eQ

Q =
∑

r βrJr

which describes change of charges

and violations of irreversibility as the system thermalizes (the βr
going to infinity).
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FPU chain, Toda constants, N = 15



Usually, fluctuation theorems are limited to very small systems
and/or very short times.

Here the situation is different: the ‘size’ parameter is the
integrability violation, so that even a macroscopic systems may

exhibit ‘reversals’

For example, it applies to a large FPU chain with a small number of
decaying solitons...

What is the connection with the dynamical effective temperatures? Cugliandolo, Gambassi, Foini

and Konik



Trajectories



The next-to-simplest GGE:
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downhill in constrained entropy (free energy) but (unfortunately)
not necessarily along a gradient



Skiing in β space downhill in −S:

(Prob downhill) / (Prob uphill)→ fluctuation theorem


