# The Black Hole Interior in SYK 

Ahmed Almheiri<br>IAS

## Outline

- SYK Black Hole Microstates. Atypical and Typical States.
- Necessity of State Dependence.
- AdS/CFT as a QEC.
- A Dictionary for the Interior from QEC.
- Comments on the Papadodimas-Raju proposal.


## SYK BH Microstates

[Kourkoulou, Maldacena]

- N Majorana Fermions $=\mathrm{N} / 2$ Spins. $\quad S_{k}=2 i \psi^{2 k-1} \psi^{2 k}$


## SYK BH Microstates

[Kourkoulou, Maldacena]

- N Majorana Fermions $=\mathrm{N} / 2$ Spins. $\quad S_{k}=2 i \psi^{2 k-1} \psi^{2 k}$
- Consider basis: $\left|B_{s}\right\rangle=|\uparrow \downarrow \ldots \uparrow\rangle$

$$
\left(\psi^{2 k-1}-i s_{k} \psi^{2 k}\right)\left|B_{s}\right\rangle=0
$$

$$
s=\left\{s_{1}, \ldots, s_{N / 2}\right\}
$$

$$
\begin{gathered}
\Uparrow \\
S_{k}\left|B_{s}\right\rangle=s_{k}\left|B_{s}\right\rangle
\end{gathered}
$$

## SYK BH Microstates

[Kourkoulou, Maldacena]

- N Majorana Fermions $=\mathrm{N} / 2$ Spins.

$$
S_{k}=2 i \psi^{2 k-1} \psi^{2 k}
$$

- Consider basis: $\left|B_{s}\right\rangle=|\uparrow \downarrow \ldots \uparrow\rangle$

$$
\left(\psi^{2 k-1}-i s_{k} \psi^{2 k}\right)\left|B_{s}\right\rangle=0
$$

$$
s=\left\{s_{1}, \ldots, s_{N / 2}\right\}
$$

- Uniformly distributed in Energy:

$$
\left|B_{s}\right\rangle=\sum_{i} c_{i}\left|E_{i}\right\rangle \quad\left|c_{i}\right|^{2} \sim 2^{-N / 2+1}
$$



## SYK BH Microstates

[Kourkoulou, Maldacena]

- N Majorana Fermions $=\mathrm{N} / 2$ Spins.

$$
S_{k}=2 i \psi^{2 k-1} \psi^{2 k}
$$

- Consider basis: $\left|B_{s}\right\rangle=|\uparrow \downarrow \ldots \uparrow\rangle$

$$
\left(\psi^{2 k-1}-i s_{k} \psi^{2 k}\right)\left|B_{s}\right\rangle=0
$$

$$
s=\left\{s_{1}, \ldots, s_{N / 2}\right\}
$$

- Uniformly distributed in Energy:

$$
\left|B_{s}\right\rangle=\sum_{i} c_{i}\left|E_{i}\right\rangle \quad\left|c_{i}\right|^{2} \sim 2^{-N / 2+1}
$$

- Lower Energy via Euclidean Ev.

$$
\left|B_{s}^{\beta}\right\rangle=e^{-\frac{\beta}{2} H}\left|B_{s}\right\rangle
$$



## SYK BH Microstates

[Kourkoulou, Maldacena]

- Obtain from TFD: $|\beta\rangle_{L R}=\sum_{E} e^{-\frac{\beta}{2} H_{R}}|E\rangle_{L}|E\rangle_{R}$


## SYK BH Microstates

[Kourkoulou, Maldacena]

- Obtain from TFD: $|\beta\rangle_{L R}=\sum_{E} e^{-\frac{\beta}{2} H_{R}}|E\rangle_{L}|E\rangle_{R}=\sum_{s} e^{-\frac{\beta}{2} H_{R}}\left|B_{s}\right\rangle_{L}\left|B_{s}\right\rangle_{R}$


## SYK BH Microstates

[Kourkoulou, Maldacena]

- Obtain from TFD: $|\beta\rangle_{L R}=\sum_{E} e^{-\frac{\beta}{2} H_{R}}|E\rangle_{L}|E\rangle_{R}=\sum_{s} e^{-\frac{\beta}{2} H_{R}}\left|B_{s}\right\rangle_{L}\left|B_{s}\right\rangle_{R}$

$$
\left|B_{s}^{\beta}\right\rangle_{R}={ }_{L}\left\langle B_{s} \mid \beta\right\rangle_{L R}=e^{-\frac{\beta}{2} H_{R}}\left|B_{s}\right\rangle_{R}
$$

## SYK BH Microstates

[Kourkoulou, Maldacena]

- Obtain from TFD: $|\beta\rangle_{L R}=\sum_{E} e^{-\frac{\beta}{2} H_{R}}|E\rangle_{L}|E\rangle_{R}=\sum_{s} e^{-\frac{\beta}{2} H_{R}}\left|B_{s}\right\rangle_{L}\left|B_{s}\right\rangle_{R}$

$$
\left|B_{s}^{\beta}\right\rangle_{R}={ }_{L}\left\langle B_{s} \mid \beta\right\rangle_{L R}=e^{-\frac{\beta}{2} H_{R}}\left|B_{s}\right\rangle_{R}
$$

- Correlation Functions: ${ }_{R}\left\langle B_{s}^{\beta}\right| \psi_{R}^{i} \psi_{R}^{j}\left|B_{s}^{\beta}\right\rangle_{R}={ }_{L R}\left\langle\beta \mid B_{s}\right\rangle_{L}\left(\psi_{R}^{i} \psi_{R}^{j}\right)_{L}\left\langle B_{s} \mid \beta\right\rangle_{L R}$

$$
={ }_{{ }^{2} R}\langle\beta|\left[\left|B_{s}\right\rangle_{L}\left\langle B_{s}\right| \otimes \psi_{R}^{i} \psi_{R}^{j}\right]|\beta\rangle_{L R}
$$

## SYK BH Microstates

[Kourkoulou, Maldacena]

- Obtain from TFD: $|\beta\rangle_{L R}=\sum_{E} e^{-\frac{\beta}{2} H_{R}}|E\rangle_{L}|E\rangle_{R}=\sum_{s} e^{-\frac{\beta}{2} H_{R}}\left|B_{s}\right\rangle_{L}\left|B_{s}\right\rangle_{R}$

$$
\left|B_{s}^{\beta}\right\rangle_{R}={ }_{L}\left\langle B_{s} \mid \beta\right\rangle_{L R}=e^{-\frac{\beta}{2} H_{R}}\left|B_{s}\right\rangle_{R}
$$

- Correlation Functions: ${ }_{R}\left\langle B_{s}^{\beta}\right| \psi_{R}^{i} \psi_{R}^{j}\left|B_{s}^{\beta}\right\rangle_{R}={ }_{L R}\left\langle\beta \mid B_{s}\right\rangle_{L}\left(\psi_{R}^{i} \psi_{R}^{j}\right)_{L}\left\langle B_{s} \mid \beta\right\rangle_{L R}$

$$
={ }_{L R}\langle\beta|\left[\left|B_{s}\right\rangle_{L}\left\langle B_{s}\right| \otimes \psi_{R}^{i} \psi_{R}^{j}\right]|\beta\rangle_{L R}
$$

- $\mathcal{O}(N)$ Symmetry, $\sim \mathcal{O}\left(1 / N^{q-1}\right)$. "Flip" subgroup: Flip sign of any even fermion. Relates any two states $\left|B_{s}\right\rangle$ and $\left|B_{s^{\prime}}^{\beta}\right\rangle$

$$
\begin{array}{ll}
\text { e.g. } & \psi^{2} \rightarrow-\psi^{2} \Longrightarrow|\uparrow \uparrow \ldots \uparrow\rangle \rightarrow|\downarrow \uparrow \ldots \uparrow\rangle \\
& S_{k}=2 i \psi^{2 k-1} \psi^{2 k}
\end{array}
$$

## Correlation Functions

[Kourkoulou, Maldacena]

- Diagonal Correlator: ${ }_{R}\left\langle B_{s}^{\beta}\right| \psi_{R}^{1} \psi_{R}^{1}\left|B_{s}^{\beta}\right\rangle_{R}={ }_{L R}\langle\beta|\left[\left|B_{s}\right\rangle_{L}\left\langle B_{s}\right| \otimes \psi_{R}^{1} \psi_{R}^{1}\right]|\beta\rangle_{L R}$


## Correlation Functions

[Kourkoulou, Maldacena]

- Diagonal Correlator: ${ }_{R}\langle B_{s}^{\beta} \underbrace{\left.\left|\psi_{R}^{1} \psi_{R}^{1}\right| B_{s}^{\beta}\right\rangle_{R}={ }_{L R}\langle\beta|\left[\left|B_{s}\right\rangle_{L}\left\langle B_{s}\right| \otimes \psi_{R}^{1} \psi_{R}^{1}\right]|\beta\rangle_{L R}}$

Invariant under Flip

## Correlation Functions

[Kourkoulou, Maldacena]

- Diagonal Correlator: ${ }_{R}\left\langle B_{s}^{\beta}\right| \underbrace{1}_{R} \psi_{R}^{1}\left|B_{s}^{\beta}\right\rangle_{R}={ }_{L R}\langle\beta|\left[\left|B_{s}\right\rangle_{L}\left\langle B_{s}\right| \otimes \psi_{R}^{1} \psi_{R}^{1}\right]|\beta\rangle_{L R}$ Invariant under Flip $\quad \alpha \sum_{s} L_{R}\langle\beta|\left[\left|B_{s}\right\rangle_{L}\left\langle B_{s}\right| \otimes \psi_{R}^{1} \psi_{R}^{1}\right]|\beta\rangle_{L R}$


## Correlation Functions

[Kourkoulou, Maldacena]

- Diagonal Correlator: ${ }_{R}\left\langle B_{s}^{\beta}\right| \underbrace{1} \psi_{R}^{1} \psi_{R}^{1}\left|B_{s}^{\beta}\right\rangle_{R}={ }_{L R}\langle\beta|\left[\left|B_{s}\right\rangle_{L}\left\langle B_{s}\right| \otimes \psi_{R}^{1} \psi_{R}^{1}\right]|\beta\rangle_{L R}$

$$
\begin{aligned}
\text { Invariant under Flip } & \propto \sum_{s}{ }_{L R}\langle\beta|\left[\left|B_{s}\right\rangle_{L}\left\langle B_{s}\right| \otimes \psi_{R}^{1} \psi_{R}^{1}\right]|\beta\rangle_{L R} \\
& \propto{ }_{L R}\langle\beta| \psi_{R}^{1} \psi_{R}^{1}|\beta\rangle_{L R}
\end{aligned}
$$

## Correlation Functions

[Kourkoulou, Maldacena]

- Diagonal Correlator: ${ }_{R}\left\langle B_{s}^{\beta}\right| \underbrace{1} \psi_{R}^{1} \psi_{R}^{1}\left|B_{s}^{\beta}\right\rangle_{R}={ }_{L R}\langle\beta|\left[\left|B_{s}\right\rangle_{L}\left\langle B_{s}\right| \otimes \psi_{R}^{1} \psi_{R}^{1}\right]|\beta\rangle_{L R}$

$$
\begin{aligned}
& \text { Invariant under Flip } \\
& \propto \sum_{L_{R}\langle\beta|}\left[\left|B_{s}\right\rangle_{L}\left\langle B_{s}\right| \otimes \psi_{R}^{1} \psi_{R}^{1}\right]|\beta\rangle_{L R}
\end{aligned}
$$

- Off-Diagonal Correlator: ${ }_{R}\left\langle B_{s}^{\beta}\right| \psi_{R}^{1} \psi_{R}^{2}\left|B_{s}^{\beta}\right\rangle_{R}={ }_{L R}\langle\beta|\left[\left|B_{s}\right\rangle_{L}\left\langle B_{s}\right| \otimes \psi_{R}^{1} \psi_{R}^{2}\right]|\beta\rangle_{L R}$


## Correlation Functions

[Kourkoulou, Maldacena]

- Diagonal Correlator: ${ }_{R}\left\langle B_{s}^{\beta}\right| \underbrace{1} \psi_{R}^{1} \psi_{R}^{1}\left|B_{s}^{\beta}\right\rangle_{R}={ }_{L R}\langle\beta|\left[\left|B_{s}\right\rangle_{L}\left\langle B_{s}\right| \otimes \psi_{R}^{1} \psi_{R}^{1}\right]|\beta\rangle_{L R}$

$$
\begin{aligned}
\text { Invariant under Flip } & \propto \sum_{\substack{s \\
L R}}\langle\beta|\left[\left|B_{s}\right\rangle_{L}\left\langle B_{s}\right| \otimes \psi_{R}^{1} \psi_{R}^{1}\right]|\beta\rangle_{L R} \\
& \left.\propto L \beta\left|\psi_{R}^{1} \psi_{R}^{1}\right| \beta\right\rangle_{L R}
\end{aligned}
$$

- Off-Diagonal Correlator: ${ }_{R}\left\langle B_{s}^{\beta}\right| \underbrace{\psi_{R}^{1} \psi_{R}^{2}\left|B_{s}^{\beta}\right\rangle_{R}={ }_{L R}\langle\beta|\left[\left|B_{s}\right\rangle_{L}\left\langle B_{s}\right| \otimes \psi_{R}^{1} \psi_{R}^{2}\right]|\beta\rangle_{L_{R}}}$

Not Invariant

## Correlation Functions

[Kourkoulou, Maldacena]

- Diagonal Correlator: ${ }_{R}\langle B_{s}^{\beta} \underbrace{\mid} \psi_{R}^{1} \psi_{R}^{1} \mid B_{s}^{\beta}\rangle_{R}={ }_{L R}\langle\beta|\left[\left|B_{s}\right\rangle_{L}\left\langle B_{s}\right| \otimes \psi_{R}^{1} \psi_{R}^{1}\right]|\beta\rangle_{L R}$ Invariant under Flip $\alpha \sum_{s R}\langle\beta|\left[\left|B_{s}\right\rangle_{L}\left\langle B_{s}\right| \otimes \psi_{R}^{1} \psi_{R}^{1}\right]|\beta\rangle_{L R}$ $\alpha_{L R}\langle\beta| \psi_{R}^{1} \psi_{R}^{1}|\beta\rangle_{L R}$
- Off-Diagonal Correlator: ${ }_{R}\left\langle B_{s}^{\beta}\right| \underbrace{\psi_{R}^{1} \psi_{R}^{2}\left|B_{s}^{\beta}\right\rangle_{R}={ }_{L R}\langle\beta|\left[\left|B_{s}\right\rangle_{L}\left\langle B_{s}\right| \otimes \psi_{R}^{1} \psi_{R}^{2}\right]|\beta\rangle_{L_{R}}}$

Not Invariant
Is Invariant
Instead: $\quad{ }_{R}\left\langle B_{s}^{\beta}\right| \overbrace{\psi_{R}^{1} \psi_{R}^{2} s_{1} \mid}\left|B_{s}^{\beta}\right\rangle_{R}={ }_{L R}\langle\beta|\left[\left|B_{s}\right\rangle_{L}\left\langle B_{s}\right| s_{1} \otimes \psi_{R}^{1} \psi_{R}^{2}\right]|\beta\rangle_{L R}$

## Correlation Functions

[Kourkoulou, Maldacena]

- Diagonal Correlator: ${ }_{R}\langle B_{s}^{\beta} \underbrace{\left.\left|\psi_{R}^{1} \psi_{R}^{1}\right| B_{s}^{\beta}\right\rangle_{R}={ }_{L R}\langle\beta|\left[\left|B_{s}\right\rangle_{L}\left\langle B_{s}\right| \otimes \psi_{R}^{1} \psi_{R}^{1}\right]|\beta\rangle_{L R}}$ Invariant under Flip $\left.\quad \alpha \sum_{s}\langle\beta| \beta\left|\left[\left|B_{s}\right\rangle_{L}\left\langle B_{s}\right| \otimes \psi_{R}^{1} \psi_{R}^{1}\right]\right| \beta\right\rangle_{L R}$ $\alpha_{L R}\langle\beta| \psi_{R}^{1} \psi_{R}^{1}|\beta\rangle_{L R}$
- Off-Diagonal Correlator: ${ }_{R}\left\langle B_{s}^{\beta}\right| \underbrace{\psi_{R}^{1} \psi_{R}^{2}\left|B_{s}^{\beta}\right\rangle_{R}={ }_{L R}\langle\beta|\left[\left|B_{s}\right\rangle_{L}\left\langle B_{s}\right| \otimes \psi_{R}^{1} \psi_{R}^{2}\right]|\beta\rangle_{L_{R}}}$

Not Invariant
Is Invariant
Instead: $\left.\begin{array}{rl}{ }_{R}\left\langle B_{s}^{\beta}\right| \overbrace{\psi_{R}^{1} \psi_{R}^{2} s_{1}}\left|B_{s}^{\beta}\right\rangle_{R} & ={ }_{L R}\langle\beta|\left[\left|B_{s}\right\rangle_{L}\left\langle B_{s}\right| s_{1} \otimes \psi_{R}^{1} \psi_{R}^{2}\right]|\beta\rangle_{L R} \\ & =2 i \times_{L R}\langle\beta|\left[\left|B_{s}\right\rangle_{L}\left\langle B_{s}\right| \psi_{L}^{1}(0) \psi_{L}^{2}(0) \otimes \psi_{R}^{1} \psi_{R}^{2}\right]|\beta\rangle_{L R}\end{array}\right\} \begin{aligned} & S_{k}\left|B_{s}\right\rangle=s_{s}\left|B_{s}\right\rangle \\ & S_{k}=2 i \psi^{2 k-1} \psi^{2 k}\end{aligned}$

## Correlation Functions

[Kourkoulou, Maldacena]

- Diagonal Correlator: ${ }_{R}\langle B_{s}^{\beta} \underbrace{\left.\left|\psi_{R}^{1} \psi_{R}^{1}\right| B_{s}^{\beta}\right\rangle_{R}={ }_{L R}\langle\beta|\left[\left|B_{s}\right\rangle_{L}\left\langle B_{s}\right| \otimes \psi_{R}^{1} \psi_{R}^{1}\right]|\beta\rangle_{L R}}$ Invariant under Flip $\left.\quad \alpha \sum_{s}\langle\beta| \beta\left|\left[\left|B_{s}\right\rangle_{L}\left\langle B_{s}\right| \otimes \psi_{R}^{1} \psi_{R}^{1}\right]\right| \beta\right\rangle_{L R}$ $\alpha_{L R}\langle\beta| \psi_{R}^{1} \psi_{R}^{1}|\beta\rangle_{L R}$
- Off-Diagonal Correlator: ${ }_{R}\left\langle B_{s}^{\beta}\right| \underbrace{\psi_{R}^{1} \psi_{R}^{2}\left|B_{s}^{\beta}\right\rangle_{R}={ }_{L R}\langle\beta|\left[\left|B_{s}\right\rangle_{L}\left\langle B_{s}\right| \otimes \psi_{R}^{1} \psi_{R}^{2}\right]|\beta\rangle_{L_{R}}}$

Not Invariant
Is Invariant

$$
\text { Instead: } \left.\begin{array}{rl}
{ }_{R}\left\langle B_{s}^{\beta}\right| \overbrace{\psi_{R}^{1} \psi_{R}^{2} s_{1} \mid}\left|B_{s}^{\beta}\right\rangle_{R} & ={ }_{L R}\langle\beta|\left[\left|B_{s}\right\rangle_{L}\left\langle B_{s}\right| s_{1} \otimes \psi_{R}^{1} \psi_{R}^{2}\right]|\beta\rangle_{L R} \\
& =2 i \times_{L R}\langle\beta|\left[\left|B_{s}\right\rangle_{L}\left\langle B_{s}\right| \psi_{L}^{1}(0) \psi_{L}^{2}(0) \otimes \psi_{R}^{1} \psi_{R}^{2}\right]|\beta\rangle_{L R} \\
& \propto 2 i \times \sum_{s}{ }_{L R}\langle\beta|\left[\left|B_{s}\right\rangle_{L}\left\langle B_{s}\right| \psi_{L}^{1}(0) \psi_{L}^{2}(0) \otimes \psi_{R}^{1} \psi_{R}^{2}\right]|\beta\rangle_{L R}
\end{array}\right\} \begin{aligned}
& S_{k}\left|B_{s}\right\rangle=s_{k}\left|B_{s}\right\rangle \\
& S_{k}=2 i \psi^{2 k-1} \psi^{2 k}
\end{aligned}
$$

## Correlation Functions

[Kourkoulou, Maldacena]

- Diagonal Correlator: ${ }_{R}\langle B_{s}^{\beta} \underbrace{1} \psi_{R}^{1} \psi_{R}^{1} \mid B_{s}^{\beta}\rangle_{R}={ }_{L R}\langle\beta|\left[\left|B_{s}\right\rangle_{L}\left\langle B_{s}\right| \otimes \psi_{R}^{1} \psi_{R}^{1}\right]|\beta\rangle_{L R}$ Invariant under Flip $\quad \alpha \sum_{s}{ }_{L R}\langle\beta|\left[\left|B_{s}\right\rangle_{L}\left\langle B_{s}\right| \otimes \psi_{R}^{1} \psi_{R}^{1}\right]|\beta\rangle_{L R}$ $\alpha_{L R}\langle\beta| \psi_{R}^{1} \psi_{R}^{1}|\beta\rangle_{L R}$
- Off-Diagonal Correlator: ${ }_{R}\left\langle B_{s}^{\beta}\right| \underbrace{\psi_{R}^{1} \psi_{R}^{2}\left|B_{s}^{\beta}\right\rangle_{R}={ }_{L R}\langle\beta|\left[\left|B_{s}\right\rangle_{L}\left\langle B_{s}\right| \otimes \psi_{R}^{1} \psi_{R}^{2}\right]|\beta\rangle_{L_{R}}}$

Not Invariant
Is Invariant

$$
\text { Instead: } \left.\begin{array}{rl}
{ }_{R}\left\langle B_{s}^{\beta}\right| \overbrace{\psi_{R}^{1} \psi_{R}^{2} s_{1}\left|B_{s}^{\beta}\right\rangle_{R}} & ={ }_{L R}\langle\beta|\left[\left|B_{s}\right\rangle_{L}\left\langle B_{s}\right| s_{1} \otimes \psi_{R}^{1} \psi_{R}^{2}\right]|\beta\rangle_{L R} \\
& =2 i \times{ }_{L R}\langle\beta|\left[\left|B_{s}\right\rangle_{L}\left\langle B_{s}\right| \psi_{L}^{1}(0) \psi_{L}^{2}(0) \otimes \psi_{R}^{1} \psi_{R}^{2}\right]|\beta\rangle_{L R} \\
& \propto 2 i \times \sum_{s}{ }_{L R}\langle\beta|\left[\left|B_{s}\right\rangle_{L}\left\langle B_{s}\right| \psi_{L}^{1}(0) \psi_{L}^{2}(0) \otimes \psi_{R}^{1} \psi_{R}^{2}\right]|\beta\rangle_{L R}
\end{array}\right\} \begin{aligned}
& S_{k}\left|B_{s}\right\rangle=s_{k}\left|B_{s}\right\rangle \\
& S_{k}=2 i \psi^{2 k-1} \psi^{2 k}
\end{aligned}
$$

$$
{ }_{R}\left\langle B_{s}^{\beta}\right| \psi_{R}^{1} \psi_{R}^{2}\left|B_{s}^{\beta}\right\rangle_{R} \propto 2 i s_{1} \times_{L R}\langle\beta|\left[\psi_{L}^{1}(0) \psi_{L}^{2}(0) \otimes \psi_{R}^{1} \psi_{R}^{2}\right]|\beta\rangle_{L R}
$$

## Correlation Functions

[Kourkoulou, Maldacena]

- Diagonal Correlator: ${ }_{R}\langle B_{s}^{\beta} \underbrace{1} \psi_{R}^{1} \psi_{R}^{1} \mid B_{s}^{\beta}\rangle_{R}={ }_{L R}\langle\beta|\left[\left|B_{s}\right\rangle_{L}\left\langle B_{s}\right| \otimes \psi_{R}^{1} \psi_{R}^{1}\right]|\beta\rangle_{L R}$ Invariant under Flip $\left.\alpha \sum_{s}\langle\beta| \beta\left|\left[\left|B_{s}\right\rangle_{L}\left\langle B_{s}\right| \otimes \psi_{R}^{1} \psi_{R}^{1}\right]\right| \beta\right\rangle_{L R}$ $\alpha_{L R}\langle\beta| \psi_{R}^{1} \psi_{R}^{1}|\beta\rangle_{L R}$
- Off-Diagonal Correlator: ${ }_{R}\left\langle B_{s}^{\beta}\right| \underbrace{\psi_{R}^{1} \psi_{R}^{2}\left|B_{s}^{\beta}\right\rangle_{R}={ }_{L R}\langle\beta|\left[\left|B_{s}\right\rangle_{L}\left\langle B_{s}\right| \otimes \psi_{R}^{1} \psi_{R}^{2}\right]|\beta\rangle_{L_{R}}}$

Not Invariant
Is Invariant

$$
\text { Instead: } \left.\quad \begin{array}{rl}
{ }_{R}\left\langle B_{s}^{\beta}\right| \overbrace{\psi_{R}^{1} \psi_{R}^{2} s_{1}\left|B_{s}^{\beta}\right\rangle_{R}} & ={ }_{L R}\langle\beta|\left[\left|B_{s}\right\rangle_{L}\left\langle B_{s}\right| s_{1} \otimes \psi_{R}^{1} \psi_{R}^{2}\right]|\beta\rangle_{L R} \\
& =2 i \times{ }_{L R}\langle\beta|\left[\left|B_{s}\right\rangle_{L}\left\langle B_{s}\right| \psi_{L}^{1}(0) \psi_{L}^{2}(0) \otimes \psi_{R}^{1} \psi_{R}^{2}\right]|\beta\rangle_{L R} \\
& \propto 2 i \times \sum_{s}{ }_{L R}\langle\beta|\left[\left|B_{s}\right\rangle_{L}\left\langle B_{s}\right| \psi_{L}^{1}(0) \psi_{L}^{2}(0) \otimes \psi_{R}^{1} \psi_{R}^{2}\right]|\beta\rangle_{L R}
\end{array}\right\} \begin{aligned}
& S_{k}\left|B_{s}\right\rangle=s_{k}\left|B_{s}\right\rangle \\
& S_{k}=2 i \psi^{2 k-1} \psi^{2 k}
\end{aligned}
$$

$$
{ }_{R}\left\langle B_{s}^{\beta}\right| \psi_{R}^{1} \psi_{R}^{2}\left|B_{s}^{\beta}\right\rangle_{R} \propto 2 i s_{1} \times{ }_{L R}\langle\beta|\left[\psi_{L}^{1}(0) \psi_{L}^{2}(0) \otimes \psi_{R}^{1} \psi_{R}^{2}\right]|\beta\rangle_{L R}
$$

$$
\propto 2 i s_{1} \times{ }_{L R}\langle\beta| \psi_{L}^{1}(0) \psi_{R}^{1}|\beta\rangle_{L R} \times{ }_{L R}\langle\beta| \psi_{L}^{2}(0) \psi_{R}^{2}|\beta\rangle_{L R}+1 / N
$$

## Bulk Picture


$|\beta\rangle_{L R}$


$$
L\left\langle B_{s}^{*} \mid \beta\right\rangle L R
$$

- Bulk is deduced from the correlation functions @ $1 \ll \beta J$

$$
\begin{aligned}
& { }_{R}\left\langle B_{s}^{\beta}\right| \psi_{R}^{1} \psi_{R}^{1}\left|B_{s}^{\beta}\right\rangle_{R} \propto{ }_{L R}\langle\beta| \psi_{R}^{1} \psi_{R}^{1}|\beta\rangle_{L R} \\
& { }_{R}\left\langle B_{s}^{\beta}\right| \psi_{R}^{1} \psi_{R}^{2}\left|B_{s}^{\beta}\right\rangle_{R} \propto 2 i s_{1} \times{ }_{L R}\langle\beta| \psi_{L}^{1}(0) \psi_{R}^{1}|\beta\rangle_{L R} \times{ }_{L R}\langle\beta| \psi_{L}^{2}(0) \psi_{R}^{2}|\beta\rangle_{L R}
\end{aligned}
$$

## Bulk Picture


$|\beta\rangle_{L R}$


$$
L\left\langle B_{s}^{*} \mid \beta\right\rangle_{L R}
$$

- Bulk is deduced from the correlation functions @ $1 \ll \beta J$

$$
\begin{aligned}
& { }_{R}\left\langle B_{s}^{\beta}\right| \psi_{R}^{1} \psi_{R}^{1}\left|B_{s}^{\beta}\right\rangle_{R} \propto{ }_{L R}\langle\beta| \psi_{R}^{1} \psi_{R}^{1}|\beta\rangle_{L R} \\
& { }_{R}\left\langle B_{s}^{\beta}\right| \psi_{R}^{1} \psi_{R}^{2}\left|B_{s}^{\beta}\right\rangle_{R} \propto 2 i s_{1} \times{ }_{L R}\langle\beta| \psi_{L}^{1}(0) \psi_{R}^{1}|\beta\rangle_{L R} \times{ }_{L R}\langle\beta| \psi_{L}^{2}(0) \psi_{R}^{2}|\beta\rangle_{L R}
\end{aligned}
$$

## Bulk Picture



- Bulk is deduced from the correlation functions @ $1 \ll \beta J$

$$
\begin{aligned}
& { }_{R}\left\langle B_{s}^{\beta}\right| \psi_{R}^{1} \psi_{R}^{1}\left|B_{s}^{\beta}\right\rangle_{R} \propto{ }_{L R}\langle\beta| \psi_{R}^{1} \psi_{R}^{1}|\beta\rangle_{L R} \\
& { }_{R}\left\langle B_{s}^{\beta}\right| \psi_{R}^{1} \psi_{R}^{2}\left|B_{s}^{\beta}\right\rangle_{R} \propto 2 i s_{1} \times{ }_{L R}\langle\beta| \psi_{L}^{1}(0) \psi_{R}^{1}|\beta\rangle_{L R} \times{ }_{L R}\langle\beta| \psi_{L}^{2}(0) \psi_{R}^{2}|\beta\rangle_{L R}
\end{aligned}
$$

- These are atypical BH microstates: Simple observables have not thermalized.


## More Typical Microstates

- Begin with wormhole with OTO shockwaves: $|W \beta\rangle_{L R} \equiv W_{L}|\beta\rangle_{L R}$
- Then project: $\left|B_{s}^{W_{\beta}}\right\rangle_{R} \equiv{ }_{L}\left\langle B_{s} \mid W \beta\right\rangle_{L R}$


## More Typical Microstates

- Begin with wormhole with OTO shockwaves: $|W \beta\rangle_{L R} \equiv W_{L}|\beta\rangle_{L R}$
- Then project: $\left|B_{s}^{W_{\beta}}\right\rangle_{R} \equiv{ }_{L}\left\langle B_{s} \mid W \beta\right\rangle_{L R}$
- Correlation Functions: ${ }_{R}\left\langle B_{s}^{W_{s}}\right| \psi_{R}^{1} \psi_{R}^{1}\left|B_{s}^{W_{\beta}}\right\rangle_{R} \propto{ }_{L R}\langle W \beta| \psi_{R}^{1} \psi_{R}^{1}|W \beta\rangle_{L R}={ }_{L R}\langle\beta| \psi_{R}^{1} \psi_{R}^{1}|\beta\rangle_{L R}$


## More Typical Microstates

- Begin with wormhole with OTO shockwaves: $|W \beta\rangle_{L R} \equiv W_{L}|\beta\rangle_{L R}$
- Then project: $\left|B_{s}^{W_{\beta}}\right\rangle_{R} \equiv{ }_{L}\left\langle B_{s} \mid W \beta\right\rangle_{L R}$
- Correlation Functions: ${ }_{R}\left\langle B_{s}^{W_{s}}\right| \psi_{R}^{1} \psi_{R}^{1}\left|B_{s}^{W_{\beta}}\right\rangle_{R} \propto{ }_{L R}\langle W \beta| \psi_{R}^{1} \psi_{R}^{1}|W \beta\rangle_{L R}={ }_{L R}\langle\beta| \psi_{R}^{1} \psi_{R}^{1}|\beta\rangle_{L R}$

$$
{ }_{R}\left\langle B_{s}^{W_{\beta}}\right| \psi_{R}^{1} \psi_{R}^{2}\left|B_{s}^{W_{\beta}}\right\rangle_{R} \propto 2 i s_{1} \times{ }_{L R}\langle W \beta|\left[\psi_{L}^{1}(0) \psi_{L}^{2}(0) \otimes \psi_{R}^{1} \psi_{R}^{2}\right]|W \beta\rangle_{L R}
$$

## More Typical Microstates

- Begin with wormhole with OTO shockwaves: $|W \beta\rangle_{L R} \equiv W_{L}|\beta\rangle_{L R}$
- Then project: $\left|B_{s}^{W_{\beta}}\right\rangle_{R} \equiv{ }_{L}\left\langle B_{s} \mid W \beta\right\rangle_{L R}$
- Correlation Functions: ${ }_{R}\left\langle B_{s}^{W_{s}}\right| \psi_{R}^{1} \psi_{R}^{1}\left|B_{s}^{W_{\beta}}\right\rangle_{R} \propto{ }_{L R}\langle W \beta| \psi_{R}^{1} \psi_{R}^{1}|W \beta\rangle_{L R}={ }_{L R}\langle\beta| \psi_{R}^{1} \psi_{R}^{1}|\beta\rangle_{L R}$

$$
\begin{aligned}
{ }_{R}\left\langle B_{s}^{W_{\beta}}\right| \psi_{R}^{1} \psi_{R}^{2}\left|B_{s}^{W_{\beta}}\right\rangle_{R} & \propto 2 i s_{1} \times_{L R}\langle W \beta|\left[\psi_{L}^{1}(0) \psi_{L}^{2}(0) \otimes \psi_{R}^{1} \psi_{R}^{2}\right]|W \beta\rangle_{L R} \\
& \propto 2 i s_{1} \times_{L R}\langle\beta|\left[W_{L}^{\dagger} \psi_{L}^{1}(0) \psi_{L}^{2}(0) W_{L} \otimes \psi_{R}^{1} \psi_{R}^{2}\right]|\beta\rangle_{L R}
\end{aligned}
$$

## More Typical Microstates

- Begin with wormhole with OTO shockwaves: $|W \beta\rangle_{L R} \equiv W_{L}|\beta\rangle_{L R}$
- Then project: $\left|B_{s}^{W_{\beta}}\right\rangle_{R} \equiv{ }_{L}\left\langle B_{s} \mid W \beta\right\rangle_{L R}$
- Correlation Functions: ${ }_{R}\left\langle B_{s}^{W_{s}}\right| \psi_{R}^{1} \psi_{R}^{1}\left|B_{s}^{W_{\beta}}\right\rangle_{R} \propto{ }_{L R}\langle W \beta| \psi_{R}^{1} \psi_{R}^{1}|W \beta\rangle_{L R}={ }_{L R}\langle\beta| \psi_{R}^{1} \psi_{R}^{1}|\beta\rangle_{L R}$

$$
\begin{aligned}
{ }_{R}\left\langle B_{s}^{W_{\beta}}\right| \psi_{R}^{1} \psi_{R}^{2}\left|B_{s}^{W_{\beta}}\right\rangle_{R} & \propto 2 i s_{1} \times{ }_{L R}\langle W \beta|\left[\psi_{L}^{1}(0) \psi_{L}^{2}(0) \otimes \psi_{R}^{1} \psi_{R}^{2}\right]|W \beta\rangle_{L R} \\
& \propto 2 i s_{1} \times{ }_{L R}\langle\beta|\left[W_{L}^{\dagger} \psi_{L}^{1}(0) \psi_{L}^{2}(0) W_{L} \otimes \psi_{R}^{1} \psi_{R}^{2}\right]|\beta\rangle_{L R}
\end{aligned}
$$



## More Typical Microstates

- Begin with wormhole with OTO shockwaves: $|W \beta\rangle_{L R} \equiv W_{L}|\beta\rangle_{L R}$
- Then project: $\left|B_{s}^{W_{\beta}}\right\rangle_{R} \equiv{ }_{L}\left\langle B_{s} \mid W \beta\right\rangle_{L R}$
- Correlation Functions: ${ }_{R}\left\langle B_{s}^{W_{s}}\right| \psi_{R}^{1} \psi_{R}^{1}\left|B_{s}^{W_{\beta}}\right\rangle_{R} \propto{ }_{L R}\langle W \beta| \psi_{R}^{1} \psi_{R}^{1}|W \beta\rangle_{L R}={ }_{L R}\langle\beta| \psi_{R}^{1} \psi_{R}^{1}|\beta\rangle_{L R}$

$$
\begin{aligned}
{ }_{R}\left\langle B_{s}^{W_{\beta}}\right| \psi_{R}^{1} \psi_{R}^{2}\left|B_{s}^{W_{\beta}}\right\rangle_{R} & \propto 2 i s_{1} \times_{L R}\langle W \beta|\left[\psi_{L}^{1}(0) \psi_{L}^{2}(0) \otimes \psi_{R}^{1} \psi_{R}^{2}\right]|W \beta\rangle_{L R} \\
& \propto 2 i s_{1} \times_{L R}\langle\beta|\left[W_{L}^{\dagger} \psi_{L}^{1}(0) \psi_{L}^{2}(0) W_{L} \otimes \psi_{R}^{1} \psi_{R}^{2}\right]|\beta\rangle_{L R} \\
& \sim e^{-n_{\text {Shocks }}}
\end{aligned}
$$



${ }_{L}\left\langle B_{s}^{*}\right| W_{L}|\beta\rangle_{L R}$

# Also: More Microstates from Modified SYK 

- SYK: $H_{S Y K} \sim \sum_{i_{1} \ldots i_{q}}^{N} J_{i_{1} . . i_{q}} \psi^{i_{1} \ldots} \psi^{i_{q}}$
[AA, Zhenbin Yang - WIP]
- Raising and lowering operators: $\chi_{k}^{\sigma}=\psi^{2 k-1}+i \sigma_{k} \psi^{2 k}$
- Modified SYK: $H_{S Y K}^{M o d} \sim \sum_{\sigma_{1} \ldots \sigma_{q}}^{ \pm 1} \sum_{k_{1} \ldots k_{q}}^{N / 2} J_{k_{1} \ldots k_{q}}^{\sigma_{1}} \chi_{k_{1} \ldots \sigma_{q}}^{\sigma_{1}} \ldots \chi_{k_{q}}^{\sigma_{q}} \prod_{\Pi_{k}^{q} \sigma_{k}=+1}$

$$
\left\langle J_{a_{1}, \ldots a_{q}, \ldots \sigma_{q} J_{1}, \ldots, b_{q}}^{\tilde{\sigma}_{1}, \tilde{\sigma}_{q}}\right\rangle=\mathcal{J}^{2} \delta_{a_{1}, b_{1} \ldots} \ldots \delta_{a_{q}, b_{q}} \delta_{\sigma_{1}+\tilde{\sigma}_{1} \ldots} \delta_{\sigma_{q}+\tilde{\sigma}_{q}}
$$

# Also: More Microstates from Modified SYK 

- SYK: $H_{S Y K} \sim \sum_{i_{1} \ldots i_{q}}^{N} J_{i_{1} . . i_{q}} \psi^{i_{1} \ldots} \psi^{i_{q}}$
[AA, Zhenbin Yang - WIP]
- Raising and lowering operators: $\chi_{k}^{\sigma}=\psi^{2 k-1}+i \sigma_{k} \psi^{2 k}$
- Modified SYK: $H_{S Y K}^{M o d} \sim \sum_{\sigma_{1} \ldots \sigma_{q}}^{ \pm 1} \sum_{k_{1} \ldots k_{q}}^{N / 2} J_{k_{1} \ldots k_{q}}^{\sigma_{1}} \chi_{k_{1} \ldots \sigma_{q}}^{\sigma_{1}} \ldots \chi_{k_{q}}^{\sigma_{q}} \prod_{\Pi_{k}^{q} \sigma_{k}=+1}$

$$
\left\langle J_{a_{1}, \ldots a_{q}, \ldots \sigma_{q} J_{1}, \ldots, b_{q}}^{\tilde{\sigma}_{1}, \tilde{\sigma}_{q}}\right\rangle=\mathcal{J}^{2} \delta_{a_{1}, b_{1} \ldots} \ldots \delta_{a_{q}, b_{q}} \delta_{\sigma_{1}+\tilde{\sigma}_{1} \ldots} \delta_{\sigma_{q}+\tilde{\sigma}_{q}}
$$

# Also: More Microstates from Modified SYK 

- SYK: $H_{S Y K} \sim \sum_{i_{1} \ldots i_{q}}^{N} J_{i_{1} . . i_{q}} \psi^{i_{1} \ldots} \psi^{i_{q}}$
[AA, Zhenbin Yang - WIP]
- Raising and lowering operators: $\chi_{k}^{\sigma}=\psi^{2 k-1}+i \sigma_{k} \psi^{2 k}$
- Modified SYK: $H_{S Y K}^{M o d} \sim \sum_{\sigma_{1} \ldots \sigma_{q}}^{ \pm 1} \sum_{k_{1} \ldots k_{q}}^{N / 2} J_{k_{1} \ldots g_{q}}^{\sigma_{1}} \chi_{k_{1}}^{\sigma_{1}} \ldots \chi_{k_{q}}^{\sigma_{q}} \prod_{\Pi_{k}^{q} \sigma_{k}=+1}$

$$
\left\langle J_{a_{1}, \ldots a_{q}}^{\sigma_{1}, \ldots \sigma_{q}} J_{b_{1}, \ldots b_{q}}^{\tilde{\sigma}_{1}, \ldots \tilde{\sigma}_{q}}\right\rangle=\mathcal{J}^{2} \delta_{a_{1}, b_{1}} \ldots \delta_{a_{q}, b_{q}} \delta_{\sigma_{1}+\tilde{\sigma}_{1}} \ldots \delta_{\sigma_{q}+\tilde{\sigma}_{q}}
$$


$\uparrow \uparrow \ldots \uparrow\rangle+O(1)$ spin flips
$|\uparrow \downarrow \uparrow \ldots \downarrow\rangle, \mathrm{O}(N)$ spin flips

# Also: More Microstates from Modified SYK 

- SYK: $H_{S Y K} \sim \sum_{i_{1} \ldots i_{q}}^{N} J_{i_{1} . . i_{q}} \psi^{i_{1} \ldots \psi^{i_{q}}}$
- Raising and lowering operators: $\chi_{k}^{\sigma}=\psi^{2 k-1}+i \sigma_{k} \psi^{2 k}$


$$
\left\langle J_{a_{1}, \ldots a_{q}}^{\sigma_{1}, \ldots \sigma_{q}} J_{b_{1}, \ldots b_{q}}^{\tilde{\sigma}_{1}, \ldots \tilde{\sigma}_{q}}\right\rangle=\mathcal{J}^{2} \delta_{a_{1}, b_{1}} \ldots \delta_{a_{q}, b_{q}} \delta_{\sigma_{1}+\tilde{\sigma}_{1} \ldots \delta_{\sigma_{q}+\tilde{\sigma}_{q}}}
$$


$\uparrow \uparrow \ldots \uparrow\rangle+O(1)$ spin flips
$|\uparrow \downarrow \uparrow \ldots \downarrow\rangle, \mathrm{O}(N)$ spin flips

## Different Microstates

- Atypical Microstates

$$
\left|B_{s}^{\beta}\right\rangle_{R}={ }_{L}\left\langle B_{s} \mid \beta\right\rangle_{L R}
$$



- More Typical Microstates

$$
\left|B_{s}^{W_{\beta}}\right\rangle_{R} \equiv{ }_{L}\left\langle B_{s} \mid W \beta\right\rangle_{L R}
$$



## Different Microstates

- Atypical Microstates

$$
\left|B_{s}^{\beta}\right\rangle_{R}={ }_{L}\left\langle B_{s} \mid \beta\right\rangle_{L R}
$$



- More Typical Microstates

$$
\left|B_{s}^{W_{\beta}}\right\rangle_{R} \equiv{ }_{L}\left\langle B_{s} \mid W \beta\right\rangle_{L R}
$$



- Both are over-complete bases of BH microstates of temperature $\beta$


## Different Microstates

- Atypical Microstates

$$
\left|B_{s}^{\beta}\right\rangle_{R}={ }_{L}\left\langle B_{s} \mid \beta\right\rangle_{L R}
$$



- More Typical Microstates

$$
\left|B_{s}^{W_{\beta}}\right\rangle_{R} \equiv{ }_{L}\left\langle B_{s} \mid W \beta\right\rangle_{L R}
$$



- Both are over-complete bases of BH microstates of temperature $\beta$
- Does this have consequences for interior reconstruction?


## Necessity of

## State-Dependence

- Suppose the existence of a linear operator $N_{R}^{F}$ that measures whether there is a shockwave behind the horizon.

$$
\begin{gathered}
{ }_{R}\left\langle B_{s}^{\beta}\right| N_{R}^{F}\left|B_{s}^{\beta}\right\rangle_{R} \\
{ }_{R}\left\langle B_{s}^{W_{\beta}}\right| N_{R}^{F}\left|B_{s}^{W_{\beta}}\right\rangle_{R}
\end{gathered}
$$



## Necessity of

## State-Dependence

- Suppose the existence of a linear operator $N_{R}^{F}$ that measures whether there is a shockwave behind the horizon.

$$
\begin{aligned}
& { }_{R}\left\langle B_{s}^{\beta}\right| N_{R}^{F}\left|B_{s}^{\beta}\right\rangle_{R} \sim \mathcal{O}\left(1 / N^{q-1}\right) \\
& { }_{R}\left\langle B_{s}^{W_{\beta}}\right| N_{R}^{F}\left|B_{s}^{W_{\beta}}\right\rangle_{R}
\end{aligned}
$$



## Necessity of

## State-Dependence

- Suppose the existence of a linear operator $N_{R}^{F}$ that measures whether there is a shockwave behind the horizon.

$$
\begin{aligned}
{ }_{R}\left\langle B_{s}^{\beta}\right| N_{R}^{F}\left|B_{s}^{\beta}\right\rangle_{R} & \sim \mathcal{O}\left(1 / N^{q-1}\right) \\
{ }_{R}\left\langle B_{s}^{W_{\beta}}\right| N_{R}^{F}\left|B_{s}^{W_{\beta}}\right\rangle_{R} & \sim \mathcal{O}(1)
\end{aligned}
$$



## Necessity of

## State-Dependence

- Suppose the existence of a linear operator $N_{R}^{F}$ that measures whether there is a shockwave behind the horizon.

$$
\begin{aligned}
2^{-N / 2} \sum_{s}{ }_{R}\left\langle B_{s}^{\beta}\right| N_{R}^{F}\left|B_{s}^{\beta}\right\rangle_{R} & \sim \mathcal{O}\left(1 / N^{q-1}\right) \\
2^{-N / 2} \sum_{s}\left\langle B_{s}^{W_{\beta}}\right| N_{R}^{F}\left|B_{s}^{W_{\beta}}\right\rangle_{R} & \sim \mathcal{O}(1)
\end{aligned}
$$



## Necessity of

## State-Dependence

- Suppose the existence of a linear operator $N_{R}^{F}$ that measures whether there is a shockwave behind the horizon.

$$
\begin{aligned}
& 2^{-N / 2} \sum_{s}{ }_{R}\left\langle B_{s}^{\beta}\right| N_{R}^{F}\left|B_{s}^{\beta}\right\rangle_{R}={ }_{L R}\langle\beta| N_{R}^{F}|\beta\rangle_{L R} \\
& 2^{-N / 2} \sum_{s}\left\langle{ }_{R}\left\langle B_{s}^{W_{\beta}}\right| N_{R}^{F} \mid B_{s}^{W_{\beta}}\right\rangle_{R}
\end{aligned}
$$



## Necessity of

## State-Dependence

- Suppose the existence of a linear operator $N_{R}^{F}$ that measures whether there is a shockwave behind the horizon.

$$
\begin{aligned}
2^{-N / 2} \sum_{s}{ }_{R}\left\langle B_{s}^{\beta}\right| N_{R}^{F}\left|B_{s}^{\beta}\right\rangle_{R} & ={ }_{L R}\langle\beta| N_{R}^{F}|\beta\rangle_{L R} \\
2^{-N / 2} \sum_{s}{ }_{R}\left\langle B_{s}^{W_{\beta}}\right| N_{R}^{F}\left|B_{s}^{W_{\beta}}\right\rangle_{R} & ={ }_{L R}\langle W \beta| N_{R}^{F}|W \beta\rangle_{L R} \\
& ={ }_{L R}\langle\beta| N_{R}^{F}|\beta\rangle_{L R}
\end{aligned}
$$



## Necessity of

## State-Dependence

- Suppose the existence of a linear operator $N_{R}^{F}$ that measures whether there is a shockwave behind the horizon.

$$
\begin{aligned}
2^{-N / 2} \sum_{s}{ }_{R}\left\langle B_{s}^{\beta}\right| N_{R}^{F}\left|B_{s}^{\beta}\right\rangle_{R} & ={ }_{L R}\langle\beta| N_{R}^{F}|\beta\rangle_{L R} \\
2^{-N / 2} \sum_{s}{ }_{R}\left\langle B_{s}^{W_{\beta}}\right| N_{R}^{F}\left|B_{s}^{W_{\beta}}\right\rangle_{R} & ={ }_{L R}\langle W \beta| N_{R}^{F}|W \beta\rangle_{L R} \\
& ={ }_{L R}\langle\beta| N_{R}^{F}|\beta\rangle_{L R}
\end{aligned}
$$

- Contradiction! Can't be the same by assumption!


## Take Away

- The dictionary for the interior must be state dependent.
- Can we find such a dictionary?


## Take Away

- The dictionary for the interior must be state dependent.
- Can we find such a dictionary?
- Yes! By assuming the AdS/CFT dictionary to be a QEC code, one can generate such a dictionary for the interior!


## Take Away

- The dictionary for the interior must be state dependent.
- Can we find such a dictionary?
- Yes! By assuming the AdS/CFT dictionary to be a QEC code, one can generate such a dictionary for the interior!
- Key: the dictionary is fluid, responding to the projection in a way that maps the interior operators to the remaining boundary in a state dependent way.

$|\beta\rangle_{L R}$

${ }_{L}\left\langle B_{s}^{*} \mid \beta\right\rangle_{L R}$


## AdS/CFT as QEC

[AA, Dong, Harlow; ...]

- I will describe the duality using a circuit diagram.
- Consider Isometry $T$ from systems $a \& H$ into $L$.

$$
\begin{aligned}
& \mathcal{D}_{L} \gg \mathcal{D}_{a} \times \mathcal{D}_{H} \\
& \mathcal{D}_{H}>\mathcal{D}_{a}
\end{aligned}
$$



## Operator Mapping

[HPPY, Hayden et al]

- Operators can be pushed through the tensors:



## Operator Mapping

[HPPY, Hayden et al]

- Operators can be pushed through the tensors:



## Eternal BH Code

- Eternal BH dictionary is given by:



## Eternal BH Code

- Eternal BH dictionary is given by:
- $a$ and $b$ represent bulk quantum fields.



## Eternal BH Code

- Eternal BH dictionary is given by:
- $a$ and $b$ represent bulk quantum fields.


$$
|\psi\rangle_{a b} \rightarrow|\widetilde{\psi}\rangle_{L R} \in \mathcal{H}_{\text {code }} \subset \mathcal{H}_{L} \otimes \mathcal{H}_{R}
$$



## Eternal BH Code

- Eternal BH dictionary is given by:
- $a$ and $b$ represent bulk quantum fields.


$$
|\psi\rangle_{a b} \rightarrow|\widetilde{\psi}\rangle_{L R} \in \mathcal{H}_{c o d e} \subset \mathcal{H}_{L} \otimes \mathcal{H}_{R}
$$



## Subregion-Subregion Duality



## Subregion-Subregion Duality



## Subregion-Subregion Duality



## Projected BH Code

- Projected BH has 'same' geometry.
- Project on original tensor network.

- We want to understand the conditions on $P$ such that operators acting on $a$ map to $R$



## Condition on the Projector



## Properties of the Dictionary

$$
{ }_{L}\langle P| \widetilde{\mathcal{O}}_{a}|\widetilde{\psi}\rangle_{L R}=\mathcal{O}_{R}^{P}{ }_{L}\langle P \mid \widetilde{\psi}\rangle_{L R}
$$

- Operators $\mathcal{O}_{R}^{P}$ are a dictionary for the interior.
- These are state dependent!


## Properties of the Dictionary

$$
{ }_{L}\langle P| \widetilde{\mathcal{O}}_{a} \mid \widetilde{\psi}_{L R}=\mathcal{O}_{R}^{P}{ }_{L}\langle P \mid \widetilde{\psi}\rangle_{L R}
$$

- Operators $\mathcal{O}_{R}^{P}$ are a dictionary for the interior.
- These are state dependent!
- This state dependence is like that of Quantum Teleportation:



## Properties of the Dictionary

$$
{ }_{L}\langle P| \widetilde{\mathcal{O}}_{a} \mid \widetilde{\psi}_{L R}=\mathcal{O}_{R}^{P}{ }_{L}\langle P \mid \widetilde{\psi}\rangle_{L R}
$$

- Operators $\mathcal{O}_{R}^{P}$ are a dictionary for the interior.
- These are state dependent!
- This state dependence is like that of Quantum Teleportation:



## Properties of the Dictionary

$$
{ }_{L}\langle P| \widetilde{\mathcal{O}}_{a} \mid \widetilde{\psi}_{L R}=\mathcal{O}_{R}^{P}{ }_{L}\langle P \mid \widetilde{\psi}\rangle_{L R}
$$

- Operators $\mathcal{O}_{R}^{P}$ are a dictionary for the interior.
- These are state dependent!
- This state dependence is like that of Quantum Teleportation:



## Relation to PR

- Problem with PR: Consider Typical Microstates
- All simple operators have thermalized
- Mirror construction would predict 'nothing' behind the horizon.



## Relation to PR

- Problem with PR: Consider Typical Microstates
- All simple operators have thermalized
- Mirror construction would predict 'nothing' behind the horizon.

- The QEC construction is not a statement about typical states, but states constructed in a special way.
- It IS sensitive to what happens behind the horizon.


## Thank You!

## Thank You!

