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•  Operator size; 
Lyapunov exponents 
(measured by OTOC) 

•  Operator complexity 

•  Emergent Hydrodynamics 
(Diffusion constants) 

Is there a universal structure that governs and relates these 
quantities in generic systems? 

Can we utilize such a structure to enable computation of dynamics? 
(e.g. compute transport coefficients of strongly coupled systems.) 



Recent progress from special models 
Random unitary networks: 

Nahum (2018), von Keyserlingk (2018) Khemani (2018) 

Local model and finite N per site 
Universal operator front propagation.  
Emergent dissipation / diffusion of conserved charge 

Non hamiltonian dynamics. 
No energy conservation or notion of temperature. 
Lyapunov exponents not well defined 

✔ 

✗ 

SYK model 
Sachdev, Kitaev, Stanford-Maldacena, … 

Hamiltonian dynamics, Lyapunov exponents;  
Some connections to energy transport. 

Non generic features: Large-N / non locality ✗ 

✔ 
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This talk 

•  Preliminaries: operator dynamics, recursion methods 

•  A hypothesis for universal operator growth 

•  Evidence for the hypothesis:  
(i)  Numerical (Spin chains)  
(ii)  Analytical (SYK models)  
(iii) Physical arguments (generalized RMT for extended system) 

•  Application: generalized notion of quantum chaos 
 

•  Application: an accurate computational approach 
Transport coefficients in strongly coupled systems 

 



Operator dynamics: basics 

�i
dÂ

dt
= [H, Â]

Simple 1-body 
initial operator 

      can be viewed as a Hamiltonian of a single particle hopping between 
Pauli strings on this graph.  Due to hermiticity: No diagonal terms. 
L

For spin-1/2 problems use basis of Pauli strings: 

↵i = 0, 1, 2, 3

�i
d|A)

dt
= L|A)

(A|B) = tr(AB) |O(t)) = e�iLt|O)

�↵1 ⌦ �↵2 ⌦ . . .⌦ �↵N ⌘ |↵i|↵)



The basic idea 

Simple 1-body 
operator 

Complex many-body strings 

r 

Operators flow from simple to more complex 
 
When an operator becomes sufficiently complex its dynamics  
should be governed by a universal statistical description. 
Our goal now is to formulate this universal description 



Krylov basis: folding the graph on a line 
Generate orthonormal basis from successive application of  

n = 0 1 2 3 4 5

b1 b2 b3 b4 b5 

L
L L L

•  Problem mapped to single-particle hopping on a semi-infinite chain ! 
•  Krylov index ~ operator complexity 
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“Lanczos Coefficients” 

(On|L|Om) =



“Operator wavefunction” in Krylov space 

C(t) = tr [O(t)O] = '0(t)

n = 0 1 2 3 4 5

b1 b2 b3 b4 b5 

The autocorrelation function: 

Operator complexity: 

n

'
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@t'n = �bn+1'n+1 + bn'n�1, 'n(0) = �n0

hn(t)i =
1X

n=0

|'n(t)|2n

'n(t) = (On|O(t))



The hypothesis 

In an infinite non-integrable many-body system the 
Lanczos coefficients of a generic local operator  are 
asymptotically linear: 

bn = ↵n+ � + o(1), n ! 1

We term the slope α, the “growth rate” of the 
operator for reasons that will become clear. 



The evidence 
Numerical: Many distinct nonintegrable spin chains, SYK model 

Noninteracting 

Weakly interacting 

n � 2bn !
p

q n(n� 1)/2

Analytical: SYK model in the limit of large q 



Physical origin of linear Lanczos coefficients in models 
with short range couplings 

Use relation between bn and moments: 

bn ⇠ n () µ2n ⌘ (O|L2n|O) ⇠ n2n

H is local then       is at most of size n. To compute µ2n we can use H(n) 
( H restricted to a subsystem that covers the support of  ) 

On
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(ETH) 

O↵� = D�1/2|E↵ihE� |Ln
(n)|O) =

X
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At frequency above local bandwidth we assume: f(!) ⇠ e�|!|/!0



Physical origin of linear Lanczos coefficients in models 
with short range couplings 

(ETH) 

O↵� = D�1/2|E↵ihE� |Ln
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(O↵� |O) = D� 1
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At frequency above local bandwidth we assume: 

µ2n = (O|L2n
(n)|O) =

DX

↵,�=1
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Z
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E = n✏

bn ⇠ n () µ2n ⌘ (O|L2n|O) ⇠ n2nUse: 

f(!) ⇠ e�|!|/2!0



More precise relation to spectral function 

bn = ↵n+O(1) () �(!) ⇠ e�⇡ |!|
2↵

�(!) =

Z 1

�1
dtC(t)e�i!t =

Z 1

�1
dt tr [O(t)O] e�i!t

The operator “growth rate” α, is directly related  
to the decay of the spectral function 



Phenomenology of the semi infinite chain 
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Exactly solvable “universal” model: 

ebn = ↵
p

n(n� 1 + ⌘)
n�1���! ↵n+ �

n = 0 1 2 3 4 5

b1 b2 b3 b4 b5 

hn(t)i = ⌘ sinh(↵t)2 ⇠ ⌘e2↵t

C(t) = '0(t) ⇠ e�2↵t
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'
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Exponential growth of complexity. 
What is the relation to chaos? 

Can we utilize this to compute dynamical 
correlations, transport in real models? 



Relation to chaos I : SYK model 

Compare growth rate α to Lyapunov exp. λL in the SYK model 

C(t) :=
1

2
([O(t), A] | [O(t), A]) ⇠ e2�Lt

1. Infinite temperature: 



Relation to chaos I : SYK model 

Compare growth rate α to Lyapunov exp. λL in the SYK model 

2. Low temperature limit 

(A|B) := tr[⇢A†B(i�/2)]Modify inner product: 

C(t) ⇠ tr[⇢�1�1(i�/2 + t)] ⇠ sech (t⇡T )2/q

bn = ⇡T
p

n(n� 1 + 2/q)

↵ = ⇡T = �L



Relation to chaos II: classical limit 
The framework carries over for classical dynamics with:  

L = i{H, ·}Liouvillian 

Operators Functions on the classical phase space 

HFP = (1 + c) [Sz

1 + Sz

2 ] + 4s�1(1� c)Sx

1S
x

2

Compare α to λL Peres- Feingold model: 

The two exponents coincide where the model is most 
chaotic. Otherwise α appears to be an upper bound on λL 



Relation to chaos: summary 

•  We conjecture that        and that the two exponents 
coincide in maximally chaotic systems. 

•  The complexity growth rate α gives a measure of chaos 
even in systems where the Lyapunov exponent is not 
well defined. e.g. generic, non-semiclassical systems. 

•  α is measureable with a standard local probe through the 
high frequency limit of the spectral function.

↵ � �L



Application: computing operator decay 

1.  Compute the first m Lanczos  
coefficient numerically. 

2.  Complete with the fitted “universal” 
model at larger values of m  0 5 10 15 20 25
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The basic idea: 

3.  Stich the small n and large m wavefunctions to get an 
approximation of the decay of C(t). 
In practice we utilize it to get an approximation for: 

G(z) = i

Z 1

0
C(t)e�iztdt = hO| 1

z � L|Oi



Meromorphic approximation for the Green’s function 

G(z) =
1

z � |b1|2

z� |b2|2

z�|b3|2G(3)(z)

= M1 �M2 � . . .MnG
(n)(z)

Continued fraction expansion: 

Suppose we can obtain b1,…,bn   numerically, from which we can 
already extract the parameters of the universal model.  
Then we can substitute  G(n)(z) ! G̃(n)(z)

⇡ M1 � . . .MnM̃
�1
n � . . . M̃�1

n G̃(z;↵, ⌘)

G(z) ⇡ M1 �M2 � . . .MnG̃
(n)(z;↵, ⌘)



Example: computing diffusion coefficient 

Model: 

H =
X

i

hi =
X

i

XiXi+1 � 1.05Zi +Xi

Operator of interest: 

H
q

=
X

i

eiqxih
i

1.  Obtain first 35 Lanczos coefficients numerically to fit α and η
2.  Find the smallest imaginary pole of the approximate Green’s function: 

Gq(z) ⇡ M1 � . . .MnM̃
�1
n � . . . M̃�1

n G̃(z;↵, ⌘)



Summary 
•  Hypothesis for universal operator dynamics supported by 

extensive evidence. Linear growth of Lanczos coefficients 

•  Implies exponential growth in operator complexity with a 
exponent α

•  The complexity growth offers a generalized notion of 
chaos even where the Lyapunov exponent is ill defined. 
Conjecture:      , coincide for maximally chaotic. 

•  The hypothesis enables a new numerical scheme to 
compute dynamical correlations and transport coefficients. 

 

bn = ↵n+ � + o(1), n ! 1

↵ � �L



Outlook 

•  Rigorous proofs of the hypothesis and the conjecture 
concerning quantum chaos? 
Perhaps within a generalized random matrix description 
for infinite systems with local interactions?  

 
•  Generalization to finite temperature

•  Develop computational scheme for strongly correlated 
models at finite T. Use QMC to compute moments ? 

 


