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Operator growth
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Operator complexity

Emergent Hydrodynamics

(Diffusion constants)

Is there a universal structure that governs and relates these
quantities in generic systems?

Can we utilize such a structure to enable computation of dynamics?
(e.g. compute transport coefficients of strongly coupled systems.)
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Recent progress from special models

Random unitary networks:

Nahum (2018), von Keyserlingk (2018) Khemani (2018)
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v Local model and finite N per site !
Universal operator front propagation. IE W
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Emergent dissipation / diffusion of conserved charge
X Non hamiltonian dynamics.
No energy conservation or notion of temperature.
Lyapunov exponents not well defined
Frilo]

SYK model

Sachdeyv, Kitaev, Stanford-Maldacena, ...

¢/ Hamiltonian dynamics, Lyapunov exponents;
Some connections to energy transport.

X Non generic features: Large-N / non locality
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This talk

Preliminaries: operator dynamics, recursion methods

A hypothesis for universal operator growth

Evidence for the hypothesis:

(i) Numerical (Spin chains)

(i) Analytical (SYK models)

(iif) Physical arguments (generalized RMT for extended system)

Application: generalized notion of quantum chaos

Application: an accurate computational approach
Transport coefficients in strongly coupled systems



Operator dynamics: basics
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For spin-1/2 problems use basis of Pauli strings:
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a; =0,1,2,3 O=
Simple 1-body
initial operator

L can be viewed as a Hamiltonian of a single particle hopping between
Pauli strings on this graph. Due to hermiticity: No diagonal terms.



The basic idea
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Operators flow from simple to more complex

When an operator becomes sufficiently complex its dynamics
should be governed by a universal statistical description.
Our goal now is to formulate this universal description



Krylov basis: folding the graph on a line

Generate orthonormal basis from successive application of L
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“Lanczos Coefficients”

* Problem mapped to single-particle hopping on a semi-infinite chain !
Krylov index ~ operator complexity



“Operator wavefunction” in Krylov space
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The hypothesis

In an infinite non-integrable many-body system the
Lanczos coefficients of a generic local operator are
asymptotically linear:
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We term the slope «, the “growth rate” of the
operator for reasons that will become clear.



The evidence

Numerical: Many distinct nonintegrable spin chains, SYK model
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Analytical: SYK model in the limit of large ¢

b, — v/ qn(n—1)/2 n > 2



Physical origin of linear Lanczos coefficients in models
with short range couplings

Use relation between b, and moments:
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H is local then O, is at most of size n. To compute u,, we can use H,,
( H restricted to a subsystem that covers the support of O,,)
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At frequency above local bandwidth we assume:  f(w) ~ e~ |wl/wo



Physical origin of linear Lanczos coefficients in models
with short range couplings
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More precise relation to spectral function

(I)(w) = /OO dtC(t)e_th AN /OO dt tr [O(t)@] e—iwt

b @ Q== wharend 2

The operator “growth rate” «, is directly related
to the decay of the spectral function



Phenomenology of the semi infinite chain

O O O O_C_O oR opt’e
n=0 1 2 3 4 5

Exactly solvable “universal” model: <7
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Can we utilize this to compute dynamical
correlations, transport in real models?




Relation to chaos I : SYK model

Compare growth rate a to Lyapunov exp. A, in the SYK model

1. Infinite temperature:

g 2 3 4 7 10 oo

a/J 0 0.461 0.623 0.800 0.863 1
AL/J 0 0.454 0.620 0.799 0.863 1




Relation to chaos I : SYK model

Compare growth rate a to Lyapunov exp. A, in the SYK model

2. Low temperature limit

Modify inner product:  (A|B) := tr[pATB(i(3/2)]

C(t) ~ tr[on71(iB/2 +t)] ~ sech (trT)*/

b WT\/n(n —1+42/q)
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Relation to chaos II: classical limit

The framework carries over for classical dynamics with:
Liouvillian —> L =i{#H, -}

Operators ————> Functions on the classical phase space
Compare ato A, Peres- Feingold model:

Hpp = (1+¢) [Sf + S3] + 457 (1 — ) ST S5
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The two exponents coincide where the model is most
chaotic. Otherwise o appears to be an upper bound on A,
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Relation to chaos: summary

« We conjecture that a > A;, and that the two exponents
coincide in maximally chaotic systems.

» The complexity growth rate a gives a measure of chaos
even in systems where the Lyapunov exponent is not
well defined. e.g. generic, non-semiclassical systems.

* ais measureable with a standard local probe through the
high frequency limit of the spectral function.



Application: computing operator decay

The basic idea:

Compute the first m Lanczos
coefficient numerically.

Complete with the fitted “universal”
model at larger values of m

n>1

b, = av/nn—1+1n) 225 an+ 8

approximation of the decay of C(t).
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In practice we utilize it to get an approximation for:
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Stich the small n and large m wavefunctions to get an




Meromorphic approximation for the Green’s function

Continued fraction expansion:
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Suppose we can obtain b,,...,b, numerically, from which we can
already extract the parameters of the universal model.

Then we can substitute G (2) — G\ (2)

G(z) = My o Myo...M,G"™ (2 a,n)

leo...MnMglo...Mglé(Z;am)



Example: computing diffusion coefficient

Model: Operator of interest:

H=Y h=) XX —1.05Z; + X; e S ety

1. Obtain first 35 Lanczos coefficients numerically to fit  and n

2. Find the smallest imaginary pole of the approximate Green’s function:
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Summary

Hypothesis for universal operator dynamics supported by
extensive evidence. Linear growth of Lanczos coefficients

b, =an+ 8+ o0(l), n— oo

Implies exponential growth in operator complexity with a
exponent o

The complexity growth offers a generalized notion of
chaos even where the Lyapunov exponent is ill defined.

Conjecture: , coincide for maximally chaotic.
(87 Z )\L

The hypothesis enables a new numerical scheme to
compute dynamical correlations and transport coefficients.



Outlook

* Rigorous proofs of the hypothesis and the conjecture
concerning quantum chaos?
Perhaps within a generalized random matrix description
for infinite systems with local interactions?

« (Generalization to finite temperature

* Develop computational scheme for strongly correlated
models at finite T. Use QMC to compute moments ?



