UNIVERSAL OPERATOR GROWTH HYPOTHESIS FOR HAMMLTONIAN DYNAMICS

Ehud Altman - Berkeley

Xiangyu Cao,

Daniel Parker,

Thomas Scaffidi

Operator growth

- Operator size; Lyapunov exponents (measured by OTOC)
- Operator complexity
- Emergent Hydrodynamics (Diffusion constants)

Is there a universal structure that governs and relates these quantities in generic systems?

Can we utilize such a structure to enable computation of dynamics? (e.g. compute transport coefficients of strongly coupled systems.)

Recent progress from special models

Random unitary networks:

Nahum (2018), von Keyserlingk (2018) Khemani (2018)
\checkmark
Local model and finite N per site Universal operator front propagation. Emergent dissipation / diffusion of conserved charge
$x \quad$ Non hamiltonian dynamics.
No energy conservation or notion of temperature.
Lyapunov exponents not well defined

SYK model

Sachdev, Kitaev, Stanford-Maldacena, ...
\checkmark Hamiltonian dynamics, Lyapunov exponents; Some connections to energy transport.
x Non generic features: Large-N / non locality

This talk

- Preliminaries: operator dynamics, recursion methods
- A hypothesis for universal operator growth
- Evidence for the hypothesis:
(i) Numerical (Spin chains)
(ii) Analytical (SYK models)
(iii) Physical arguments (generalized RMT for extended system)
- Application: generalized notion of quantum chaos
- Application: an accurate computational approach Transport coefficients in strongly coupled systems

Operator dynamics: basics

$$
\begin{array}{ll}
-i \frac{d \hat{A}}{d t}=[H, \hat{A}] & \left.\left.-i \frac{d \mid A)}{d t}=\mathcal{L} \right\rvert\, A\right) \\
(A \mid B)=\operatorname{tr}(A B) & \left.\mid O(t))=e^{-i \mathcal{L} t} \mid O\right)
\end{array}
$$

For spin-1/2 problems use basis of Pauli strings:

$$
\begin{aligned}
& \left.\sigma^{\alpha_{1}} \otimes \sigma^{\alpha_{2}} \otimes \ldots \otimes \sigma^{\alpha_{N}} \equiv \mid \alpha\right) \\
& \alpha_{i}=0,1,2,3
\end{aligned}
$$

\mathcal{L} can be viewed as a Hamiltonian of a single particle hopping between Pauli strings on this graph. Due to hermiticity: No diagonal terms.

The basic idea

Operators flow from simple to more complex
When an operator becomes sufficiently complex its dynamics should be governed by a universal statistical description. Our goal now is to formulate this universal description

Krylov basis: folding the graph on a line

Generate orthonormal basis from successive application of \mathcal{L}

$$
\begin{aligned}
& \left.\left.\left.\mid O) \xrightarrow{\mathcal{L}} \mid O_{1}\right) \xrightarrow{\mathcal{L}} \mid O_{2}\right) \xrightarrow{\mathcal{L}} \mid O_{3}\right) \cdots \\
& \left(\mathcal{O}_{n}|\mathcal{L}| \mathcal{O}_{m}\right)= \\
& \left(\begin{array}{ccccc}
0 & b_{1} & 0 & 0 & \cdots \\
b_{1} & 0 & b_{2} & 0 & \cdots \\
0 & b_{2} & 0 & b_{3} & \cdots \\
0 & 0 & b_{3} & 0 & \ddots \\
\vdots & \vdots & \vdots & \ddots & \ddots
\end{array}\right) .
\end{aligned}
$$

- Problem mapped to single-particle hopping on a semi-infinite chain!
- Krylov index ~ operator complexity

"Operator wavefunction" in Krylov space

$$
\begin{aligned}
& \varphi_{n}(t)=\left(\mathcal{O}_{n} \mid \mathcal{O}(t)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \partial_{t} \varphi_{n}=-b_{n+1} \varphi_{n+1}+b_{n} \varphi_{n-1}, \quad \varphi_{n}(0)=\delta_{n 0}
\end{aligned}
$$

The autocorrelation function:

$$
\begin{aligned}
& C(t)=\operatorname{tr}[\mathcal{O}(t) \mathcal{O}]=\varphi_{0}(t) \\
& \langle n(t)\rangle=\sum_{n=0}^{\infty}\left|\varphi_{n}(t)\right|^{2} n
\end{aligned}
$$

The hypothesis

In an infinite non-integrable many-body system the Lanczos coefficients of a generic local operator are asymptotically linear:

$$
b_{n}=\alpha n+\beta+o(1), \quad n \rightarrow \infty
$$

We term the slope α, the "growth rate" of the operator for reasons that will become clear.

The evidence

Numerical: Many distinct nonintegrable spin chains, SYK model

Analytical: SYK model in the limit of large q

$$
b_{n} \rightarrow \sqrt{q n(n-1) / 2} \quad n \geq 2
$$

Physical origin of linear Lanczos coefficients in models with short range couplings

Use relation between b_{n} and moments:

$$
b_{n} \sim n \Longleftrightarrow \mu_{2 n} \equiv\left(\mathcal{O}\left|\mathcal{L}^{2 n}\right| \mathcal{O}\right) \sim n^{2 n}
$$

H is local then \mathcal{O}_{n} is at most of size n. To compute $\mu_{2 n}$ we can use $H_{(n)}$ (H restricted to a subsystem that covers the support of \mathcal{O}_{n})

$$
\begin{align*}
& \left.\left.\mathcal{L}_{(n)}^{n} \mid \mathcal{O}\right)=\sum_{\alpha, \beta}\left(E_{\alpha}-E_{\beta}\right)^{n} \mid \mathcal{O}_{\alpha \beta}\right)\left(\mathcal{O}_{\alpha \beta} \mid \mathcal{O}\right) \quad \mathcal{O}_{\alpha \beta}=D^{-1 / 2}\left|E_{\alpha}\right\rangle\left\langle E_{\beta}\right| \\
& \left(\mathcal{O}_{\alpha \beta} \mid O\right)=D^{-\frac{1}{2}}\left\langle E_{\beta}\right| \mathcal{O}|E \alpha\rangle=f\left(E_{\alpha}-E_{\beta}\right) D^{-1} R_{\alpha \beta} \tag{ETH}
\end{align*}
$$

At frequency above local bandwidth we assume: $\quad f(\omega) \sim e^{-|\omega| / \omega_{0}}$

Physical origin of linear Lanczos coefficients in models with short range couplings

Use: $\quad b_{n} \sim n \Longleftrightarrow \mu_{2 n} \equiv\left(\mathcal{O}\left|\mathcal{L}^{2 n}\right| \mathcal{O}\right) \sim n^{2 n}$

$$
\left.\left.\mathcal{L}_{(n)}^{n} \mid \mathcal{O}\right)=\sum_{\alpha, \beta}\left(E_{\alpha}-E_{\beta}\right)^{n} \mid \mathcal{O}_{\alpha \beta}\right)\left(\mathcal{O}_{\alpha \beta} \mid \mathcal{O}\right) \quad \mathcal{O}_{\alpha \beta}=D^{-1 / 2}\left|E_{\alpha}\right\rangle\left\langle E_{\beta}\right|
$$

$$
\begin{equation*}
\left(\mathcal{O}_{\alpha \beta} \mid O\right)=D^{-\frac{1}{2}}\left\langle E_{\beta}\right| \mathcal{O}|E \alpha\rangle=f\left(E_{\alpha}-E_{\beta}\right) D^{-1} R_{\alpha \beta} \tag{ETH}
\end{equation*}
$$

At frequency above local bandwidth we assume: $\quad f(\omega) \sim e^{-|\omega| / 2 \omega_{0}}$

$$
\begin{aligned}
& \mu_{2 n}=\left(\mathcal{O}\left|\mathcal{L}_{(n)}^{2 n}\right| \mathcal{O}\right)=\sum_{\alpha, \beta=1}^{D} f(E, \omega)^{2} D^{-2}\left(E_{\beta}-E_{\alpha}\right)^{2 n} \\
& \sim \int_{\epsilon, \epsilon^{\prime}} e^{n s(\epsilon)+n s\left(\epsilon^{\prime}\right)} e^{-n \frac{\left|\epsilon-\epsilon^{\prime}\right|}{\omega_{0}}} \underbrace{n^{2 n}\left(\epsilon-\epsilon^{\prime}\right)^{2 n}}_{E=n \epsilon} \sim n^{2 n} e^{-S_{s p} n}
\end{aligned}
$$

More precise relation to spectral function

$$
\begin{aligned}
& \Phi(\omega)=\int_{-\infty}^{\infty} d t C(t) e^{-i \omega t}=\int_{-\infty}^{\infty} d t \operatorname{tr}[\mathcal{O}(t) \mathcal{O}] e^{-i \omega t} \\
& b_{n}=\alpha n+O(1) \Longleftrightarrow \Phi(\omega) \sim e^{-\pi \frac{|\omega|}{2 \alpha}}
\end{aligned}
$$

The operator "growth rate" α, is directly related to the decay of the spectral function

Phenomenology of the semi infinite chain

Exactly solvable "universal" model:
$\widetilde{b}_{n}=\alpha \sqrt{n(n-1+\eta)} \xrightarrow{n \gg 1} \alpha n+\beta$

$\langle n(t)\rangle=\eta \sinh (\alpha t)^{2} \sim \eta e^{2 \alpha t}$

Exponential growth of complexity. What is the relation to chaos?
$C(t)=\varphi_{0}(t) \sim e^{-2 \alpha t}$

Can we utilize this to compute dynamical correlations, transport in real models?

Relation to chaos I : SYK model

Compare growth rate α to Lyapunov exp. λ_{L} in the SYK model

1. Infinite temperature:

$$
C(t):=\frac{1}{2}([O(t), A] \mid[O(t), A]) \sim e^{2 \lambda_{L} t}
$$

q	2	3	4	7	10	∞
α / \mathcal{J}	0	0.461	0.623	0.800	0.863	1
$\lambda_{L} / \mathcal{J}$	0	0.454	0.620	0.799	0.863	1

Relation to chaos I : SYK model

Compare growth rate α to Lyapunov exp. λ_{L} in the SYK model
2. Low temperature limit

Modify inner product: $\quad(A \mid B):=\operatorname{tr}\left[\rho A^{\dagger} B(i \beta / 2)\right]$

$$
\begin{aligned}
& C(t) \sim \operatorname{tr}\left[\rho \gamma_{1} \gamma_{1}(i \beta / 2+t)\right] \sim \operatorname{sech}(t \pi T)^{2 / q} \\
& b_{n}=\pi T \sqrt{n(n-1+2 / q)} \\
& \alpha=\pi T=\lambda_{L}
\end{aligned}
$$

Relation to chaos II: classical limit

The framework carries over for classical dynamics with:
Liouvillian $\longrightarrow \mathcal{L}=i\{\mathcal{H}, \cdot\}$
Operators \longrightarrow Functions on the classical phase space
Compare α to λ_{L} Peres- Feingold model:

$$
H_{\mathrm{FP}}=(1+c)\left[S_{1}^{z}+S_{2}^{z}\right]+4 s^{-1}(1-c) S_{1}^{x} S_{2}^{x}
$$

The two exponents coincide where the model is most chaotic. Otherwise α appears to be an upper bound on λ_{L}

Relation to chaos: summary

- We conjecture that $\alpha \geq \lambda_{L}$ and that the two exponents coincide in maximally chaotic systems.
- The complexity growth rate α gives a measure of chaos even in systems where the Lyapunov exponent is not well defined. e.g. generic, non-semiclassical systems.
- α is measureable with a standard local probe through the high frequency limit of the spectral function.

Application: computing operator decay

The basic idea:

1. Compute the first m Lanczos coefficient numerically.
2. Complete with the fitted "universal" model at larger values of m

$\widetilde{b}_{n}=\alpha \sqrt{n(n-1+\eta)} \xrightarrow{n \gg 1} \alpha n+\beta$
3. Stich the small n and large m wavefunctions to get an approximation of the decay of $\mathrm{C}(\mathrm{t})$.
In practice we utilize it to get an approximation for:

$$
G(z)=i \int_{0}^{\infty} C(t) e^{-i z t} d t=\langle\mathcal{O}| \frac{1}{z-\mathcal{L}}|\mathcal{O}\rangle
$$

Meromorphic approximation for the Green's function

Continued fraction expansion:

$$
G(z)=\frac{1}{z-\frac{\left|b_{1}\right|^{2}}{z-\frac{\left|b_{2}\right|^{2}}{z-\left|b_{3}\right|^{2} G^{(3)}(z)}}}=M_{1} \circ M_{2} \circ \ldots M_{n} G^{(n)}(z)
$$

Suppose we can obtain b_{1}, \ldots, b_{n} numerically, from which we can already extract the parameters of the universal model.
Then we can substitute $G^{(n)}(z) \rightarrow \tilde{G}^{(n)}(z)$

$$
\begin{aligned}
G(z) & \approx M_{1} \circ M_{2} \circ \ldots M_{n} \tilde{G}^{(n)}(z ; \alpha, \eta) \\
& \approx M_{1} \circ \ldots M_{n} \tilde{M}_{n}^{-1} \circ \ldots \tilde{M}_{n}^{-1} \tilde{G}(z ; \alpha, \eta)
\end{aligned}
$$

Example: computing diffusion coefficient

Model:
$H=\sum_{i} h_{i}=\sum_{i} X_{i} X_{i+1}-1.05 Z_{i}+X_{i}$

Operator of interest:

$$
H_{q}=\sum_{i} e^{i q x_{i}} h_{i}
$$

1. Obtain first 35 Lanczos coefficients numerically to fit α and η
2. Find the smallest imaginary pole of the approximate Green's function:

$$
G_{q}(z) \approx M_{1} \circ \ldots M_{n} \tilde{M}_{n}^{-1} \circ \ldots \tilde{M}_{n}^{-1} \tilde{G}(z ; \alpha, \eta)
$$

Summary

- Hypothesis for universal operator dynamics supported by extensive evidence. Linear growth of Lanczos coefficients
$b_{n}=\alpha n+\beta+o(1), \quad n \rightarrow \infty$
- Implies exponential growth in operator complexity with a exponent α
- The complexity growth offers a generalized notion of chaos even where the Lyapunov exponent is ill defined. Conjecture: ${ }_{\alpha} \geq \lambda_{L}$, coincide for maximally chaotic.
- The hypothesis enables a new numerical scheme to compute dynamical correlations and transport coefficients.

Outlook

- Rigorous proofs of the hypothesis and the conjecture concerning quantum chaos?
Perhaps within a generalized random matrix description for infinite systems with local interactions?
- Generalization to finite temperature
- Develop computational scheme for strongly correlated models at finite T. Use QMC to compute moments?

