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Goal

Map the low-temperature dynamics of the SYK model to a

consistent quantum mechanical theory defined on the emergent
two-dimensional spacetime.

The relevant two-dimensional theory is a simple dilaton gravity,

Jackiw-Teitelboim gravity, which is topological. [Jensen; Maldacena,
Stanford, Yang; Engelsoy, Mertens, Verlinde]

Quantize the motion of boundaries of a rigid, two-dimensional,

constant-negative-curvature spacetime.
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Overview
Quantum theory of JT gravity

Hilbert space (for a single boundary) consists of wavefunctions
living on the universal cover of Lorentzian AdS_2.

We define an inner product and a regularized trace on this Hilbert
space.

We can construct two-sided wavefunctions for an eternal black
hole with fixed energy and exact causal disconnection between
boundaries.
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Overview (continued)

Using the wavetunctions and trace, we can build density matrices
and compute observables for an AdS_2 black hole, using a slight
generalization of the rules used In discrete quantum systems.

Wavefunctions in our Hilbert space seem to reproduce properties of
the microscopic SYK model in a precise manner:

analytic continuation relations satisfied by observables (correlation
functions of external operators on boundary)

density of states ,

A,n El,,u/
B, p
: -, p(E)
! p(E)
A n Ea,u/



JT gravity: particle with imaginary spin
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Spin connection: analogue of gauge field for
group of rotations at each point of space(time)

/
area| X | = /dX“wu
- Particle has spin v = —7,

Generator for group of rotations at each point

act as multiplication by —v on its wavefunction. N N
On AdS,, v—spinors are functions that \ f_}i b
tfransform in the same way under the generator U1

of the analogous group SL(2,R)/AdSs . N NN



Recovery of the Schwarzian
. Take the limit ~, L > 1
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Outline

Single-particle wavefunctions

Two-sided black hole wavefunctions.

General prescription for trace, observables.

Correlation functions of external matter fields, kinematically interacting
with boundary particle (checks of consistency with microscopic SYK).



Single-particle wavefunctions

« Regularized particle action
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Possible SL(2, R) irreps in Hilbert space

Our Hilbert space will be spanned by some v—spinors, specifically
Casimir eigenfunctions, organized into irreps of SL(2, R).

In general, an irrep of SL(2,R) is labeled by two numbers, the
Casimir eigenvalue and central element:

Q — )\(1 . )\), 627T’iL0 _ 627‘("1:#, 1 c R/Z

Within each irrep, states are labeled by Lo = —m, m € u+ Z.
An irrep falls into one of three categories:

L . I .
Principal series: A = 5 +1is, s € R, p arbitrary
Discrete series: A > 0, =4, tm=AA+1A+2, ...

Complementary series:...

-+ v=spinors in principal and discrete series are normalizable under our
iINnner product.



Physical distinction between wavetunctions

'he spatial part of a spin-v Casimir eigenfunction sees a potential in
a time-independent Schrodinger equation.

“energy’ = —v
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* [unneling probability computed with wavefunctions in the principal
series reproduces the density of states of the system.
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Operators on particle Hilbert space
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Two-point functions of a v—particle (z|¥"|z") = quy($5$,) have the

structure on AdSs;

U (x;2') = 723
P14

F A general SL(2, R)-invariant operator takes the form w

k (E =2 (3+s*—7%), pm(E,p) = (2m)2 cosh(;i:;(jzjs)@ﬁﬂ)) j
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Black hole wavefunction (tunneling operator)

We can uniquely specify the wavefunction for a two-sided black hole
at each energy ®g(x; ')

(4 : in region 2, — : in region 1)

in all other regions
Axp—v(u) = (1 - U)AF()\ + v, A= v, 1u)

Due to its space-like support, g can also be interpreted as a
tunneling operator.
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race operation on Hilbert space

We can define an algebraic trace operation on an arbitrary operator
on our Hilbert space as

tr(W¥[R]) = [dE [ duppi(E, p)Tr(R(s, 1))

The same trace, for a product of two operators, can also be
evaluated over spacetime points, by factoring out the volume of
SL(2,R): i

F(z;2)) = % fi(w), G(z;2") = % g; ()
(FIG) = 3 e £ () ), /

(AdS, x AdS,)\SL(2,R)



Prescription for black hole observables

The thermal partition function for a one-sided black hole, with our
construction of the quantum theory, takes the form

Z = tr(e PHP), P =dTd = @2

The square of the tunneling operator, P, encodes the density of
states in the black hole system as tr(Pg)/2 = p(E).

In the absence of matter in the bulk, most general density matrix for
a black hole is

o=V"[fI]-P = /dE f(E)Pg

To calculate general expectation values, we use the usual rules of

guantum mechanics, employing our trace, except that density
matrices are multiplied by an extra P. For guantum entropy,

S =~ str(e(ing ~InP)) =~ [ dE p(E)f(E)In f(E)
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Correlation functions of external operators

Consider adding matter fields decoupled from the boundaries which
are second-quantized on AdS,

H C (Hﬁelds D nglds) & HV & H_V

Operator acting at position of v—particle:
O = /d2x\/fg O(z) ® |z) (x| @1, OY(T) = TOve T

E.g. a one-sided correlator

1
f;g,(T,O):<§tr( - _BH@X Y > ~

fields
— Z_l/dEdE’e_BEei(E_E/)Tx P I

15



Constraints from analyticity of 2-point function

Analogue of analyticity holding in a microscopic quantum system
(TFD|X®(GT)Y%(0)|TFD) = (TFD| X (7)Y #(0)| TFD)
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Structure of higher-point correlation functions
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There is group-theoretic structure in a general I
L orentzian correlator. =
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Each vertex is an intertwiner, whose matrix Ig

elements are Clebsch-Gordon coefficients. 7/
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Cancellation of u-dependence

Bulk-to-boundary propagators seem to constitute a nice basis, in which we
can see cancellation of u-dependence.

NG| o 3 @) = [ X 0,005,

mepu-+2
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(work in progress)
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QOutcomes

Pending this cancellation, we can
reproduce the classical 6j-symbol found in
OTO 4-point functions using CFT bootstrap
arguments in the Schwarzian theory.

[Mertens, Turiaci, Verlinde]

The density of states appears in the ratio
between transition amplitudes:
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Summary

We have built a guantum theory for the dynamics of the soft mode in
the SYK model, which corresponds to a solvable, topological sector
of a gravitational theory in two-dimensional anti-de Sitter space.

Wavefunctions in our quantum theory pass some preliminary checks
and can be viewed as resulting from coarse-graining of SYK
microstates.

More rigorous consistency checks on the Hilbert space remain,
iInvolving matrix elements of interaction with external matter.
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Some open gquestions

Can we couple additional degrees of freedom to JT gravity which
reproduce the subleading-in-5.J exponent of the OTO 4-point
function in the SYK model?

If so, can we quantize them??

Can we quantize degrees of freedom that contribute at non-
perturbative order (powers of eMN-N}) in JT gravity”?

21



