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The goal of this talk is to try to develop a version of the “replica
trick” to compute the entanglement entropy of the vacuum in
string theory.

(Based on arXiv:1810.11912, and to appear with A. Dabholkar.)

First let us remember the replica trick in field theory.
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Suppose that in quantum field theory, we want to compute a
density matrix ρ for the vacuum state restricted to the half-space
x ≥ 0, where x is one of the spatial coordinates.

By a well-known
argument, we can do this by a path integral on R2

cut ×RD−2 where
R2
cut is the plane with a cut:

The path integral gives a function

ρ(φr , φ
′
r )

where φr , φ′r are field variables in the right half space just above or
below the cut. Such a function can be viewed as an operator
acting on one set of field variables φr . This is the density matrix ρ
of Rindler space.
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Now suppose we want to compute, for example,

Tr ρ2 =
∑
φr ,φr′
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′
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To calculate it, we take two “replicas” or copies of the picture

and glue the top of the cut in one to the bottom of the cut in the
other, and vice-versa.
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What we have then built is a double cover of the plane branched
over the origin, say R2

[2].

More exactly, since D − 2 dimensions in

Minkowski spacetime RD have been spectators, we’ve built
R2
[2] × RD−2. Similarly, to compute Tr ρN for integer N , we would

define an N -fold cover of the plane branched over the origin, say
R2
[N ], and do a path integral on R2

[N ] × RD−2.
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Suppose we want to compute the entanglement entropy of Rindler
space, which is S(ρ) = −Tr ρ log ρ.

One approach is to analytically
continue the function f (N ) = Tr ρN as a function of N and then

S(ρ) = −f ′(1).

In this particular example of quantum fields in a background
spacetime, one can directly access non-integer values of N by
replacing the N -fold cover with a cone of opening angle 2πN :
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However, suppose that this option were not available and we only
knew how to calculate for integer N ; we will be in such a situation
later.

We could reason as follows (roughly following Calabrese,
Cardy, and Tonni, arXiv.1011.5482). If ρ is a density matrix, that
is a positive matrix with Tr ρ = 1, then Tr ρN is holomorphic and
bounded by 1 in the half-plane ReN ≥ 1. Carlson’s theorem says
that a function that is holomorphic in this half-plane and has
reasonable bounds on its growth at infinity is uniquely determined
by its values at positive integers. So if we can calculate Tr ρN for
integer N and find an analytic continuation of it that satisfies the
conditions of Carlson’s theorem, this will give us Tr ρN throughout
the half-plane.
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In string theory, we cannot follow the usual replica procedure,
because there is no known conformal field theory whose target
space is an N -fold cover of R2, branched over the origin.

However,
an alternative has been suggested in the form of an R2/ZN

orbifold (Dabholkar, 1995; further investigated by He, Numasawa,
Takayanagi, and Watanabe (2014)). Here the target R2/ZN is a
cone of opening angle 2π/N, so formally it computes Tr ρ1/N .
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One might hope to use the orbifold to compute Tr ρ1/N for integer
N and then analytically continue to other values – maybe using
Carlson’s theorem again to establish uniqueness of this analytic
continuation (under some growth conditions).

This doesn’t quite
work. A basic problem is that the orbifold is tachyonic in the
closed-string channel, and therefore if we try to compute Tr ρ1/N

in perturbation theory – by summing string loops in the orbifold –
we run into exponential divergences.
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This should not make us despair because in quantum mechanics in
general, Tr ρ1/N can be divergent for Re (1/N) < 1.

However, we
do need a more refined starting point for analytic continuation.
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For this, as in the papers that I cited before, we use the standard
representation of the string amplitudes in terms of integrals over
moduli.

For example, the 1-loop contribution to Tr ρ1/N comes
from a 1-loop string integral which, in the open string case, comes
from a worldsheet that is an annulus. So

logTr ρ1/N
∣∣∣
1

=
1

2

∫ ∞
0

dT

T
ZN(T ),

where ZN(T ) is the partition function of the orbifold on an annulus
of modular parameter T . ZN(T ) is well defined although the
integral over T is divergent (for integer N) so we can try to
analytically continue ZN(T ) and worry about integrating over T
later.
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Unfortunately, I do not know how to solve the closed-string version
of this problem, which would be much more interesting.

However,
in the open-string case it turns out that it is possible to explicitly
find the unique analytic continuation of ZN(T ) that satisfies the
conditions of Carlson’s theorem. I will start with the simplest
open-string problem, which is a Dp-brane that crosses the Rindler
horizon, so its worldvolume is R2 × Rp−1 ⊂ R2 × R8 = R10.
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As I said, we will find the analytic continuation of ZN(T ) to the
half-plane ReN ≥ 1 that satisfies appropriate growth conditions
and is unique according to Carlson’s theorem.

As a bonus, this
analytic continuation will be analytic in a larger half-plane
ReN > 0. Note that ReN > 0 is equivalent to ReN > 0, where
N = 1/N. In particular, we will be able to analytically continue to
ReN > 1. That is where we would like to be, since in quantum
mechanics in general, Tr ρN is well-behaved for ReN > 1.
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As usual, one can extract some information about the closed-string
sector by studying the open-string partition function ZN(T ) for
small T .

It turns out that to the extent that the closed-string
sector can be probed in this way, it is tachyon-free for ReN > 1.
That is the most interesting result that I have to offer today. It
means that there is no exponential divergence in the integral that
is supposed to compute log Tr ρN .
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The integral may still have a power-law (infrared) divergence for
T → 0 due to the exchange of massless closed-string states.

In
fact, we should expect such a divergence if p is too large. The
power law divergences turn out to be worse than usual, by one or
two powers of the proper time (in the closed-string channel). So p
has to be smaller than I would have expected. What this really
means isn’t clear: a technical explanation appears to be that the
analytic continuation of the orbifold theory away from integer N is
a “logarithmic conformal field theory” (necessarily nonunitary).
The behavior that we will find is possible in a logarithmic CFT.
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Next I will explain the strategy for analytic continuation.

We want to compute the partition function on an annulus I × S1,
where I is an interval 0 ≤ σ1 ≤ π and σ2 is an angular variable
0 ≤ σ2 ≤ 2π.

Let H be the open-string Hilbert space on R10 and HN the
open-string Hilbert space of the orbifold. For open strings, HN is
obtained from H by just projecting onto ZN invariants (for closed
strings, matters are not so simple).
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The annulus partition function is

ZN(T ) = TrHN
(−1)F exp(−2πHT )

= TrH P(−1)F exp(−2πHT ),

where H = L0 is the Hamiltonian and the projection operator from
H to HN is

P =
1

N

N−1∑
k=0

Uk ,

U being a generator of ZN .
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So if we set

Zk,N(T ) = TrH Uk(−1)F exp(−2πHT ),

then

ZN(T ) =
N−1∑
k=0

Zk,N(T ).

Actually Z0,T = 0 because of supersymmetry so

ZN(T ) =
N−1∑
k=1

Zk,N(T ).

It is customary to define τ = iT .
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For analytic continuation, we will use the fact that there is a
meromorphic function J(z , τ) with the following properties:

1. The twisted partition function Zk,N(τ) can be expressed in
terms of J(z , τ) by

Zk,N(τ) = J(k/N, τ).

2. J(z , τ) is a periodic and even function

J(z + 1, τ) = J(z , τ) = J(−z , τ).

3. The residues at poles of J(z , τ) vanish exponentially for
Im z → ±i∞. Moreover J(0, τ) = 0.

4. Poles of J(z , τ) are at Re z = 0 or 1/2 mod Z. They are all
simple poles except for a double pole at z = 1/2.

The existence of such an J is a restatement of standard facts and
will be discussed shortly.
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Given the existence and properties of J, the orbifold partition
function on the annulus is

ZN(τ) =
1

N

N−1∑
k=1

J(k/N, τ).



Consider the function

K (z ,N) =
N−1∑
k=1

π sinπz

sin(πk/N) sinπ(z − k/N)
.

It is a periodic function, K (z + 1,N) = K (z ,N), and bounded for
Im z → ±∞. The poles of K (z ,N) in the strip 0 ≤ Re z ≤ 1 are
simple poles of residue 1 at z = k/N, k = 1, · · · ,N − 1.



Now let us make the periodic identification z ∼= z + 1 to define a
cylinder, and view the function K (z ,N)J(z , τ) as a meromorphic
function on the cylinder.

We can view the orbifold partition
function on the annulus as a sum of residues of the function KJ at
the poles of K on the cylinder:

ZN(τ) =
1

N

N−1∑
k=1

Resz=k/N (K (z ,N)J(z , τ)).

But the sum of all residues of KJ on the cylinder vanishes. So we
get another formula as the sum over residues at the set S of poles
of J:

ZN(T ) = −
∑
z0∈S

Resz0(K (z ,N)J(z , τ)).
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If the poles of J(z , τ) are all simple poles, the formula simplifies to

ZN(T ) = −
∑
z0∈S

K (z0,N)Resz0 J(z , τ).

(This is not quite true as J(z , τ) has a double pole at z = 1/2, so
that formula needs to be slightly modified.)
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From this formula, to analytically continue ZN(τ), all we need is
an analytic continuation of K (z ,N).

By Carlson’s theorem, if there
is an analytic continuation of K (z ,N) that is holomorphic for
ReN ≥ 1 and obeys suitable exponential bounds, then this
analytic continuation is unique. Here one runs into a slight
surprise. For fixed z , and suitable Re z , the analytic continuation
in N suggested by Carlson’s theorem does exist. But one has to
use different continuations for different values of Re z .
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The poles of J(z , τ) are all at Re z = 0 or Re z = 1/2, so we only
need to analytically continue K (z ,N) at those values of Re z .

For
integer N, an alternative formula for K (z ,N) is

K1(z ,N) = πN cotπNz − π cotπz .

For Re z = 0, K1(z ,N) is holomorphic in N for ReN ≥ 1, and
satisfies the appropriate exponential bounds. It is the unique
continuation of K (z ,N) from positive integer values of N that has
those properties. As a bonus, for Re z = 0, K1(z ,N) is actually
holomorphic in a larger half-plane ReN > 0.
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For Re z = 1/2, we have to proceed more carefully and consider
analytic continuation from odd positive integer values of N.

(This
is natural because we will study an orbifold defined for odd N; an
analogous orbifold for even N is slightly different.) For N an odd
positive integer, an alternative formula for K (z ,N) is

K2(z ,N) = πN cot (π(N(z − 1/2) + 1/2))− π cotπz .

For Re z = 1/2, K2(z ,N) is the unique continuation of K (z ,N)
from positive odd integer values of N that is holomorphic in the
half-plane Re z = 1 and satisfies the appropriate exponential
bounds. Again, as a bonus, for Re z = 1/2, K2(z ,N) is
holomorphic in the larger half-plane ReN > 0.
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Now let us discuss why J exists.

The basic reason is that open-string modes on the annulus

are related, as usual, to chiral closed-string modes on a genus 1
Riemann surface that is a double cover of the annulus, branched
over its boundary.
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Moreover, the ZN orbifolding group is a subgroup of the symmetry
U(1) of R2 ⊂ R2 × R8.

Using the U(1) symmetry, we could
“twist” the torus partition function by arbitrary phases 2πϕ1, 2πϕ2

going around cycles in the torus

As long as we consider only chiral modes on the torus, the twisted
partition function is holomorphic in z = ϕ1 + τϕ2, where τ = iT is
the modular parameter of the torus. If we set z = k/N, the
twisted partition function reduces to Zk,N .
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From this it seems that there would be a doubly-periodic function
G (z , τ) – the twisted partition function of the chiral modes – such
that G (z , τ) reduces to Zk,N if τ = k/N.

This is not quite true,
because the relation between open-string modes and chiral modes
of closed strings doesn’t really work for bosonic zero-modes. The
correct formula, for the meromorphic function J(z , τ) that equals
Zk,N if z = k/N, is

J(z , τ) = C
i

sin 2πz
G (z , τ),

where

C =
V

(8π2α′T )(p−1)/2
.

V is the volume of the intersection of the Dp-brane worldvolume
with the RIndler horizon. C comes from the zero-modes of
X3, · · · ,X10 and i/ sin 2πz from the zero-modes of X1,X2.
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correct formula, for the meromorphic function J(z , τ) that equals
Zk,N if z = k/N, is

J(z , τ) = C
i

sin 2πz
G (z , τ),

where

C =
V

(8π2α′T )(p−1)/2
.

V is the volume of the intersection of the Dp-brane worldvolume
with the RIndler horizon.

C comes from the zero-modes of
X3, · · · ,X10 and i/ sin 2πz from the zero-modes of X1,X2.
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As I explained before, it is important that J(z , τ) has poles only at
Re z = 0 or 1/2.

This is most obvious in the Green-Schwarz
formalism. The partition function for the twisted chiral modes is a
ratio of fermion and boson determinants

det DF

det DB
,

where DF and DB are the fermionic and bosonic kinetic energies.
A pole of J(z , τ) comes from a zero-mode of DB , and it is
straightforward to find the values of z at which these occur.
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We also need to know about the closed-string interpretation of the
annulus partition function.

The annulus

describes an open string of width π propagating for a Euclidean
proper time 2πT . Equivalently in the crossed channel, it describes
a closed string of circumference 2πT propagating “sideways” for
proper time π. Rescaling lengths so that the closed string has
standard circumference 2π, the proper time in the closed-string
channel is π/T , which is 2πT̃ with

T̃ =
1

2T
.
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Because the annulus can describe closed-string propagation in the
crossed channel, we need to know something about the
closed-string spectrum of the orbifold.

A central fact is that it is
tachyonic. By standard methods, one computes that the ground
state energy in the kth twisted sector is

L0 = L̄0 = −|k|/N.

The most tachyonic mode is for k = (N − 1)/2 and

L0 = L̄0 = −1

2
+

1

2N
,

which except for the 1/2N (which of course can be small) is the
value −1/2 of the usual Neveu-Schwarz tachyon if there were no
GSO projection. For integer N, our orbifold is almost as tachyonic
as that.
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Now we can put the pieces together.

Our basic formula for the partition function was

ZN(T ) = −
∑
z0∈S

K (z0,N)Resz0 J(z , τ)

= − iC

2

∑
z0∈S

K (z0,N)

sin 2πz0
Resz0G (z , τ),

where in the second line I rewrite the formula using what we
learned about J(z , τ). S is the set of all poles of G ; we write S1
for the poles at Re z = 0 and S2 for the poles at Re z = 1/2.
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For analytic continuation, we have to use

K1 = πN cotπNz − π cotπz

for poles at Re z = 0 and

K2 = πN cotπ(N(z − 1/2) + 1/2)− π cotπz

for poles at Re z = 1/2.

So a version of the formula good for
analytic continuation is

ZN(T ) = −C
∑
z0∈S1

K1(z0,N)

sin 2πz0
Resz0G (z , τ)

− C
∑
z0∈S2

K2(z0,N)

sin 2πz0
Resz0G (z , τ).
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Everything here is completely explicit.

The functions K1 and K2

are elementary functions and we know what they are. We also
have an explicit formula for G (z , τ), and one can work out nice
formulas for the residues at its poles. I won’t write down a lot of
formulas, since they are hard to follow in real time.
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Instead let us discuss what it is that we want to learn.

We want to
put ZN(T ) into the integral

1

2

∫ ∞
0

dT

T
ZN(T )

that computes the annulus contribution to logTr ρ1/N . For
T →∞, we are in the infrared region where open-string theory can
be matched with field theory of the corresponding massless
open-string states. So we do not expect a surprise there. Instead,
T → 0 would be the ultraviolet region in field theory, but in string
theory it is the region where we expect to see closed-string
exchange in the crossed channel. If the closed-string sector is
tachyonic, which is the case if N is a positive integer, then the
integral is badly divergent for T → 0. By standard arguments, if
T̃ = 1/2T is the proper time in the closed string channel, then the
contribution of a closed string state with L0 = L̄0 = h should be

ZN(T )
T→0∼ exp(−4πT̃ h)

(times a phase space factor 1/T̃ (p−1)/2).
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So in particular if N is an integer, a tachyon with h = −k/N will
give

ZN(T )
T→0∼ exp(4πT̃ k/N).

Concretely, when one finds such terms in the formula that I
described, they come from poles of K2. What happens is that the
K2 contribution is a sum of residues at z = 1

2 + 1
2 irT . For T → 0,

these residues are closely spaced and the sum can be approximated
by an integral. The integral can be analyzed by contour
deformation and poles of the function K2(z ,N)/ sin 2πz give
contributions with the expected exp(−4πT̃ h) behavior, where h
depends on the position of the pole.
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It turns out that tachyons will come from poles of K2(z ,N) in the
strip 0 < Re z < 1.

If N is a positive odd integer, these poles are
at the right positions to reproduce the known tachyons of the
orbifold. But if we continue to ReN > 1 where N = 1/N, the
function K2(z ,N) has no poles in the strip and the closed-string
spectrum appears to be nontachyonic.
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We are not in the clear, though.

It turns out that as soon as N is
not a positive odd integer, the functions Ki (z ,N)/ sin 2πz have
double poles as well as simple poles. The contribution of a double
pole to the integral is not the expected exp(−4πT̃ h) of a
closed-string state with L0 = L̄0 = h. There is an extra factor of T̃
and we get instead

T̃ exp(−4πT̃ h).

It is not possible to get this behavior in a unitary conformal field
theory. But such behavior is possible in a – necessarily nonunitary
— “logarithmic conformal field theory,” in which L0 is not
diagonalizable. A pair of states in which

L0 = hI2 +

(
0 1
0 0

)
, I2 =

(
1 0
0 1

)
can have lead to the observed T̃ exp(−4πT̃ h) behavior, since

exp(−4πT̃ L0) = exp(−4πT̃ h)

(
1 −4πT̃
0 1

)
.
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double poles as well as simple poles. The contribution of a double
pole to the integral is not the expected exp(−4πT̃ h) of a
closed-string state with L0 = L̄0 = h. There is an extra factor of T̃
and we get instead
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So a tentative interpretation is that as soon as N is not an integer,
the theory becomes a logarithmic conformal field theory.

Then if
we continue further to ReN > 1, it becomes nontachyonic. The
logarithmic behavior causes the range of p for which the
entanglement entropy or Tr ρN converges to be less than expected.
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This result has seemed strange and to explore it further, A.
Dabholkar and I have looked at another example.

For the simple
Dp-brane crossing the Rindler horizon, the disc contribution to the
Bekenstein-Hawking entropy, which is of lower order than the
annulus, is actually divergent. We wanted to see what happens in
an example without this lower order divergence. The example we
looked at was Type I superstring theory in R10, with a ZN orbifold
that is chosen to not generate tadpoles. We again find that there
is no closed string tachyon when ReN > 1. But there seems to be
a massless scalar in the closed string sector that appears as soon as
N is not an integer. Where it comes from is unclear.
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This massless scalar – analogous to a twisted sector mode when N
is an integer – propagates only on the Rindler horizon.

Its
existence leads to a mysterious IR divergence in the entanglement
entropy or in Tr ρN .
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