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Why the tropical Pacific?
Annual Mean Sea Surface Temperature (SST)





ENSO

Karamperidou et al. (2020)





ENSO in the future

“Extreme El Niño and La Niña events may increase in 
frequency from about one every 20 years to one every 10 
years by the end of the 21st century under aggressive 
greenhouse gas emission scenarios,” McPhaden said. “The 
strongest events may also become even stronger than they 
are today.”

Here, using a mesoscale-resolving global climate model with 
an improved representation of tropical climate, we show that 
a quadrupling of atmospheric CO2 causes a robust 
weakening of future simulated ENSO sea surface 
temperature variability.
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Challenges in climate 
science

• The climate system is multiscale, 
multidimensional and nonlinear

• Very large number of variables

• Limited observations, especially before 
satellites

• Not all equations are known (think 
aerosols+clouds interactions)



Something helpful
The climate system is a high-dimensional, nonlinear and 
dissipative (Lucarini, 2016).
Its dynamics is expected to be confined to a manifold 
with lower dimension than the full state space 

Dimensionality reduction is traditionally performed via 
Principal Component Analysis (PCA) or Empirical 
Orthogonal Functions (EOF) but we now have better 
tools that account for nonlinearities



GOAL
A nonlinear, multivariable, dimensional 
reduction framework for climate science 
based on manifold characterization (here 
applied to the tropical Pacific)

DATA
ERA5 (reanalysis), two CMIP6 (newest 
generation) climate models: MPI and EC-Earth 
(high resolution)
1979-2019 reanalysis and models, and 2060-
2100 models under the SSP585 scenario. Daily 
data



MPI: MPI-ESM1.2-HR
Atmos: ECHAM6.3 1ox1o, 95 vertical levels
Ocean: MPIOM1.63 0.4ox0.4o, 40 levels
Land: JSBACK3.20 No dynamical vegetation, carbon 
and nitrogen cycles
Ocean biogeochem: HAMOCC

EC-EARTH: EC-Earth3-HR
Atmosphere and Land: ECMWF’s IFS 125 cycle 36r4 
T511 spectral resolution for IFS
Ocean and Ice:  NEMO3.6 and LIM3 0.25ox0.25o

resolution
Ocean Biogeochem: PISCES model. 
Dynamical vegetation, land use and terrestrial 
biogeochemistry: LPJ-GUESS. 
Atmos chem: TM5 

https://gmd.copernicus.org/preprints/gmd-2020-446/gmd-2020-446.pdf



Steps
Select a subset N of representative variables (here SST, near-surface winds u and 
v, outgoing longwave radiation OLR) defining a high dimensional trajectory X(t)∈
ℝ#,% (N = 17,092-dimensional trajectory in our case, T~14,000)

Identify the intrinsic manifolds both with a linear (PCA) and a nonlinear (Isomap) 
dimensionality reduction method  
PCA identifies the manifold by fitting hyperplanes in the directions that contain most of the variance; 
Isomap first identifies the K-nearest neighbors of each point i in the manifold and then computes the 
geodesic distances δ(i,j) between each couple of points i, j assuming that the manifold is locally flat 
in a radius of K points (here 10)

Estimate local geometry and stability of the attractor through its local dimension 
d(ζ) metric and the inverse of the average persistence of the trajectory around ζ, 
where ζ=X(τ) with τ ∈ [1,T]. d(ζ) ~ number of directions the system can evolve 
from/into. θ(ζ) ~ stickiness of the trajectory around ζ (Faranda et al., Sci. Rep., 2017)



Metrics: Local Dimension
!

Requiring that the orbit falls into a neighborhood 
of the point ! is equivalent to asking that the time series 
"($ % , !) exceeds a threshold s (, !

Freitas-Freitas-Todd Theorem

P("($ % , !) > s (, ! ) ~ exp(- )(!)*(!))

With u ! = " $ % , ! - s (, ! and ( being a high 
quantile from the time series " $ % , !

d(!) = 1 / +(!)

Theorem proved for chaotic systems.

Extremes and Recurrence in 
Dynamical system
V. Lucarini et al. Wiley, New York, 2016 



d(!)

Lower dimension closer to fixed 
points

Divergence of trajectory: higher dimension

Average dimension:
D= <d> = 2.06

Higher dimension because few episodes
(reflects uncertainty)

Extremes and Recurrence in Dynamical system
V. Lucarini et al. Wiley, New York, 2016



Metrics: Persistence or local stability

Points inside a neighborhood of !ßà points that exceed a (high) threshold u in the observable g

Inverse of persistency " : can be thought as the inverse of the average time spent 
above u



!: good proxy for unstable fixed points of the system
Quantifies stability of points in state space

!(")



Results:
Seasonal 

cycle
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Results:
ENSO 

variability





PRESENT FUTURE



Correlations (in absolute value) between the first Isomap component of each variable (on the x-
axis) and the multivariate case in ERA5 and models
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Conclusions

In ERA5 Isomap shows faster saturation of the 
residual variance compared to PCA fewer 
dimensional components required for describing 
dynamics than for PCA. Not true for models

Models have different ENSO representations but 
manifolds share similar geometrical properties. 
True despite different resolutions and different 
parameterizations of unresolved processes.

The Isomap residual variance for variability part 
differs from PCA in the reanalysis but not so much 
in models MPI and EC-Earth 
struggle in capturing the nonlinear topological 
characteristics of the observed manifold and they 
do so in a similar way



Conclusions

Under the SSP585 scenario, ENSO intensifies slightly in 
variance but does not change its spatial (biased) imprinting 
in MPI, while strongly intensifies in variance and displays a 
drastic change in the surface winds and OLR response in 
EC-Earth.

The three strongest global-scale El Nino events in the past 
40 years explore a portion of the state space never visited in 
the model runs analyzed. At the same time, the local scale 
chaoticity of the deseasonalized, detrended anomalies 
remains badly underestimated, independently of model 
resolution.

Framework allows for: 
- Quantifying how well links among variables are 
represented + their linear and nonlinear contributions
- Assessing the usefulness of stochastic perturbation schemes
- Developing machine learning applications based on the 
characterization of the global climate topology.


