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How can machine learning 
contribute to climate modeling?

1) Land model emulation and 
parameter calibration

2) Feature detection of extreme 
precipitation events



This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977.

Parameter Calibration with Neural 
Network-Based Emulation of a Land Model

Katie Dagon (NCAR), Ben Sanderson (CICERO/NCAR), Rosie Fisher (CICERO), 
and Dave Lawrence (NCAR)
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CMIP3/C4MIP emulation with MAGICC6 is 811–
1170ppm. As discussed above, the lower range of the
CMIP5 ESMs is due to one single model, MRI-ESM1,
which already severely underestimates the present-day
atmospheric CO2 concentration. Not including this model
would mean that the lower end of the MAGICC6 range is
significantly lower than the lower end of theCMIP5ESMs.
The warming ranges simulated by the CMIP5 ESMs

and by the CMIP3/C4MIP model emulations are quite
similar (Figs. 2b and 2d). The first set of models displays
a full range of 2.58–5.68C, while the latter set has a 90%
probability range of 2.98–5.98C.

5. Twenty-first-century land and ocean carbon cycle

To further understand the difference in simulated
atmospheric CO2 over the twenty-first century, we
analyzed the carbon budget simulated by the models, as
already done for the historical period. In the E-driven
runs, the ESMs simulate the atmospheric CO2 concen-
tration as the residual of the prescribed anthropogenic

emissions minus the sum of the land and ocean carbon
uptakes—these latter two fluxes being interactively
computed by the land and ocean biogeochemical com-
ponents of the ESMs. Figure 4 shows the cumulative
land and ocean carbon uptakes simulated by the CMIP5
ESMs. Any difference in simulated atmospheric CO2

comes from differences in the land or ocean uptakes.
The models show a large range of future carbon up-

take, both for the land and for the ocean (Figs. 4a and
4b). However, for the ocean, 10 out of the 11 models
have a cumulative oceanic uptake ranging between 412
and 649PgC by 2100, the exception being INM-CM4.0
with an oceanic uptake of 861PgC. As discussed in the
historical section, the reasons for this large simulated
uptake are unknown. The simulated land carbon fluxes
show a much larger range, from a cumulative source of
165PgC to a cumulative sink of 758PgC. Eight models
simulate that the land acts as a carbon sink over the full
period. Land is simulated to be a carbon source by two
models, CESM1-BGC and NorESM1-ME, both sharing
the same land carbon cycle model, and byMIROC-ESM.

FIG. 4. Range of (a) cumulative global air to ocean carbon flux (PgC), (b) cumulative global air to land carbon flux
(PgC) from the 11ESMsE-driven simulations, (c) the annual global air to ocean carbon flux, and (d) annual global air
to land carbon flux. Color code for model types is as in Fig. 1.
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Can we use machine learning to calibrate model parameters?
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The Game of Climate Model Biases 

Find new study: 
update old, wrong 
parameter value 

Add new structure to 
account for new knowledge 

Two alternative 
algorithms for poorly 
understood process.  

Different but-still-
reasonable value 
gives better answers 

Use value 
calibrated at 
single site. 

Figure from Rosie Fisher

Hand-tuning 
parameter values 
takes a long time 
(many model runs, 
trial and error). Can we use machine 

learning to streamline 
this process?
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Output: land model 
predictions
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Generating the Training Data
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Ensemble of model simulations

Distribution of model 
responses (PC1 of gross 
primary production, or GPP)

Land model* perturbed parameter 
ensemble (PPE) using 100 
parameter combinations generated 
with Latin Hypercube sampling

*Offline land-only simulations forced by atmospheric reanalysis data

Use principal component analysis (PCA) to predict 
modes of variability of carbon and water fluxes



Neural Networks as Land Model Emulators
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Train to predict spatial variability (first 3 PCs) of gross primary production (GPP).
Separate emulator built for first 3 PCs of latent heat flux (LHF).

Training

2-layer feed-forward artificial neural 
network (ANN)

P1 P2 P3 P4 P5 P6

S1 x1,1 x1,2 x1,3 x1,4 x1,5 x1,6

S2 x2,1 x2,2 x2,3 x2,4 x2,5 x2,6

S3 x3,1 x3,2 x3,3 x3,4 x3,5 x3,6

… … … … … … …

S100 x100,1 x100,2 x100,3 x100,4 x100,5 x100,6

p1
p2
p3
p4
p5
p6

n13
n12
n11

n1j

n21
n22
n23

n2k

z1
z2
z3

Input Layer Hidden Layer 1 Hidden Layer 2
Output Layer

Input: land model 
parameter values

Output: land model perturbed 
parameter ensemble



Machine Learning Interpretation: Variable/Feature Importance
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Variable/Feature Importance
• Randomly shuffle values of one parameter (preserving others) and test performance of emulator.
• Skill metric is mean squared error between predictions and actual values.
• Larger bar means the parameter is more important to the predictive skill of the emulator.

The Land Model Working Group

Andrew Slater Award
Is hereby granted to:

for best student or postdoc performance at 2019 LMWG Workshop

Heterotrop.
respiration

Photosynthesis

Autotrophic
respiration

Litterfall

N
uptake

Vegetation C/N

Soil
C/N N mineralization

Fire

Biogeochemical cycles

Phenology

BVOCs

N dep
N fix

Denitrification
N leaching

CH4

Root litter

N2O

Evaporation

Melt
Sublimation

Throughfall

Infiltration
Surface 
runoff

Evaporation

Transpiration

Precipitation
Hydrology

Sub-surface 
runoff

Water table
Saturated Zone

Soil

Saturated
fraction

Impermeable Bedrock

Absorbed solar

D
iff

us
e 

so
la

r

D
ow

nw
el

lin
g

lo
ng

w
av

e 

Reflected solar 

Em
itt

ed
 

lo
ng

w
av

e

Se
ns

ib
le

 h
ea

t f
lu

x

La
te

nt
 h

ea
t f

lu
x

ua0

Momentum flux
Wind speed

Ground 
heat flux

Surface energy fluxes

Aerosol 
deposition

Soil (sand, clay, organic)

Dust

SCF
Surface
water

Bedrock

???

Kennedy et al. 
(2019)

Medlyn et al. 
(2011)

PC1 Gross Primary Production PC1 Latent Heat Flux



Approach: Emulate, calibrate, test.

Dagon et al. 2020

Emulator predictions vs. CLM output Comparing model bias with calibrated (left) and 
default (right) parameters

Land Model Emulation for Parameter Calibration
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Results in the Context of Climate Predictions
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Input: Parameter 
posterior distributions

Output: Predicted change in carbon/water 
fluxes accounting for parameter uncertainty

DIFFERENT neural network to emulate future 
climate response of land surface model
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Machine learning-based feature detection 
to associate precipitation extremes with 

synoptic weather events
Katie Dagon (NCAR), John Truesdale (NCAR), Jim Biard (ClimateAI), Ken Kunkel (NC State), Maria 

Molina (NCAR), and Jerry Meehl (NCAR)



Extreme Precipitation Has Significant Consequences
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Oroville Dam 
spillway overflowing 
in February 2017 
following an 
atmospheric river 
event in California.

Flooding after Hurricane 
Harvey in August 2017.



Machine Learning for Feature Detection
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Project Goals:

1. Apply and develop machine learning-based detection algorithms to automate the classification of synoptic weather 
features such as atmospheric rivers (ARs), tropical cyclones (TCs), mesoscale convective systems (MCSs), and fronts.

2. Study the causes of extreme precipitation by associating features with extreme precipitation events.

PERSPECTIVE RESEARCH

Earth system models48. Overall, we identify five major challenges and 
avenues for the successful adoption of deep learning approaches in 
the geosciences, as follows.

(1) Interpretability
Improving predictive accuracy is important but insufficient. 
Certainly, interpretability and understanding are crucial, including 
visualization of the results for analysis by humans. Interpretability 
has been identified as a potential weakness of deep neural networks, 
and achieving it is a current focus in deep learning49. The field is 
still far from achieving self-explanatory models, and also far from 
causal discovery from observational data50,51. Yet we should note that, 

given their complexity, modern Earth system models are in practice 
often also not easily traceable back to their assumptions, limiting 
their interpretability too.

(2) Physical consistency
Deep learning models can fit observations very well, but predictions 
may be physically inconsistent or implausible, owing to extrapo-
lation or observational biases, for example. Integration of domain 
knowledge and achievement of physical consistency by teaching 
models about the governing physical rules of the Earth system can 
provide very strong theoretical constraints on top of the observa-
tional ones.

a

b

c

d

Machine learning tasks Earth science tasks

Object classification and localization

Super-resolution and fusion

Video prediction

Language translation

Pattern classification

Statistical downscaling and blending

Short-term forecasting

Dynamic time series modelling

Dog: 0.994

Cat: 0.982

8 × 8
input

32 × 32
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truth

Time

Predict future visual
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Embed

He loved to eat .

.

SNullEr liebte zu essen

Er liebte zu essen

Decoder

Softmax

Time
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Fig. 2 | Four examples of typical deep learning applications (left 
panels) and the geoscientific problems they can be applied to (right 
panels). a, Object recognition in images links to classification of 
extreme weather patterns using a unified convolutional neural network 
on climate simulation data41. b, Super-resolution applications relate to 
statistical downscaling of climate model output72. c, Video prediction is 

similar to short-term forecasting of Earth system variables. Right image, 
courtesy of Sujan Koirala and Paul Bodesheim, Max Planck Institute for 
Biogeochemistry. d, Language translation links to modelling of dynamic 
time series (ref. 96 and figure 11 in ref. 97). Left image, courtesy of Stephen 
Merity (figure 1 in https://smerity.com/articles/2016/google_nmt_arch.
html).
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Reichstein et al. (2019)



ClimateNet: a community-sourced 
expert-labeled dataset to improve and 
accelerate machine learning applications 
in weather and climate
Ø Focus on detecting atmospheric rivers 

(ARs) and tropical cyclones (TCs).

https://www.nersc.gov/research-and-development/data-analytics/big-data-center/climatenet

11/4/21 K. Dagon 16

Prabhat et al. (2021)

Detection of Atmospheric Rivers and Tropical Cyclones

Collaborators: Karthik Kashinath (NVIDIA) and Arvind Nayak (LBNL)

https://www.nersc.gov/research-and-development/data-analytics/big-data-center/climatenet
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Can we use the pre-trained 
ClimateNet algorithm applied 
to climate model output to 
detect ARs and TCs? 

Input fields: vertically integrated precipitable water, sea level pressure, and u/v winds at 850mb 
Output fields: 3 labels (AR, TC, and none)

Specifically, fully 
coupled Community 
Earth System Model 
(CESM) simulations 
at high spatial and 
temporal resolution.

Detection of Atmospheric Rivers and Tropical Cyclones



Atmospheric River Detection
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different methods by quantifying the uncertainty in current (1980–2017) AR climatology on a global scale,
using over 20 AR identification and tracking methods. To do so, it leverages a variety of metrics, which
are described in more detail in the following sections. An assessment of method‐related uncertainty
affecting AR climatology under climate change scenarios will be the subject of another paper, discussed at
the end of section 4.

2. Data and Methods

The progression of ARTMIP is organized into “tiers,” and this study is a summary of results from the Tier 1
phase of the project. The data used in Tier 1 of ARTMIP are described at length in Shields et al. (2018), and a
brief overview is also given here.

A key aspect of ARTMIP is that analyses are performed using the same atmospheric data set, over the same
period of record, and over the entire globe. This enables a clean comparison of AR‐related metrics across all
methods, whereas previous studies used different atmospheric data sets, different periods of records and
examined only certain regions. Note, however, that somemethods' criteria explicitly limit their results to cer-
tain regions, and a mask is used to indicate these regions. Basic quantities such as IWV and IVT, which is
often a derived variable, were precomputed for ARTMIP to ensure that all algorithms use exactly the same
data. The atmospheric data for these calculations comes from the Modern‐Era Retrospective Analysis for
Research and Applications Version 2 (MERRA‐2) reanalysis (Gelaro et al., 2017) for the period of January
1980 through June 2017, at a horizontal resolution of 0.625 × 0.5° and a 3‐hr temporal resolution. The
ARTMIP catalogs are then produced by developers applying their identification and tracking methods to
these data. For each 3‐hr time slice, each grid point is flagged with a 0 for “AR conditions do not exist” or
a 1 for “AR conditions exist.” Catalogues produced for Tier 1 as well as the source MERRA‐2 data used by
all ARTMIP participants are available on the Climate Data Gateway. MERRA‐2 source data can be found
at https://doi.org/10.5065/D62R3QFS (NCAR/UCAR Climate Data Gateway), and ARTMIP Tier 1 output
data catalogues, also housed on the Climate Data Gateway, online (doi:10.5065/D6R78D1M). Table 1 sum-
marizes all the methods participating in ARTMIP with notation specifying Tier 1 algorithms only.

Key results are presented along selected, roughly meridional transects along the North American West
Coast, through interior western North America, and along the EuropeanWest Coast (Figure 4). These trans-
ects are selected because most regional methods have been developed, and produce data, for one of these two
regions. The coastal transect points are determined by selecting all MERRA‐2 reanalysis grid points that

Figure 2. Example of how AR identification and tracking methods differ over the northeastern Pacific, based on MERRA
Version 2 data from 0000 UTC 15 February 2014. Gray shading represents IVT (kg m−1 s−1), and colored contours
represent the spatial regions designated as ARs by the various methods. Note that only algorithms available in this region
are shown.

10.1029/2019JD030936Journal of Geophysical Research: Atmospheres

RUTZ ET AL. 13,780

Rutz et al. (2019)

“The Atmospheric River Tracking 
Method Intercomparison Project 
(ARTMIP) is an international 
collaborative effort to understand and 
quantify the uncertainties in 
atmospheric river (AR) science based 
on detection algorithm alone.” 

- Shields et al., 2018

Ø Integrated water vapor transport 
(IVT) is often the only field used to 
detect ARs, though detection 
methods vary in other ways (e.g., 
relative vs. absolute thresholds).
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ClimateNet was trained on four input fields. Do the results change when altering input fields?

Trained on 4 fields:
vertically integrated precipitable water, sea level pressure, 
and u/v winds at 850mb

Trained on 1 field:
vertically integrated precipitable water

Unable to detect TCs, but able to detect ARs with similar 
spatial/temporal representation as model trained on all 
4 input fields.

Thanks to John Truesdale (NCAR) for his work training ClimateNet.

Atmospheric River Detection



Detection of Fronts
J. C. Biard and K. E. Kunkel: DLNN front detection 153

Figure 3. The training loss (a) and training accuracy (b) for each
training epoch of the DL-FRONT NN over three cross-validation
folds.

loss and accuracy results of the training. The training and ac-
curacy curves indicate that the network training appears to be
converging on solutions that are not overfit to data and have
an overall categorical accuracy of near 90 % (percentage of
CSB fronts identified by DL-FRONT). Fold 3 produced the
lowest loss and highest accuracy so those weights were se-
lected as the final result. We used the final result network to
generate 37 984 3-hourly front likelihood data grids covering
the entire 2003–2015 time span.

A sample output of the DL-FRONT algorithm and the cor-
responding CSB front locations for 1 August 2009 at noon
UTC (a period not used in training) is shown in Fig. 4. The
DL-FRONT results are very similar to the CSB fronts in
terms of the general locations. There are spatial discrepan-
cies that are sometimes large enough that the front locations
do not overlap, and there are several discrepancies regard-
ing the type of front. The DL-FRONT results are missing a
Pacific coast cold front and a western mountains stationary
front from the CSB observations. DL-FRONT identifies ad-
ditional fronts in the Pacific Ocean and on Baffin Island in

Figure 4. Side-by-side comparison of CSB (a) and DL-FRONT
(b) front boundaries for 1 August 2009 12:00:00. The CSB fronts
were drawn three grid cells wide. The intensities of the colors for
the different front types in the DL-FRONT image represents the
likelihood value (from 0.0 to 1.0) associated with each grid cell.

the Arctic; these are beyond the areas regularly analyzed for
fronts by the National Weather Service shown in Fig. 2.

4.2 Metrics

The trained network was evaluated by calculating the met-
rics discussed below for both the 2003–2007 training data
and the 2008–2015 validation data. We combined the results
for the four different front types to produce a two-category
front/no-front dataset and produced metrics for the same two
date ranges. The same region mask used for training was used
when calculating the metrics.

4.2.1 Actual and predicted grid cell counts

The percentage of grid cells in the five different types is
shown in Table 1 for the CSB and DL-FRONT. In the CSB,
the percentage of grid cells categorized as front is in the range
of 12.3 %–12.6 % for the training and validation periods. The
DL-FRONTS algorithm identifies fronts in 11.7 %–11.9 % of
the grid cells. Thus, there is a slight undercount but little dif-
ference between the training and validation periods. The per-
centage of the different frontal types is similar between the
CSB and DL-FRONT except for warm fronts, which are un-
dercounted by DL-FRONT. Table 1 also shows that there is
a major asymmetry between the front type categories, with
⇠ 88 % of the grid cells falling into the no-front category.

4.2.2 Categorical accuracy

The categorical accuracy is a measure of the fraction of in-
stances where the neural network predicted category matches
the actual category for some set of samples. This is the sum
of the diagonal elements of the confusion matrix (see below)
divided by the total number of cells. The results for the full
output and front/no-front output for the two time ranges are
shown in Table 2. The results appear to indicate that there is
no appreciable reduction in neural network performance with
the validation dataset compared to the training dataset.

The large asymmetry between the no-front category and
the other categories reduces the utility of this metric, since a

www.adv-stat-clim-meteorol-oceanogr.net/5/147/2019/ Adv. Stat. Clim. Meteorol. Oceanogr., 5, 147–160, 2019
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warm, stationary, occluded, and none categories. Each label
vector is assigned one and only one category by giving the
appropriate element a value of 1 and the others a value of
0. The elements of each predicted vector contain values be-
tween 0 and 1, inclusive, which are the estimated category
likelihoods for that cell. The lower the likelihood value in
the predicted vector for the category marked as correct in the
label vector, the larger the contribution to the loss. The per-
category weights are used to adjust the relative significance
of the contributions from the different categories. Approxi-
mately 88 % of our data grid cells have no front present, so
the loss function is at risk of being dominated by the con-
tribution of the none category. Reducing the weight for the
none category relative to the weights for the other categories
will make the loss function less sensitive to that category.
Similarly, increasing the weight for a seldom-seen category
will make the loss function more sensitive to that category.

The Adam adaptive moment estimation technique
(Kingma and Ba, 2015) is the loss minimization strategy used
when training the network. Adam is a form of stochastic gra-
dient descent (SGD) that has been shown to perform well in
a variety of networks. As with most SGD techniques, Adam
has a primary initial learning rate parameter. The learning
rate sets the initial magnitude range of the changes to the
network weights and biases.

We implemented the DL-FRONT network in Python us-
ing numpy (van der Walt et al., 2011) and the Keras deep
learning library (Chollet, 2015) on both Tensorflow (Abadi et
al., 2015) and The Theano Development Team et al. (2016)
(Bergstra, 2010) computational backends. The training appli-
cation made use of the scikit-learn package (Pedregosa et al.,
2011) to provide k-fold cross-validation and hyperparame-
ter search. The “outer” network parameters such as learning
rate, number of layers, etc. are referred to as hyperparame-
ters. A significant part of the time spent developing a NN is
devoted to optimizing the hyperparameters.

We initially chose a network based on 2-D convolution
layers with 5 ⇥ 5 kernels because of the structural similar-
ity we saw between a layer of this sort and a finite-difference
second-order spatial derivative function. The visual front de-
tection task described at the beginning of this section, if ex-
pressed mathematically, can be thought of as synthesizing
the results of various spatial derivatives of the different input
measurements at each point in the data grid.

We experimented with the basic architecture with a series
of hyperparameter searches using training runs of 100–200
epochs over a 1-year batch of data. An epoch is one full pass
through the training data. The experiments used the scikit-
learn GridSearchCV function to perform multiple training
runs, each with a different combination of learning rate, cat-
egory weights, number of 2-D convolution layers, sizes of
layer kernels, and numbers of filters in layer kernels. The hy-
perparameter combination from these experiments that pro-
duced the best validation accuracy and loss was chosen for
training for 1200 epochs over 5 years of data. The details of

Figure 1. Schematic of the DL-FRONT 2-D CNN architecture. The
five category input data grid on the left contains the five input sur-
face meteorological 2-D fields (temperature, humidity, pressure, u-
component of wind, v-component of wind). The five-category out-
put data grid on the right contains five 2-D likelihood estimates
for the five front categories (cold, warm, stationary, occluded, and
none).

these experiments are outside the scope of this paper. The
amount of time required to do an exhaustive search of all
hyperparameter combinations and ranges makes such a task
impractical. The highest accuracy and lowest loss in training
and validation out of the experiments we performed was with
the network described below.

Figure 1 shows a schematic of the resulting DL-FRONT 2-
D CNN architecture. At the far left of the figure is the input
data grid, which is composed of five “feature maps” of 2-
D meteorological fields (as compared to three feature maps
of 2-D color fields for an RGB image) on a 1� geospatial
grid. These meteorological fields are 3-hourly instantaneous
values of air temperature at 2 m, specific humidity at 2 m, air
pressure reduced to mean sea level, the east–west (u) compo-
nent of wind velocity at 10 m, and the north–south (v) com-
ponent of wind velocity at 10 m. The meteorological fields
were obtained from the Modern-Era Retrospective Analy-
sis for Research and Applications, Version 2 (MERRA-2;
Gelaro et al., 2017) and were sampled on a 1� latitude–
longitude grid over a domain of 10–77� N and 171–31� W.
We obtained 37 984 sets of grids for the time span 2003–
2015.

The first network layer is a composite of a 2-D zero-
padding layer, a 2-D convolution layer with a 5⇥5 kernel and
80 filters, a ReLU activation layer, and a 50 % 2-D dropout
layer. The output of this layer is a data grid that has the same
spatial extent and 80 abstract feature maps. The next two lay-
ers have the same basic structure, producing output data grids
with 80 feature maps that have the same spatial extent as the
original input data grid.

The fourth network layer is different from the other three.
This layer is a composite of a 2-D zero-padding layer, a 2-
D convolution layer with a 5 ⇥ 5 kernel and 5 filters, and
a softmax activation layer. The output is a data grid with 5

Adv. Stat. Clim. Meteorol. Oceanogr., 5, 147–160, 2019 www.adv-stat-clim-meteorol-oceanogr.net/5/147/2019/
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DL-FRONT: Machine learning-based 
frontal detection algorithm
(Biard and Kunkel, 2019)

DL-FRONT is able to detect ~90% of manually labeled fronts 
over North America.

Input fields: surface temperature, sea level pressure, specific humidity and u/v winds 
Output fields: 4 frontal categories (cold, warm, occluded, stationary) and none type

Collaborators: Jim Biard (ClimateAI) and Ken Kunkel (NC State)
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Detection of Fronts

Can we use the pretrained 
DL-Front algorithm applied to 
climate model output to 
detect weather fronts? 

Specifically, fully coupled Community 
Earth System Model (CESM) simulations 
at high temporal resolution.

Applying trained DL-FRONT algorithm to CESM output to detect front types.

How do we validate the 
climate model results?

Comparing CESM output with NWS Coded Surface Bulletin (CSB) front locations for a random time point.
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Validating Frontal Detection

Validation using seasonal front 
crossing rate climatologies 
(fronts/week) at each grid point.

Comparing climate model results 
(CESM) with validation data from NWS 
Coded Surface Bulletin (CSB).



Front Detection Response to Climate Change

11/4/21 K. Dagon 23

Spatial maps show 
westward shift in 
DJF/MAM and 
northward shift in 
JJA/SON fronts under 
RCP8.5.



Possible Mechanism: Jet Response to Climate Change
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Opinion wires.wiley.com/climatechange
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FIGURE 5 | Relationships between projected future Arctic Amplification and the jet-stream. North Atlantic (a) jet latitude and (b) jet speed
responses as a function of month between 2076–2099 and 1980–2004 under RCP8.5 for 21 CMIP5 models. Bars signify the 10th–90th percentile
range and crosses denote model responses outside of this range. (c, d) Correlation across the CMIP5 models of the North Atlantic (c) jet latitude and
(d) jet speed with the Arctic amplification (AA) responses as a function of month. Solid circles denote correlations significant at the 95% confidence
level. (Reprinted with permission from Ref 47. Copyright 2014 American Meteorological Society)

The last two questions (‘Has it?’ and ‘Will it?’)
are likely still a long way from being fully answered.
However, to more fully understand the in!uence of
rapid Arctic change on weather in lower latitudes, we
must make appreciable progress toward addressing

both of these questions separately. And even if our
efforts ultimately lead us to the conclusion that the
answers are ‘no’, there’s still a good chance we will
have learned a lot about our climate system along
the way.
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“North Atlantic jet latitude response as a function of month 
between 2076–2099 and 1980–2004 under RCP8.5 for 21 
CMIP5 models. Bars signify the 10th–90th percentile range 
and crosses denote model responses outside of this range.”

- Barnes and Screen, 2015

Decreases in 
JJA/SON driven 

by northern 
retreat of jet 

stream?



Connecting to Precipitation Extremes
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Extreme precipitation (PEx) associated with a detected front
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Comparing maps of detected fronts and 90th percentile precipitation, and calculating the 
percent of PEx gridpoints that coincide with a front by summing over the time domain.

Interesting dipole feature in difference 
plot: (slight) increases in the western 
US and decreases in the eastern US 
with climate change.
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Extreme precipitation (PEx) associated with a detected front
Change in %PEx associated with front Change in front frequency Change in %PEx

Dagon et al. in prep



SmartSim: Online Learning
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Fig. 1. The architecture for SmartSim is provided for a given use case. In this instance, the Infrastructure Library (IL) is being used to launch the Orchestrator
alongside a simulation embedded with the SmartRedis clients. In addition to communication with the simulation, the Orchestrator is also sending data to an
analysis environment for online analysis, visualization and/or training of a machine learning model.

distributed amongst all database nodes. Notably, a user is
not required to know where (which database node) data or
Datasets (see Dataset API below) are stored as the SmartRedis
clients will infer their location for the user.

The importance of the IL is two fold. First, the deployment
capabilities greatly reduce the complexity and overhead of
creating computational setups for the development of ML-
augmented simulations. By enabling the programmatic param-
eterization and execution of applications, users can quickly
generate workloads that explore large parameter spaces, per-
form uncertainty quantification, generate training datasets,
conduct scaling tests, and more. Second, the infrastructure
deployed by the IL, namely the Orchestrator, facilitates the
connection of applications through the SmartRedis clients for
many types of online workloads: inference, training, analysis,
visualization, etc.

B. SmartRedis

1) Tensors: The SmartRedis clients use a n-dimensional
tensor data structure for transferring data, storing data, eval-
uating scripts, and evaluating models. However, to minimize
the code changes in applications, the SmartRedis tensor data
structure is opaque to the user and native n-dimensional arrays
in the host language (C, C++, Fortran, Python) are used in
the user-facing API functions. For example, in Python, the
SmartRedis client works directly with NumPy arrays. For
C and C++, both nested and contiguous memory arrays are
supported. Only contiguous arrays are supported in Fortran,
but with care taken to preserve the row-major convention. The
reader is encouraged to consult the SmartRedis documentation
for a detailed description of supported data types and API
functions.

2) Datasets: In many scientific applications, multiple n-
dimensional tensors are naturally grouped together as they
have some contextual relationship. Additionally, there is often
metadata about the tensors (e.g. dimension names) or the
simulation from which they come (e.g. time step information)

that should be stored alongside the tensors. The SmartRedis
DataSet API allows users to group n-dimensional tensors and
metadata into a single data structure that can be accessed or
manipulated in the Orchestrator with a single key. Specifically,
users need not know where the tensors and metadata within
the DataSet object are stored once they have been sent to the
Orchestrator. Users only need to know the name given to the
dataset when constructing the DataSet object.

3) Data Processing: The ability to perform online data
processing is essential to enabling online inference. Most
machine learning algorithms require some preprocessing of
input data. Sometimes this processing is as simple as data
normalization, but often more computationally expensive data
processing is needed.

SmartRedis provides an API for storing, retrieving, and
executing TorchScript programs inside of the Orchestrator
database. The scripts are JIT-traced Python programs that can
operate on any tensor data stored in the Orchestrator and
execute on CPU or GPU. After the TorchScript execution, the
output tensors of the script are stored in the Orchestrator and
are accessible with a user-specified name. Such calls to the
SmartRedis API can be chained together to processing and
inference pipelines.

4) Model Inference: The SmartRedis clients support the
remote execution of Pytorch, TensorFlow, Keras, TensorFlow-
Lite, and ONNX models that are stored in the Orchestrator.
With this capability, embedded SmartRedis clients can aug-
ment simulations with machine learning models stored in the
in-memory database.

SmartRedis clients support storing, retrieving and executing
ML models with the aforementioned ML frameworks. When a
call to client.set_model() is performed, a copy of the
model is distributed to every node of the database to leverage
all available hardware. When performing the remote execution
of a model through a SmartRedis client, the model chosen
for execution is the model co-located with some or all of the
model input data. In the case where all of the input data or

4

Partee et al. 2021

• Data storage is a persistent issue, especially with high resolution climate model output

• Simulation output not always stored locally and needs to be transferred and extensively post-processed
• Online inference would allow for significant efficiency gains

• Ongoing work to apply SmartSim to machine learning detection projects with CESM



NCAR Earth System Data Science (ESDS)

11/4/21 K. Dagon 29

Mission statement
The ESDS initiative aims to build an inclusive sociotechnical network to 
promote effective synthesis and interpretation of data relevant to solving 
problems in Earth system science and supporting decisions within 
stakeholder communities.

Vision
An interactive numerical laboratory for Earth system science
Seamless integration of routine model evaluation and cutting-edge science
Community-oriented, community-developed analysis frameworks
Entrain stakeholders in co-design processes

ESDS Core Team: Deepak Cherian (CGD), Katie Dagon (CGD), Matt Long (CGD), Max Grover (CGD), Kevin Paul (CISL), 
John Clyne (CISL), Orhan Eroglu (CISL)



Summary
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v Machine learning emulators are trained to reproduce land model output with 
greater computational efficiency; emulator predictions are optimized to 
minimize error between model and observations.

v Machine learning-based detection algorithms are applied to capture high-
impact weather events in models and observations; detection is connected 
to extreme precipitation and its response to climate change.

v Ongoing CESM-related machine learning projects: Earth system 
predictability (Molina), model component parameterizations (e.g., CAM6 and 
MOM6; Gettelman, Gagne, Bachman, Marques), process understanding for 
sea ice (DuVivier, Holland).

kdagon@ucar.edu
@katiedagon

Thanks!
Questions?



BACKUP
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Community Land Model Parameters
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• Biophysical features (e.g., surface energy balance, hydrology, carbon uptake)
• Individual parameter uncertainty ranges determined by literature review, updated observations

• Parameter selection based on a series of sensitivity tests with objective metrics

Name Parameter Description

medlynslope Slope of stomatal conductance-photosynthesis relationship

dleaf Leaf boundary layer resistance parameter

kmax Plant hydraulic stress parameter

fff Surface runoff parameter

dint Soil evaporation parameter

baseflow_scalar Sub-surface runoff parameter

The Land Model Working Group
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Constructing a Cost Function
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• Need to consider first three modes of spatial variability
• Two objectives: gross primary productivity (GPP) and latent heat flux (LHF)
• How to combine into a single cost function representing model predictive skill relative 

to observations?

Emulator 
predictions for 
parameters p

Observations

Normalize by standard 
deviation in observationsSum over modes m for each term, 

weighting by % variance

dataset. The sum for each variable is weighted by the percent variance explained by each mode (�v,m).365

J(p) =
2X

v=1

2

4
3X

m=1

�v,m

 
Ûv,m(p)�Uobs,v,m

�(Uobs⇤,v,m)

!2
3

5 (6)

To explore parameter response surfaces of this cost function, we perform a history matching type experiment (Williamson

et al., 2015). We generate an additional large Latin Hypercube parameter set with 10 million members, and predict the PCs for

each member using the trained emulators. We then compute the cost function J(p) following Eq. (6) for each member using

the emulated PCs. We subset the results, selecting the 1000 members with the smallest normalized error as computed by the370

cost function. (For reference, the error threshold for this subset of parameter solutions is shown as a vertical magenta line in

the bottom right panel of Fig. 6.) We then take each parameter pair, and plot the distribution of the parameter scaling values.

Fig. 9 shows the resulting parameter space, highlighting the regions where the optimal solution would apply. The diagonal

panels show the distributions of optimal parameter scaling values for each parameter. For certain parameters (notably dleaf and

baseflow_scalar), the range of values is not well constrained by selecting parameter sets with small normalized errors. Other375

parameters such as fff and dint favor the edges of their uncertainty bounds and also may not be as well constrained by this

exercise. However for medlynslope and kmax parameters, these plots show where the optimal solutions sit relative to their

uncertainty ranges, as well as their relationships with other parameters.

4.3 Nonlinear Optimization

We use the SciPy optimize function in Python to minimize the cost function J(p) and find optimal parameter values380

(https://docs.scipy.org/doc/scipy/reference/optimize.html). There are many different nonlinear optimization and root finding

methods available through this package, and we test several of these algorithms to explore their effectiveness at finding optimal

parameter values. In particular a bounded global nonlinear optimization approach using Differential Evolution produces the

best results by quickly and efficiently searching the solution space (Storn and Price, 1997). We use random initial conditions to

initialize the algorithm and impose bounds of [0,1] for each parameter scaling factor, representing the minimum and maximum385

of the uncertainty ranges.

We also utilize other global methods such as Dual Annealing (Xiang et al., 1997) and Simplicial Homology Global Opti-

mization (SHGO) (Endres et al., 2018) to verify the results. SHGO fails to converge on an optimal solution, while Dual An-

nealing produces a similar result to Differential Evolution but takes several orders of magnitude more iterations and function

evaluations. Local optimization methods such as Sequential Least Squares Programming (SLSQP), Limited memory bounded390

Broyden–Fletcher–Goldfarb–Shanno (L-BFGS-B), Truncated Newton (TNC), and Trust-Region Constrained tend to get stuck

at a local minimum and do not sufficiently explore the parameter space. All of the above methods are referenced in the SciPy

package.

To test the sensitivity of our cost function formulation, we repeat the optimization process using an alternate cost function

that removes the weighting by modes of variability (�v,m in Eq. (6)). The resulting parameter values are very similar to the395

19

Sum over output 
variables v



Optimal Parameter Relationships
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• Generate an additional large parameter 
sampling (~107 members)

• Subset 1000 members with the smallest 
predicted normalized error

• Explore parameter relationships and 
resulting distributions

• Also generating posterior parameter 
distributions via Markov Chain Monte 
Carlo (MCMC)



Bayesian Calibration
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• Similarity to optimal parameter 
relationships exercise

• Constraining medlynslope, 
kmax parameters

• Somewhat constraining fff,
dint, but favoring distribution 
edges

• dleaf, baseflow_scalar not 
well constrained

Parameter Scaling Factor



Bayesian Calibration
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• How do the optimized and 
default parameters compare?

• Optimized values mostly sit in 
the median of the parameter 
distributions

• Default values vary and can be 
far outside distributions
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Detection of Mesoscale Convective Systems

Goal: Train a deep learning model to detect 
mesoscale convective systems (MCSs).
Led by Maria Molina, NCAR

MCS labels using FLEXTRKR (Feng et al. 2018) Collaborators: Zhe Feng and Fengfei Song (PNNL)



Deep Learning Infrastructure for MCS Detector
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Images from Maria Molina

Input: meteorological fields 
from reanalysis (ERA5)

Output: MCS mask 
(FLEXTRKR)

Input fields consistent with similar feature 
detection algorithms: surface temperature, 
surface specific humidity, sea level pressure, 
surface u/v winds.

Labeled MCS dataset using FLEXTRKR and 
ERA5 observations.

Series of 2D convolutional layers 
with filtering and dropout, also 
inspired by existing feature 
detection algorithms.
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Validation using seasonal front 
crossing rate climatologies 
(fronts/week) at each grid point.

Comparing climate model results 
(CESM) with validation data from 
MERRA-2 reanalysis.

Validating Frontal Detection



Front Detection Response to Climate Change
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Analysis using seasonal front 
crossing rate climatologies 
(fronts/week) at each grid point.

Comparing climate model results 
(CESM) for present-day and future 
climate simulations.

Decrease 
in JJA with 

climate 
change?



Extreme precipitation associated with a detected front
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Extreme precipitation (PEx) associated with a detected front
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CESM Present Day (2000-2015) CESM RCP8.5 (2086-2100)

Comparing maps of detected fronts and 90th percentile precipitation, and calculating the 
percent of PEx gridpoints that coincide with a front by summing over the spatial domain.

Percentages are very seasonal (high in winter, low in summer).

Decreases in every month, 
more so in fall/winter.

Difference (RCP8.5 – Present)



Extreme precipitation (PEx) associated with detected ARs
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PEx = 90th percentile

Spatial region inspired by Payne & Magnusdottir (2015)
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Extreme precipitation (PEx) associated with detected ARs
PEx = 95th

percentile

Spatial region 
inspired by 
Collow et al. 
(2020)

PEx associated 
with AR in 
observations

Nov-Jan only, 
1980-2019

Collow et al. (2020)Dagon et al. in prep



Next Steps
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ML for Emulation and Parameter Estimation

v Currently extending this work to a large CLM (and CAM) perturbed 
parameter ensemble (PPE) experiments with the goal of emulation and
global parameter estimation.

ML for Feature Detection

v Working towards combining detection algorithms for multiple features 
(e.g., fronts and mesoscale convective systems).

v Investigating the responses of detection and extreme precipitation to 
climate change in other models.


