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Machine Learning for Climate Modeling
How can machine learning =y
contribute to climate modeling?

MACHINE LEARNING
Algorithms whose performance improve
they are exposed to more data over i

DEEP
LEARNING
Subset of machine learning in
which multitayered neural

1) Land model emulation and
parameter calibration

2) Feature detection of extreme
precipitation events
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Parameter Calibration with Neural

Network-Based Emulation of a Land Model

Katie Dagon (NCAR), Ben Sanderson (CICERO/NCAR), Rosie Fisher (CICERO),
and Dave Lawrence (NCAR)
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Uncertainty in Land Model Projections
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Uncertainty in Land Model Parameters
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Can we use machine learning to calibrate model parameters?

\_

Use value fﬂ
Can we use machine

Hand-tuning
parameter values

takes a long time
(many model runs,

trial and error).

®

learning to streamline
this process? Q%Qﬁ

reasonable value
Z x gives better answers

Add new structure to
account for new knowledge

Find new study:
update old, wrong
parameter value

Different but-still-

Two alternative
algorithms for poorly
understood process.

Figure from Rosie Fisher
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Neural Networks as Land Model Emulators

Input: land model Output: land model

parameter values Neural network emulator predictions
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Network image: http://cs231n.qithub.io/neural-networks-1/
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http://cs231n.github.io/neural-networks-1/

Generating the Training Data

Use principal component analysis (PCA) to predict

Land model perturbed parameter modes of variability of carbon and water fluxes
ensemble (PPE) using 100
parameter combinations generated / PC1 GPP
with Latin Hypercube sampling /
20.0 A 83.41%
\ 17.5 Distribution of model
150 responses (PC1 of gross

primary production, or GPP)

7 , 9 125
c
/ >
‘ T S 10.0
\ —aton® 5.0
ode) s\m
cemd\® of @ 2.5
en
0.0

-0.1 0.0 0.1 0.2 0.3 0.4
*Offline land-only simulations forced by atmospheric reanalysis data
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Neural Networks as Land Model Emulators

Training

Input: land model

2-layer feed-forward artificial neural
parameter values

network (ANN)
Input Layer
S1 11 x1,2  x13  x14  x15 x16 \\

S2 x2,1 x2,2 x2,3 x2,4 x2,5 Xx2,6

S3 x3,1 x3,2 x3,3 x3,4 x3,5 x3,6

S100 x100,1 x100,2 x100,3 x100,4 x100,5 x100,6

Train to predict spatial variability (first 3 PCs) of gross primary production (GPP).

Separate emulator built for first 3 PCs of latent heat flux (LHF).

HEQE 11/4/21
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Output: land model perturbed
parameter ensemble

PC2 GPP




Machine Learning Interpretation: Variable/Feature Importance

PC1 Gross Primary Production PC1 Latent Heat Flux

GPP Original LHF Original

medlynslope medlynslope

dleaf dleaf
h kmax kmax
ff fif
Medlyn et al.
dint dint (201 1)
baseflow_scalar baseflow_scalar
Kennedy et al.
(2019) 0 0.005 0.01 0.015 0.02 0 0.002 0.004 0.006 0.008 0.01
Mean Squared Error Mean Squared Error

Variable/Feature Importance

« Randomly shuffle values of one parameter (preserving others) and test performance of emulator.
« Skill metric is mean squared error between predictions and actual values.

« Larger bar means the parameter is more important to the predictive skill of the emulator.
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Land Model Emulation for Parameter Calibration

Approach: Emulate, calibrate, test.

Emulator predictions vs. CLM output Comparing model bias with calibrated (left) and
PC1 GPP default (right) parameters
0.4 - //
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CLM Model Output
Dagon et al. 2020
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Results in the Context of Climate Predictions

Output: Predicted change in carbon/water
fluxes accounting for parameter uncertainty

Input: Parameter

posterior distributions 50
DIFFERENT neural network to emulate future
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Machine learning-based feature detection

to associate precipitation extremes with
synoptic weather events

Katie Dagon (NCAR), John Truesdale (NCAR), Jim Biard (ClimateAl), Ken Kunkel (NC State), Maria
Molina (NCAR), and Jerry Meehl (NCAR)
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Extreme Precipitation Has Significant Consequences

Oroville Dam Al (-~ B (= I (= Flooding after Hurricane |
spillway overflowing el ' et Harvey in August 2017.

in February 2017 4 e -

following an

atmospheric river

event in California.
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Machine Learning for Feature Detection

Machine learning tasks Earth science tasks

a Object classification and localization Pattern classification

[Dog: 0.994

Cat: 0.980 ==
- |

| B
¥
§ V4

Reichstein et al. (2019)

Project Goals:

1. Apply and develop machine learning-based detection algorithms to automate the classification of synoptic weather
features such as atmospheric rivers (ARs), tropical cyclones (TCs), mesoscale convective systems (MCSs), and fronts.

2. Study the causes of extreme precipitation by associating features with extreme precipitation events.

NCAR
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Detection of Atmospheric Rivers and Tropical Cyclones

ClimateNet: a community-sourced
expert-labeled dataset to improve and
accelerate machine learning applications
in weather and climate

» Focus on detecting atmospheric rivers 8l Start creating a polygon
(ARs) and tropical cyclones (TCs).

Training Inference

Human
Labeling

Class Labels
Bounding Boxes
Segmentation Masks

ClimateNet
Dataset

Segmentation Masks

https://www.nersc.qgov/research-and-development/data-analytics/big-data-center/climatenet
Unified Deep Network Model, satellite,
observational datasets

Prabhat et al. (2021) Collaborators: Karthik Kashinath (NVIDIA) and Arvind Nayak (LBNL)

“gﬁ:ﬁ 11/4/21 K. Dagon 16
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Detection of Atmospheric Rivers and Tropical Cyclones

Can we use the pre-trained
ClimateNet algorithm applied
to climate model output to
detect ARs and TCs?

- AR

==

Specifically, fully TC
coupled Community
Earth System Model
. (CESM) simulations
at high spatial and

temporal resolution.

- None

sssssssssss

e Input fields: vertically integrated precipitable water, sea level pressure, and u/v winds at 850mb
- Output fields: 3 labels (AR, TC, and none)

~ Segmentation Masks

ClimateNet

Dataset Unified Deep Network Model, satellite,

observational datasets

NCAR
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Atmospheric River Detection

“The Atmospheric River Tracking
Method Intercomparison Project
(ARTMIP) is an international
collaborative effort to understand and
quantify the uncertainties in
atmospheric river (AR) science based
on detection algorithm alone.”

- Shields et al., 2018
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» Integrated water vapor transport
(IVT) is often the only field used to
detect ARs, though detection
methods vary in other ways (e.g.,
relative vs. absolute thresholds).

NCAR

pnnl2_lq
rutz
shields
tempest
walton

30°N

165°W 150°W 135°W 120°W 105°W

350 525 700
IVT (kg m~1s71)

0 175

Figure 2. Example of how AR identification and tracking methods differ over the northeastern Pacific, based on MERRA
Version 2 data from 0000 UTC 15 February 2014. Gray shading represents IVT (kg m™* s_l), and colored contours
represent the spatial regions designated as ARs by the various methods. Note that only algorithms available in this region
are shown.

Rutz et al. (2019)
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Atmospheric River Detection

ClimateNet was trained on four input fields. Do the results change when altering input fields?

AR

TC

None

Trained on 4 fields:
vertically integrated precipitable water, sea level pressure,
and u/v winds at 850mb

Thanks to John Truesdale (NCAR) for his work training ClimateNet.

NCAR

AR

TC

None

Trained on 1 field:
vertically integrated precipitable water

Unable to detect TCs, but able to detect ARs with similar
spatial/temporal representation as model trained on all
4 input fields.
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Detection of Fronts

DL-FRONT: Machine learning-based

. . Front identification comparison: 1 August 2009, 12:00 UTC
frontal detection algorithm

) (@) Human surface analysis (b) Deep learning analysis
(Biard and Kunkel, 2019) T ‘..QQE%?‘*% — PRt~
| Bzl ! 3 A
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Zz?giloﬁiguﬁimﬂ 2 pixel zero pad then ' T | '} jhd? oy - T— jhd? -
5x5 kernel and 80 filters 2-D convolution with \ Thﬁ ﬂr ; \ " -dd
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/ / ™ )\:\\C—' E%—‘aus- v = \:\\C—’ Es}xs-
- 4 L £ " f‘ \Aé% AN e \'\é% AN e
My {}1 — Cold — Warm —— QOccluded -~ Stationary
f .
\ DL-FRONT is able to detect ~90% of manually labeled fronts
' over North America.
[5 data grids| ~ [80 feature maps| [80 feature maps] [80 feature maps|  [5 categories |

Input fields: surface temperature, sea level pressure, specific humidity and u/v winds
Output fields: 4 frontal categories (cold, warm, occluded, stationary) and none type

Collaborators: Jim Biard (ClimateAl) and Ken Kunkel (NC State)
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Detection of Fronts

None

Can we use the pretrained (@)
DL-Front algorithm applied to NS

Occluded

climate model output to Stationary
detect weather fronts? Warm
Cold

Specifically, fully coupled Community
Earth System Model (CESM) simulations
at high temporal resolution.

2003-02-17 12:00:00 CESM

J

None

How do we validate the
climate model results?

Occluded

Stationary

Warm

Cold

Comparing CESM output with NWS Coded Surface Bulletin (CSB) front locations for a random time point.

NCAR
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Validating Frontal Detection

Seasonal Front Climatology, 2003-2015

Coded Surface Bulletin CESM

Validation using seasonal front
crossing rate climatologies
(fronts/week) at each grid point.

Comparing climate model results
(CESM) with validation data from NWS
Coded Surface Bulletin (CSB).

Seasonal CONUS Front Crossing Rate Climatology
All front types, 2003-2015
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Front Detection Response to Climate Change

CESM;2ensonal krontClimatology CESM Seasonal Front Climatology, RCP8.5-Present
RCP8.5, 2086-2100

Present Day, 2000-2014

DJF

RN

Spatial maps show
westward shift in
DJF/MAM and
northward shift in
JJA/SON fronts under
RCP8.5.
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Possible Mechanism: Jet Response to Climate Change

CESM Seasonal Front Climatology, RCP8.5-Present

(a) Jet latitude response
31 ) »
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“North Atlantic jet latitude response as a function of month stream’?j
between 2076-2099 and 1980-2004 under RCP8.5 for 21 -
CMIP5 models. Bars signify the 10th-90th percentile range
and crosses denote model responses outside of this range.”
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Connecting to Precipitation Extremes

Fronts and 90th percentile precipitation, 2000-08-21T21
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mm/day
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Extreme precipitation (PEx) associated with a detected front

Comparing maps of detected fronts and 90th percentile precipitation, and calculating the
percent of PEx gridpoints that coincide with a front by summing over the time domain.

Percent CONUS PEx gridpoints associated with front, 2000-2015

Percent CONUS PEx gridpoints associated with front, 2086-2100

—

Interesting dipole feature in difference
plot: (slight) increases in the western
US and decreases in the eastern US
with climate change.

NCAR
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Extreme precipitation (PEx) associated with a detected front

Change in %PEXx associated with front Change in front frequency Change in %PEx
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SmartSim: Online Learning

« Data storage is a persistent issue, especially with high resolution climate model output

Simulation output not always stored locally and needs to be transferred and extensively post-processed

* Online inference would allow for significant efficiency gains

« Ongoing work to apply SmartSim to machine learning detection projects with CESM

Workload Manager | | SmartSim Experiment

Launch
« ||surm || PBs |
I I
[ [
| Cobalt | | Local |
HPC Workload / Orchestrator
Launch Workloads i i
TC Simulation S TRedi Data Exchange
marrtkeais y
SmartSim % %
Infrastructure AlModels  DataSources Code / Scripts
None Library Python | C | C++ | Fortran in s
Experiment Controller Data Exchange

Online Analysis (e.g., Jupyter Notebook) SmartRedis

Partee et al. 2021
NCAR
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NCAR Earth System Data Science (ESDS)

Mission statement ot g o
ata voaels OrKriows
The ESDS initiative aims to build an inclusive sociotechnical network to & &
. . . . i Algorithms Platforms
promote effective synthesis and interpretation of data relevant to solving
problems in Earth system science and supporting decisions within
Stakeholder communities.

Observations

- Visualization
V|S|On Machine Learning

An interactive numerical laboratory for Earth system science

Seamless integration of routine model evaluation and cutting-edge science
Community-oriented, community-developed analysis frameworks Xdev g‘ )
Entrain stakeholders in co-design processes

o~
Jupyterhub

o ~ & (6
[/ = .
4 {IT.IE Bbinder e

@eoCAT  mowm matpltlib CISL

ESDS Core Team: Deepak Cherian (CGD), Katie Dagon (CGD), Matt Long (CGD), Max Grover (CGD), Kevin Paul (CISL),
John Clyne (CISL), Orhan Eroglu (CISL)
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Summary

*+ Machine learning emulators are trained to reproduce land model output with
greater computational efficiency; emulator predictions are optimized to
minimize error between model and observations.

* Machine learning-based detection algorithms are applied to capture high-
Impact weather events in models and observations; detection is connected
to extreme precipitation and its response to climate change.

“ Ongoing CESM-related machine learning projects: Earth system
predictability (Molina), model component parameterizations (e.g., CAM6 and
MOMBG6; Gettelman, Gagne, Bachman, Marques), process understanding for
sea ice (DuVivier, Holland).

Thanks! kdagon@ucar.edu
Questions? YW @katiedagon
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Community Land Model Parameters

» Biophysical features (e.g., surface energy balance, hydrology, carbon uptake)
* Individual parameter uncertainty ranges determined by literature review, updated observations

» Parameter selection based on a series of sensitivity tests with objective metrics

Carbon dioxide enters, while water and

% Name Parameter Description 7 —
~:§:’/’;/ medlynslope Slope of stomatal conductance-photosynthesis relationship ¥ ;
ﬁ%\ dleaf Leaf boundary layer resistance parameter

kmax Plant hydraulic stress parameter
fff Surface runoff parameter
dint Soil evaporation parameter

baseflow scalar [Sub-surface runoff parameter

Dagon et al. (2020)
NCAR
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Constructing a Cost Function

* Need to consider first three modes of spatial variability
» Two objectives: gross primary productivity (GPP) and latent heat flux (LHF)

« How to combine into a single cost function representing model predictive skill relative
to observations?

i 2

A

v=1 | m=1

/ — Observations
predictions for

Sum over output :
variables v parameters p

B 5 v,m(p) UOb‘S’v’m
J(p) — Z Z )\U’m /O'(Uobs*,v,m) \

Normalize by standard

Sum over modes m for each term, deviation in observations

weighting by % variance

Rl 11/4/21
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Optimal Parameter Relationships

) -y
« Generate an additional large parameter o
sampling (~10” members)
Subset 1000 members with the smallest o i -
predicted normalized error . e
- Explore parameter relationships and & o o) .

resulting distributions
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Bayesian Calibration

medlynslope dleaf kmax

« Similarity to optimal parameter
relationships exercise

counts

» Constraining medlynslope,
Kmax parameters

0.45 0.50 0.55 0.6 0.7 0.8 0.9 1.0 0.28 0.30

¢ SomeWhat ConStraining ﬁf’ fff dint baseflow_scalar
dint, but favoring distribution 601 ; -
edges 501

« dleaf, baseflow_scalar not
well constrained

counts
w
o
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Parameter Scaling Factor
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Bayesian Calibration

medlynslope dleaf kmax
| |
50 A I I
40 4 I I
 How do the optimized and ) | |
default parameters compare? 2] :
20 - |
« Optimized values mostly sit in l
. 10 A b
the median of the parameter J
distributions ® " o4s o050 055 ) 2 4 6 03 0.4 0.5
fff dint baseflow_scalar
« Default values vary and can be 601 ; — - Optimies
. . . . = Default
far outside distributions 501 :
404! :
% 30
20 A
10 A
0(;.000 0.(?25 0.650 0.0|75 0.]:00 0.6 0j7 0.8 0.9 1.0 _0.0 0.2 0.4
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Detection of Mesoscale Convective Systems

Goal: Train a deep learning model to detect
mesoscale convective systems (MCSs).
Led by Maria Molina, NCAR

2004-06-01 00:00:00

0.0 15 15.0
Frequency

I8 .
MCS labels using FLEXTRKR (Feng et al. 2018)

Collaborators: Zhe Feng and Fengfei Song (PNNL)
NCAR
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Deep Learning Infrastructure for MCS Detector

Input: meteorological fields Output: MCS mask
from reanalysis (ERA5) (FLEXTRKR)

Input fields consistent with similar feature Series of 2D convolutional layers Labeled MCS dataset using FLEXTRKR and
detection algorithms: surface temperature, with filtering and dropout, also ERAS5 observations.

surface specific humidity, sea level pressure, inspired by existing feature

surface u/v winds. detection algorithms.

Images from Maria Molina

NCAR K. Dagon 38
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Mean Front Crossings / week

Validating Frontal Detection

Validation using seasonal front
crossing rate climatologies
(fronts/week) at each grid point.

Comparing climate model results
(CESM) with validation data from
MERRA-2 reanalysis.

Seasonal CONUS Front Crossing Rate Climatology
All front types, 2000-2015
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Season
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Front Detection Response to Climate Change

CESM Seasonal Front Climatology
Ana|ysis using seasonal front Present Day, 2000-2014 RCP8.5, 2086-2100
crossing rate climatologies
(fronts/week) at each grid point.

Comparing climate model results
(CESM) for present-day and future
climate simulations.

CESM Seasonal CONUS Front Crossing Rate Climatology
All front types

25
B Present, 2000-2014
s RCPS8.5, 2086-2100
E, 20 1
=
5. Decrease
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g in JJA with
S o climate
c
£ change?
= 05
00 -

DJF MAM

Season 00 05 10 15 20 25 30 35 40
Fronts per week
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Extreme precipitation associated with a detected front

Precipitation, 2000-08-21T21 Detected Fronts, 2000-08-21T21
. ~

None

Occluded

Stationary

Warm

Cold

mm/day

90th percentile precipitation, 2000-08-21T21
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35 A

30 1

R 25 1

20 1

154

Percent PEx gridpoints associated with front, 2000-2015

Extreme precipitation (PEx) associated with a detected front

Comparing maps of detected fronts and 90th percentile precipitation, and calculating the
percent of PEx gridpoints that coincide with a front by summing over the spatial domain.

CESM Present Day (2000-2015)

Climatological Monthly Mean Annual Cycle

CESM RCP8.5 (2086-2100)

Percent PEx gridpoints associated with front, 2086-2100
Climatological Monthly Mean Annual Cycle
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Percentages are very seasonal (high in winter, low in summer).
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Extreme precipitation (PEx) associated with detected ARs

PEx = 90t percentile

Spatial region inspired by Payne & Magnusdottir (2015)

Percent PEx gridpoints associated with AR, 2000-2005
Climatological Monthly Mean Annual Cycle

%

20 1

10 -

Month of Year

NCAR

Percent PEx gridpoints associated with AR, 2000-2005
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Extreme precipitation (PEx) associated with detected ARs

PEX — 95th Percent PEx gridpoints associated with AR, 2000-2005 PEX aSSOCiated
percentile with AR in
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ML for Emulation and Parameter Estimation

* Currently extending this work to a large CLM (and CAM) perturbed
parameter ensemble (PPE) experiments with the goal of emulation and
global parameter estimation.

ML for Feature Detection

** Working towards combining detection algorithms for multiple features
(e.g., fronts and mesoscale convective systems).

** Investigating the responses of detection and extreme precipitation to
climate change in other models.
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