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Outline & Outlook

* Looking backward at how scientific
discoveries have occurred can give us
insights into how to build machines
for scientific discovery.

* Looking forward, how might we build
Al architectures specifically for
science?
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Dominant Dynamical Regimes:

empirical & non-asymptotic equation reduction
approximations with a long and fruitful history
in geophysical fluid dynamics

Juan Saenz (LANL), Maike Sonnewald (Princeton & U. Washington), & Daniel Livescu (LANL)
Machine Learning for Turbulence (MeLT)
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Munk’s ocean circulation model utilizes ad hoc scaling arguments

Munk’s barotropic

vorticity model is derived
from the Navier-Stokes
equations by neglecting
equation terms according to
geometric and empirical
scaling arguments
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Munk, “On the wind-driven ocean circulation” (1950)




There 1s no explicit universal verification for scale analysis for non-asymptotic dynamics

1) High quality empirical data
e.g. DNS by Zaki (2013) (lef?)

25+ years of research: Prantdl (1904) to von Karman (1930)
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Observations of closed equation, E

Building on the work of
Sonnewald et al. (2019)
and Callaham et al. (2021),
we show that: dynamical
regimes can be identified
without a priori domain
knowledge.
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Partition E into regimes

E is partitioned by ad hoc visual or
statistical methods

Hypothesis selection

2 | All observations in each regime are
labeled by a set of dominant terms

we call hypotheses, H

Hypothesis testing

Each regime hypothesis is
validated by ad hoc methods

'

unsupervised learning framework

Partition E into regimes

E is partitioned by clustering
(Sonnewald et al. 2, Callaham et al. °)

Hypothesis selection

Apply dimensionality reduction
algorithms (Callaham et al. °) to
clusters to generate H.

Hypothesis testing

The verification criterion indicates the
fit of hypotheses H to data set E.
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Minimized number of equation terms in one or more regimes, H,;




HDBSCAN clustering
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Partition E = [a,b], equation-term clusters exploit sparsity in the equation-space
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Verification criteria for dominant dynamical regimes

Ou Ou Ou Ou 1 op 82?1 8211 8211]
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Choose hypotheses for which terms are dominant: H = {O7 0,0,0,1,1,0,0, O}
’
argmax V(E,H) if maxV(E,H) > V(E, 1)
To find the optimal hypotheses... Hoii—¢ 5

1 if maxV(E,H) < V(E, 1)
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1+ €2, B magnitude spread of
dominant terms
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Verification criteria: 1D asymptotic example

Munk-like Vallis (2017)

advection of

barotropic vorticity model: oy 4
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Oceanic
barotropic
vorticity
equation
example
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Tumor angiogenesis / endothelial cell growth equation example
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Reynolds-averaged turbulent boundary layer equation example

Dominant balance Score, Area ])

0.85 : :
5190 @@ ost002 | flow direction — | [I5
1@ @ C ) 0.18,0.03 4
2310 O 0.93,0.58 3 £
=) > >
221 @ @ @ -0.70,0.05 2 O
11 -0.81,0.28 e
01 ® & 0.75,0.04 Io
0.00 ———————
G g\_{’o Q,_S—’o‘ bb,é; o,:’z,\ &e

1% Los Alamos

NATIONAL LABORATORY



Time complexity depends upon chosen clustering & dimensionality reduction algorithms

HDBSCAN+SPCA, D =1
K-Means+SPCA, D =4 a)
HDBSCAN+CHS, D =4
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Conclusions

* We have formulated the partitioning & classification of dominant
dynamical regimes as an optimization problem.

* We have proposed a verification criteria that:
1. Is consistent with domain knowledge
2. Allows regimes to be 1dentified with
no a priori domain knowledge
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Machines that hypothesize

reflections on generalizability & interpretability
AI/ML methods for science

Juan Saenz (LANL) & Ismael Boureima (LANL)

Machine Learning for Turbulence (MeLT)
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What is scientific intelligence?

* “Al 1s the science of making machines capable of performing tasks that would require intelligence 1f done by
humans” - Marvin Minsky

* “Intelligence measures an agent’s ability to achieve goals in a wide range of environments™ - Legg & Hutter
 Intelligence is the ability to efficiently acquire skills, not mastery of a single skill. [Chollet (2020)]

» Psychologists question the concept of intelligence as a single, undifferentiated capacity. [Adams (2012)]

Scientific intelligence 1s the measure of a scientist's skill at generating falsifiable and causal models of Nature
in the form of symbolic hypotheses and theories.

Maria Goeppert Mayer, KT 0' 7 8 ¥ A Machine scientists
Nobel Prize in Physics (1963) ? ] B Tar S ATS SN
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Machine learning answers questions of statistical association
Science answers questions of causality with symbolic hypotheses

1 A @ E=mc? .
® AlphaFold e Other salient axes:

> « Computational complexity
* Scope of applicability

>

> Science

“solving the pathway of protein
folding, along with the dynamics
> of protein processes, 1is a
different type of challenge from
predicting protein structure”
Fersht (2020)

predictive skill

.
s

Post hoc explainability/interpretability/intelligibility of predictions

Rudin, “Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead,” (2019)



Machine learning answers questions of statistical association

Right hand column all labeled as “ostrich” Right hand column all labeled as “ostrich™

Concept learning is different statistical learning
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Science answers questions of causality with symbolic hypotheses

Level Typical Typical Questions Examples
(Symbol) Activity
1. Association Seeing What is? What does a symptom tell me about
P(y|x) How would seeing X a disease?
change my belief inY? What does a survey tell us about the
election results?
2. Intervention Doing What if? What if I take aspirin, will my
P(y|do(x), z) Intervening What if I do X? headache be cured?
What if we ban cigarettes?
3. Counterfactuals Imagining, Why? Was it the aspirin that stopped my
P(y|x",y") Retrospection Was it X that caused Y? headache?
What if T had acted Would Kennedy be alive had Os-
differently? wald not shot him?
What if I had not been smoking the
past 2 years?

Judea Pearl, “The Seven Tools of Causal Inference with Reflections on Machine Learning,” 2018

“As long as our system optimizes some property of the observed data, however noble
[N or sophisticated, ... we are back to [the association level] of the hierarchy, with all
‘QQ NLA2§\I é ! ACE! mﬁ? r§ the limitations this level entails.”



We can’t wait for the 50% chance of AGI 1n 2140, if ever ...
...but we can develop hybrid deep learning — symbolic systems now

temporal
reasoning

causal
reasoning

&

Will human-like

e u TR IRD
e s é' ’,"
N
SVAN

. spatial
reasoning eventually reasoning
emerge from a
sufficiently large
neural ne@ork? .

(deep learning folks, orkiestrimg
e.g. R. Sutton, say yes) e
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How can we build scientifically intelligent machines?

General properties of machine scientists

* Inputs: prior knowledge, data

* Outputs: symbolic hypotheses and theories
 [terates over the scientific method

* Manipulates hypotheses with symbolic logic

Technical challenges:

e Computational complexity

* The symbol grounding problem [Harnad 1990]

e Machine reasoning [Sparkes 2010, Bottou 2014]
e Mathematics [Davis 2020]

Philosophical challenges:
* Scope of applicability: breadth of inquiry
e Value: ranking the relative importance of theories
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Environments

/ Divide and conquer\
Probl Theories
theon

Theory Hub

Unification Occam’s Razor

Master theories Symbolic theories

\\ Al-physicist /

Example: Wu & Tegmark (2019) “Al physicist” uses
symbolic regression and the above graph to find the most
accurate and broadly applicable symbolic expressions.




Action Pairs Real scientist

Possible m!' dsc.:te
In Environment
Investigation into Investigation
the full automation into novel
Frequently Sl e
Observed
Action Pairs
Manual study of Manual study of genes Manual study of genes
genes encoding encoding orphan enzymes by encoding orphan enzymes
orphan enzymes external wet and dry biology by wet biology

1
Manual Manual Manual Manual
study of study of study of study of
theenzyme |(§ theenzyme |§ theenzyme the enzyme
E(26.1.39 E1L1117 E(63.32 £Q26.1.39
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Example: Uhde ez al. (2020) “Robot as Scientist” uses Example: King et al. (2009) robot functional genomicist uses
virtual reality simulation, causal graphs, and experiments

. . abductive logic, prior knowledge, and experiments to identify
to reduce the. search space required to predict the effects gene encodings that cause protein functions in yeast.
of robot motion.

1% Los Alamos

NATIONAL LABORATORY



Thank you for your time and attention
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