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Data-driven models for climate prediction –I

State-of-the-art, highly resolved GCMs, while able to simulate detailed
interactions within the climate system over a wide range of scales, generate
detailed climate variability that is as complex as currently available
observational datasets, and is hence no less challenging to interpret.

Dynamical analysis of climatic phenomena typically involves a set of multiple
GCM simulations that are designed to isolate physical processes governing
the simulated, and by inference, observed climate variability.

These simulations are computationally expensive, however, and their
interpretation is hindered by the presence of model biases due to incomplete
or imperfect parameterizations of the unresolved physical processes.

While these GCMs represent a broad range of time and space scales,
important aspects of observed climate variability can be represented by a
substantially smaller number of degrees of freedom associated with large-scale
(space) and low-frequency (time) modes of climate variability – (LFV).
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Data-driven models for climate prediction –II

Thus it motivates development of reduced-order approximations of either
the full governing equations or the phenomenon itself by inverse modeling
approaches, (iii) data-adaptive analysis for identifying and predictive
modeling of LFV modes by using output GCMs as well as observations, (iv)
development of purely data-driven (“Machine Learning”) dynamical
models as statistical benchmarks.

Data-driven dynamical climate models should account for

interactions between the LFV modes
estimation of the dynamical contribution of “fast-small” scales.
the interactions between the few LFV modes and the much large number of
fast-small scale modes

Depending on climate application, LFV can be on intraseasonal, interannual
and decadal time scales.

Intraseasonal-to-seasonal prediction of ENSO and Arctic Sea Ice.
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El-Nino Southern Oscillation (ENSO)-I

Global mode of terrestrial climate

Ocean-atmospheric mode of climate variability manifested by anomalous sea surface
temperature (SST) in Equatorial Pacific.

El Nino/ La Nina events start develop in Apr-Jun, maximum in Dec-Feb.

Strong ENSO events cause extremes in weather and precipitation over the globe.

Events tend to recur every 2 to 7 years but fairly irregularly.

Despite good physical understanding, ENSO remains to be very challenging for seasonal
prediction, i.e. from spring/early summer to upcoming winter (“Spring barrier”).
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Data-driven stochastic models/closure problem from partial observations

Theoretical guidance: Mori-Zwanzig Formalism

Given x(t) – partial d.o.f of climate model, e.g. SST but not winds,...

A closure problem [Kondrashov et al. 2015, Physica D]: How to find a low-order system of
“closed” equations that describe evolution of partial observations x(t)?

Theoretical guidance from the Mori-Zwanzig formalism of statistical mechanics –
generalized Langevin equation [Palmer, 2019; Ghil and Lucarini, 2020]

dx

dt
= F (x) +

∫ t

0
G(t, s, x(s))ds+ ηt (GLE)

F(x)– self-interactions among the observed d.o.f: Markovian contribution.

Integral term – (non-linear) cross-interactions between the observed and unobserved d.o.f;
it involves the past history of the observed d.o.f and brings non-Markovian contribution or
memory effects.

ηt – spatio-temporal correlated noise by unobserved d.o.f.

In practice GLE solution (F (x), G(x)) is computationally difficult to obtain except in very
limited cases (time-scale separation).

The goal is to find optimal F (x), G(x), ηt by inverse modeling techniques.

Linear Inverse Modeling (LIM, Penland 1989): F = Ax, G ≡ 0, ηt is white noise.

Extending LIM, i.e. by adding memory, nonlinearity and more complicated noise.
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El-Nino Southern Oscillation (ENSO)

Multilayer Stochastic Modeling

Kondrashov et al. (Physica D., 2015) have shown that multilevel regression models, such
as Empirical Reduction Model (EMR, Kravtsov, Kondrashov and Ghil, Cambridge UP,
2009) can provide successful “Markovian” approximation of GLE:

xk+1 − xk =
[
F + Axk + B(xk,xk)

]
δt+ r0

kδt,

rm−1
k+1 − rm−1

k = Lm
[
xk, r

0
k, ..., r

m−1
k

]
δt+ rmk δt, 1 ≤ m ≤M,

x = (x1, ....., xd) are time series of d leading modes from data-adaptive decomposition,
such as Principal Component Analysis (PCA).

Model coefficients F,A,B,Lm are estimated by consecutive top-down regressions and can
include seasonal dependence; rmt are regression residuals.

rmt represent hidden (unobserved) scales in a stack of “matrioshka” layers, each
supplementary layer representing faster scales until rMt can be approximated by white noise.

Multi-layer structure conveys memory effects, i.e. temporally correlated noise.

Linear constraints on B for numerical stability, i.e. <B(x, x), x > = 0.

Prediction is obtained by integrating model forward from given i.c. and forcing by ensemble
of random noise realizations.
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Multi-model ENSO Forecasting

Real-time Prediction

IRI/CPC coordinated effort: statistical/dynamical multi-model plume to predict Nino3.4.

UCLA-TCD: Quadratic, 2-level EMR-ENSO model for 20 leading EOFs of Equatorial SSTs
[Kondrashov et al. 2005, J. Clim].
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Multi-model ENSO Forecasting

Real-time Prediction Skill in 2002–2011
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Figure 5. Temporal correlation between model forecasts and observations as a function of 
target season and lead time. Each panel highlights one model. The first 12 models are 
dynamical, followed by 8 statistical models. Thick solid contour shows the 90% significance 
level, dashed contour the 95% level, and thin solid contour the 99% level. 
 

 

 

Figure 6. Temporal correlation between model forecasts and observations for all seasons 
combined, as a function of lead time. Each line highlights one model. The 8 statistical models 
and the persistence model are shown with dashed lines and the cross symbol. 
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Figure 8. RMSE in standardized units, as a function of target season and lead time, with a 
separate panel for each model. The first 12 models are dynamical, followed by 8 statistical 
models. 
 
 
 
 
 
 

 
 
Figure 9. RMSE in standardized units, as a function of lead time for all seasons combined. 
Each line highlights one model. The 8 statistical models and the persistence model are shown 
with dashed lines and the cross symbol. 

Figures from Barnston et al.: “Skill of Real-Time Seasonal ENSO Model Predictions during
2002–11: Is Our Capability Increasing?.” Bull. Amer. Meteor. Soc., 93, 631– 651, 2012

“UCLA-TCD prediction has the highest seasonally combined correlation skill among the
statistical models exceeded by only a few dynamical modes [...] as well as one of the
smallest RMSE.”

the key to predictive success – conveying memory effects by multiple layer structure, which
also helps to reduce spring barrier for prediction [Chen et al., 2016 J. Climate].
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Arctic Sea Ice

Sea ice concentration (SIC) – relative area covered by ice (0% – 100%)

SIC is derived from passive microwave imaging by satellites.

Sea Ice Extent (SIE) is area covered by ice – when SIC≥ 15%.

SIE decline due to global warming has profound socio-economic implications, i.e. opening
of summertime shipping Europe-to-Asia routes.

Sea Ice Outlook (SIO) – coordinated effort for multi-model prediction, similar to ENSO.
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Summertime Arctic Sea Ice

Summertime forecasting of September Sea Ice Extent (SIE) is very challenging: high
variability of O&A over Arctic, shortness of observational record, shortcomings of the
physics-based models to simulate sea-ice dynamics; also spring predictability barrier!

For accurate prediction need to consider dynamics of SIE anomalies over Arctic regions.

Data-adaptive Harmonic decomposition (DAHD)

The key feature: DAHD unites data-adaptive decomposition and inverse modeling.
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Sea Ice Outlook (SIO)

2018 and 2019 DAHD prediction of September SIE

JJA predictions of September SIE by DAHD are usually within ≈ 0.2 Mkm2 of the obs:
2020: 4.40/3.92 (Mkm2), 2019: 4.42/4.32 (Mkm2) (right panel), 2018: 4.53/4.71
(Mkm2) (left panel); 2017: 4.57/4.80 (Mkm2); 2016: 4.9/4.72 (Mkm2).

Kondrashov, D., M. D. Chekroun, and M. Ghil, 2018:

Data-adaptive harmonic decomposition and prediction of Arctic sea ice extent,

Dynamics and Statistics of the Climate System, doi:10.1093/climsys/dzy001.
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Multisensor Analyzed Sea Ice Extent -I

Multisensor Analyzed Sea Ice Extent (MASIE) – manual (non-automatic) data fusion using
variety of sources. It provides daily ice conditions to support navigation and operational
forecast models. 2006 – present, daily data of SIE for 16 Arctic regions in real-time.

The daily MASIE data was aggregated into a weekly resolution with 52 weeks in each
calendar year, and combined into four Arctic sectors: Center, RUS, CAN, and USA.
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Multisensor Analyzed Sea Ice Extent –II
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Pronounced seasonal cycle; we are interested in anomalies.
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Multisensor Analyzed Sea Ice Extent –III

Different Arctic sectors are not
isolated and necessarily coupled
due to physical processes:
advection, winds, O/A
processes...

Complex mixture of temporal
scales (subseasonal-to-seasonal-
to-intraseasonal) and
interactions between the sectors.

Relative contributions of the four
sectors changes from year to year
and abruptly during the summer;
involve delays between the
sectors and may act in opposite.

Complex and highly nonlinear
predictors are needed...?

DAHD techniques help to
characterize such complex time
series evolution by a system of
coupled nonlinear harmonic
stochastic oscillators.

Dmitri Kondrashov UCLA KITP 15 / 39



Data-Adaptive Harmonic Decomposition (DAHD) -I

DAHD is a spectral time series analysis technique that utilizes spatio-temporal correlations
[Chekroun and Kondrashov, Chaos, 2017; Kondrashov et al., Fluids, 2018].

Given d-channel time series X(tn) = (X1(tn), . . . , Xd(tn)), n = 1, . . . , N , compute

two-sided cross-correlation coefficients ρ
(p,q)
τ at lag τ between channels p and q, where

−M + 1 ≤ τ ≤M − 1, and M is time-embedding window.

Form Hankel matrix by left-shift: l-circ(ρ
(p,q)
−M+1, · · · , ρ

(p,q)
−1 , ρ

(p,q)
0 , ρ

(p,q)
1 · · · , ρ(p,q)

M−1)

H(p,q) =


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(p,q)
0 · · · ρ

(p,q)
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
Form symmetric grand block-Hankel matrix C by d2 blocks of size (2M − 1)× (2M − 1):

C(p,q) = H(p,q), if 1 ≤ p ≤ q ≤ d,

C(p,q) = H(q,p), else.
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Data-Adaptive Harmonic Decomposition (DAHD) - II

Compute eigenvectors (DAHD modes) Wj and eigenvalues λj of C

eigenvalues are paired λj = −λj′ .

Wj = (Ej1, · · · ,E
j
d)T is orthonormal set of spatiotemporal oscillating functions:

Ejk(s) = Bjk cos(2πfs+ θjk), 1 ≤ s ≤ 2M − 1, 1 ≤ k ≤ d; θjk and Bjk are data-adaptive,

and f =
(`−1)

2(M−1)
, ` = 1, . . . ,M

each mode pair is in exact phase quadrature, a.k.a. sin and cos: θj
′

k = θjk + π/2, and are

global space-time filters at their frequency.

Using M = 1 – yields Principal Component Analysis.

Using right-shift of correlation sequence – Toeplitz matrix structure:

Multichannel Singular Spectrum Analysis (M-SSA) [Ghil et al. 2002, Rev. Geophys.]

DAHD provides for rigorous frequency (temporal scale) separation in their modes, while

M-SSA and PCA modes mix temporal scales.

DAHD coefficients (DAHCs): ξj(t) =
∑M′

s=1

∑d
k=1 Xk(t+ s− 1)Ejk(s).

Reconstruction: Rjk(t) = 1
Mt

∑Ut
s=Lt

ξj(t− s+ 1)Ejk(s), 1 ≤ s ≤M ′,

frequency-domain DAHD formulation by eigendecomposition of Hermitian cross-spectral

matrix S(f): Sp,q = ρ̂p,q(f) – Fourier transform of cross-correlation sequence ρp,q -

removes a bias and makes it efficient in high-dimensions [Kondrashov et al. 2020, Chaos].
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Identification of coherent patterns from noisy data

We consider here synthetic example of
several propagating ocean waves:

un(x, y, t) = Ancos(knx/Lx+lny/Ly+ωnt)

where An are the random weights, while
frequency ωn and wave numbers (kn, ln)
obey Rossby dispersion relation:

ωn = −
βkn

k2
n + l2n +R−2

Total dataset with N = 999 points in
time, Nx = Ny = 64 is the sum of the
waves and large-amplitude red noise.

Kondrashov, D., Ryzhov, E.A. and P.S. Berloff, 2020: Data-adaptive harmonic analysis of

oceanic waves and turbulent flows, Chaos, 30, 061105, doi:10.1063/5.0012077.
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Identification of coherent waves from noisy data
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Figure: Time series of the coherent wavy signal
and full data with imposed red noise at selected
(x,y) point.
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Figure: DAHD energy spectrum: red circles and
blue crosses – modes associated with largest
eigenvalues at reference wave frequencies
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Identification of coherent waves from noisy data

Accurate reconstruction of reference
wave patterns is obtained by using modes
associated with DAHD spectral peaks
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DAHD prediction of Regional Arctic SIE

Pairs of DAHD modes and DAHD coefficients are always in phase-quadrature: left panel
– leading spectral pair at a given frequency; right panel – top-to-bottom spectral pairs at
given frequency. x-axis – time, y-axis – regions.

Channel-wise phase and amplitude modulations of the modes are data-adaptive!

DAHD coefficients convey how given DAHD modes are expressed in the data.Dmitri Kondrashov UCLA KITP 21 / 39



Multiscale DAHD stochastic modeling

If (x(t), y(t)) are pair of DAHD coefficients – narrow-band oscillatory time series in
phase-quadrature and associated with a dominant frequency f , Stuart-Landau (SL)
models with additive noise are generic class of models to capture (i) the frequency f and
(ii) amplitude modulations:

ż = (µ+ iγ)z − (1 + iβ)|z|2z + ηt, z ∈ C,

µ, γ, β - real parameters, ηt - “noise” – are estimated from time history of z(t) = x+ iy.

System of coupled SL oscillators to model all DAHD pairs (xj , yj) at a given frequency f :

ẋj = βj(f)xj − αj(f)yj + σj(f)xj(x
2
j + y2

j ) +
N∑
i6=j

aij(f)xi +
N∑
i6=j

bij(f)yi + ηxj ,

ẏj = αj(f)xj + βj(f)yj + σj(f)yj(x
2
j + y2

j ) +
N∑
i 6=j

cij(f)xi +
N∑
i 6=j

dij(f)yi + ηyj ,

Diagnostic by Ruelle–Pollicott resonances justifies use of Stuart-Landau oscillators
[Kondrashov, Chekroun and Berloff, Fluids, 2018].

The model coefficients are estimated in parallel for each frequency, by successive
regressions with linear constraints to impose SL structure, i.e. βj(f), αj(f), σj(f).

Stochastic models are run in parallel and coupled across the frequencies by the noise.
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DAHD Forecasting of September Sea Ice Extent

2013–2016 regional retrospective
forecasts (“no look-ahead”) of
September SIE (stochastic
ensemble mean) from June
(green), July (blue) and August
(red).

Consistent June-to-August
outlooks emphasize stable
predictive content captured;
ensemble spread (std.dev) is
also fairly small: ≈ 0.1 (M km2)

USA region is predicted best and
it leads to skillful forecast over
the whole Arctic.

CAN sector is most difficult to
predict and may be due to being
inland.

Including some key
ocean-atmosphere variables (air
temperature, sea-level
pressure,...), sea ice thickness
could help with spring
predictability barrier.
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Conclusions

Data-driven stochastic-dynamic climate modeling has undergone remarkable development
in recent years with deep learning and neural nets offering new exciting opportunities.

Such models continue to be useful as statistical benchmarks, also for for empirical

probabilistic diagnostics of internal variability in GCMs [Chen et al., 2016, 2017].
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Stochastic parametrization of subgrid physics in ocean models

Ocean modeling is a challenging problem, because model solutions are usually
critically sensitive to the spatial numerical grid resolutions.

If the solution lacks the dynamics produced by unresolved sub-grid processes,
then the resolved processes are also affected due to the involved nonlinearity.

A notable example is oceanic mesoscale eddies which affect the large-scale
circulation (Berloff and McWilliams, 1999; Kravtsov et al., 2006; Berloff et
al., 2007; Kirtman et al. 2012, Shevchenko et al., 2016).

Therefore, it is important to properly account for the dynamical eddy effects
in non-eddy-resolving models.

It can be done by using information inferred either from high-resolution
eddy-resolving model simulation (this study) (or observations).
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Idealized Midlatitude Ocean Model

Classical double-gyre ocean model setting, where the governing equations describe evolution of
the quasi-geostrophic (QG) potential vorticity (PV) in 3 stacked layers (i = 1..3 from top to
bottom) with densities ρi and heights Hi, and forced by the wind stress W in the upper layer:

∂qi

∂t
+ J(ψi, qi) + β

∂ψi

∂x
=
W (x, y)

ρiHi
δ1i − γ∆ψiδ3i + ν∆2ψi ,

The PV anomaly is inverted to obtain the streamfunctions, according to:

q1 = ∆ψ1 + S1(ψ2 − ψ1) ,

q2 = ∆ψ2 + S21(ψ1 − ψ1) + S22(ψ3 − ψ2) ,

q3 = ∆ψ3 + S3(ψ2 − ψ3) ,

The model produces a classical double-gyre flow pattern in eddy-resolving high-resolution
solution (512x512), characterized by a well-developed and turbulent eastward jet extension
of the western boundary currents with its adjacent recirculation zones.

Non-eddy resolving low-resolution solution (128x128) lacks these features.
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Statistical differences between the low- and high-resolution PV solutions

Instantaneous Time-mean Std.dev

A well-developed meandering eastward jet and its ambient eddy field are present in the
high-resolution flow (lower panels) and absent in the low-resolution solution (upper panels).

high-res - pronounced interdecadal temporal variability, entirely absent in low-res.
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Eddy forcing inference from the high-resolution solution

Our main goal is to dynamically augment the low-resolution model by the missing
dynamical information of small-scale eddies, so that its solution recovers the key features of
the high-resolution solution: the eastward jet extension and the interdecadal LFV.

We assume that low-resolution model are capable of partially resolving slowly varying
large-scale dynamics but fails to resolve more transient small-scale dynamics, whereas
high-resolution models resolve everything.

We assume that the low- and high-resolution large-scale dynamics are similar and
implement a scale decomposition of the high-resolution Ψ and Q:

Ψ = Ψ + Ψ′, Q = Q+Q′,

where (Ψ, Q) are large-scale components, and (Ψ′, Q′) are small-scale (eddy) components. By
substitution, we obtain equation that couples the large-scale and eddy dynamics:

∂Q

∂t
+ J(Ψ, Q) ≈ F

(
Ψ, Q,Ψ′, Q′

)
+H(Ψ, Q),

where the operator H contains all the nonconservative terms involving only the large-scale
components, whereas

F = −
(
J(Ψ, Q′) + J(Ψ′, Q) + J(Ψ′, Q′)

)
= −

(
J(Ψ, Q)− J(Ψ, Q)

)
,

is the eddy forcing exerted by the nonlinear coupling between the eddy and large-scale flow

components, as well as by the eddy nonlinearity.

Dmitri Kondrashov UCLA KITP 28 / 39



Correlation-based decomposition (CBD)

Filter high-res solution at each
location according to the local
length scale of the spatial
correlation, as opposed to using
a fixed kernel size (LES-type),
and thus extract the large-scale
flow component; the small-scale
component is obtained as the
residual.

|C(q1(x0,x)| contours (column
1), zoomed-in 3D view around
the reference location x0

(column 2), and the fitted
Gaussian function (column 3) for
three reference locations.

Gaussian function f(x, y;x0, y0) = exp(−X2/a2) exp(−Y 2/b2) where X and Y are the rotated
and translated coordinate axes:[

X
Y

]
=

[
cos θ sin θ
− sin θ cos θ

] [
x− x0

y − y0 ,

]
N. Argawal, Ryzhov, E.A., Kondrashov, D., and P.S. Berloff, 2021, Journal of Fluid Mechanics,
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Correlation-based decomposition (CBD)

Maps of correlation length scale L =
√
ab (left column) and the correlation anisotropy

A(x) = a/b (right column) for the upper layer in the ocean model.

The length scale and anisotropy maps reveal the complex and multiscale nature of the
flow, and suggest that a fixed-size kernel can substantially underfilter or overfilter eddies
depending on the location; therefore, a differential filter size over the domain is justified!

Each spatial location of the PV fields is filtered by using normalized Gaussian kernel with
the estimated parameters a, b, and θ: q(xi, yj , t) =

∑
i′
∑
j′ G(xi′ , yj′ ;xi, yj)q(xi′ , yj′ , t);

G(xi′ , yj′ ;xi, yj) = f(xi′ , yj′ ;xi, yj)/Af and Af =
∑
i′
∑
j′ f(xi′ , yj′ ;xi, yj) ≡ πab is

the sum of the Gaussian weights.
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CBD eddy forcing

Instantaneous Time-mean Std.dev

The resulting eddy forcing F is most intense around the eastward jet, while its time mean
is small relative to the fluctuations

Spatial pattern is characterized by complex small-scale transient features of backscatter
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dynamical diagnosis of eddy forcing - product integral (PI)

The dynamical impacts of the resulting eddy forcing on the large-scale flow in terms of their
mutual time-lagged spatial correlations, formulated as product integral (PI) characteristics.

I(t, τ) =
1

A

∫∫
Ω

q1(x, y; t+ τ)�F1(x, y; t) dx dy , (1)

PI temporal statistics uncover robust causality between the eddy forcing and the induced
large-scale potential vorticity anomalies – eddy backscatter.

The results also prove the significance of the transient eddy forcing and the time lag
dependence of the eddy backscatter, that are to be considered by parametrization schemes.
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Augmentation of the low-resolution numerical model

Update eddy forcing during online integration of the low-res model:

∂Qi

∂t
+ J(Ψi, Qi) = Fi (Ψi, Qi,Ψ

′
i, Q

′
i) + Hi(Ψi, Qi), (2)

where the small-scale fields Ψ′
i, Q

′
i are either supplied from hi-res simulation

or obtained by stochastic ML emulator, while prognostic low-resolution
variables Ψi, Qi are updated during numerical integration.

Linear stochastic emulator

Nonlinear frequency-ranked stochastic DAHD emulator

Ryzhov, E.A., D. Kondrashov, N. Agarwal, J.C.McWilliams and P.S. Berloff, 2020:

On data-driven induction of the low-frequency variability in a coarse-resolution ocean model,

Ocean Modelling, 153, 101664, doi:10.1016/j.ocemod.2020.101664.
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Augmentation of the low-resolution numerical model

CBD-augmented solution recovers the

missing eastward jet extension, the

eddies around it, and the interdecadal

low-frequency variability, much better

than when using fixed-size filter (F11).
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Methods comparison for reduced-order emulation of ocean circulation

Systematic comparison of different methods: linear regression, standalone neural nets
(ANN, LSTM) and their various hybrid stochastic formulations.

Subspace of leading PCs from PCA (thus no CNN).

150 PCs of upper-layer from high-res double-gyre ocean model simulation

Short-term prediction

Long-term simulation: summary statistics, biases in climatology and temporal variability

N. Argawal, Kondrashov, D., Dueben, P., Ryzhov, E.A., and P.S. Berloff, 2021:

A comparison of data-driven approaches to build low-dimensional ocean models,

Journal of Advances in Modelling Earth Systems, doi:10.1029/2021MS002537.
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Methods comparison for reduced-order emulation of ocean circulation

Hybrid model for PC’s tendencies with linear regression (LR) core, while deep-learning is
used as nonlinear correction, state-dependent noise and memory effects in LR residuals:

uk+1 − uk = Aukδt+ r0
kδt,

rk+1 = Φ(rk,uk) + ξ,

where Φ is LSTM or ANN, and ξ ∼ N (0,QQT ) approximates deep-learning residual.

Muti-level LR model for tendencies:

uk+1 − uk = Aukδt+ r0
kδt,

rm−1
k+1 − rm−1

k = Lm
[
uk, r

0
k, ..., r

m−1
k

]
δt+ rmk δt, 1 ≤ m ≤M,
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Short-term prediction

skill: RMSE and ACC computed in gridded space.

ML-LR forecasts are the best, followed by the stochastic hybrid models.
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Long-term statistics

gridded skill of the emulated long-timescale solutions for streamfunction anomalies:
climatology bias and frequency map for spectral characteristics – 1/(decorrelation time).

overall ML-LR is the best, followed by the stochastic hybrid models.
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Conclusions -Part 2

Correlation-based flow decomposition is an attractive alternative to commonly-used
fixed-size filter for the purposes of subgrid-scale parameterizations in ocean models.

Multi-level LR stochastic models with memory effects, and hybrid models with linear

dynamical core augmented by additive stochastic terms learned via deep learning by LSTM

or ANN, are more practical, accurate, and cost-effective option for emulation of complex

multicsale oceanic flow, than standalone deep-learning solutions.
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