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Motivation

Navier-Stokes equations are central for many applications (atmospheric and ocean
dynamics, aerospace engineering, process engineering, ...)
Existing numerical methods have matured over decades but still very large costs
for highly resolved simulations

▶ ≈ 1011 degrees of freedom to resolve flow around airfoil, even more for atmospheric
dynamics

Can we combine existing numerical methods and machine learning to
retain the advantages of the former but overcome their shortcomings?
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The incompressible Navier-Stokes equations

𝜕𝑡𝑣 + (𝑣 ⋅ ∇)𝑣 − 1
ReΔ𝑣 + ∇𝑝 = 𝑓 on [0, 𝑇 ] × Ω

∇ ⋅ 𝑣 = 0 on [0, 𝑇 ] × Ω.
with initial and boundary conditions

𝑣(0, ⋅) = 𝑣0(⋅) on Ω
𝑣 = 𝑣𝐷 on [0, 𝑇 ] × Γ𝐷

1
𝑅𝑒(𝑛⃗ ⋅ ∇)𝑣 − 𝑝𝑛⃗ = 0 in [0, 𝑇 ] × Γ𝑁 ,
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Discretization of incompressible Navier-Stokes equations
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Discretization of incompressible Navier-Stokes equations

Finite element discretization via weak formulation:

(𝜕𝑡𝑣ℎ, 𝜙ℎ) + (𝑣ℎ ⋅ ∇𝑣ℎ, 𝜙ℎ) + 1
Re(∇𝑣ℎ, ∇𝜙ℎ) − (𝑝ℎ, ∇ ⋅ 𝜙ℎ) = (𝑓, 𝜙ℎ)

(∇ ⋅ 𝑣ℎ, 𝜉ℎ) + ∑
𝑇 ∈Ωℎ

𝛼𝑇 (∇(𝑝ℎ − 𝜋ℎ𝑝ℎ), ∇(𝜉ℎ − 𝜋ℎ𝜉ℎ)) = 0

for all 𝜙ℎ ∈ 𝑉ℎ, 𝜉ℎ ∈ 𝐿ℎ where 𝑉ℎ ⊂ 𝐻1(Ω) is the finite element test function space
for the velocity (subject to the boundary conditions) and 𝐿ℎ ⊂ 𝐿2(Ω) is those for the
pressure.
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Discretization of incompressible Navier-Stokes equations

Time discretization with second-order (implicit) Crank-Nicolson scheme:

1
2(2/𝑘 𝑣𝑛 + 𝑣𝑛 ⋅ ∇𝑣𝑛, 𝜙ℎ) + 1

2Re(∇𝑣𝑛, ∇𝜙ℎ) − (𝑝𝑛, ∇ ⋅ 𝜙ℎ) = 𝑅ℎ𝑠(𝑣𝑛−1, 𝑓{𝑛,𝑛−1}, 𝜙ℎ)

(∇ ⋅ 𝑣𝑛, 𝜉ℎ) + ∑
𝑇 ∈Ωℎ

𝛼𝑇 (∇(𝑝𝑛 − 𝜋ℎ𝑝𝑛), ∇(𝜉ℎ − 𝜋ℎ𝜉ℎ)) = 0

for all 𝜙ℎ ∈ 𝑉ℎ, 𝜉ℎ ∈ 𝐿ℎ. Implicit solve for unknown 𝑥𝑛 = (𝑣𝑛, 𝑝𝑛).
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Discretization of incompressible Navier-Stokes equations

Solve

𝒜ℎ(𝑥𝑛) = 𝑅ℎ𝑠(𝑣𝑛−1, 𝑓{𝑛,𝑛−1}, 𝜙ℎ)

for 𝑥𝑛 = (𝑣𝑛, 𝑝𝑛) using Newton iteration

𝒜′
ℎ(𝑥(𝑙−1))𝑤(𝑙) = 𝑅ℎ𝑠(𝑣𝑛−1, 𝑓{𝑛,𝑛−1}, 𝜙ℎ) − 𝒜ℎ(𝑥(𝑙−1)), 𝑥(𝑙) = 𝑥(𝑙−1) + 𝑤(𝑙)

for all 𝜙ℎ ∈ 𝑉ℎ, 𝜉ℎ ∈ 𝐿ℎ where 𝒜′
ℎ is the Jacobian of 𝒜ℎ. At each Newton step a

linear system needs to be solved. GMRES with multi-grid pre-conditioner to efficiently
obtain robust solution.
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Discretization of incompressible Navier-Stokes equations

Multi-grid pre-conditioner:

ProlongationRestriction

Solve linear system on a fine mesh level by restricting (projecting) it to coarser and
coarser levels, solving directly on the coarsest one, and then prolongating
(interpolating) solution back across the levels.
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Discretization of incompressible Navier-Stokes equations

For each time step:

− Newton solve for 𝑥𝑛 = (𝑣𝑛, 𝑝𝑛); for each Newton step:
− Solve linear system with GMRES; for each GMRES step:

− Use one sweep of geometric multi-grid as pre-conditioner

− Correct 𝑣𝑛 using neural network and use in next 𝑅𝐻𝑆(𝑣𝑛, 𝑓{𝑛,𝑛−1})
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Idea of deep neural network multigrid solver

− Perform classical computations up to level 𝐿
− Neural network computes correction using mesh on level 𝐿 + 1
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Idea of deep neural network multigrid solver

neural network

− Perform classical computations up to level 𝐿 resulting in ( ̃𝑣𝑛, ̃𝑝𝑛)
− Neural network computes correction ̂𝑣𝑛 using mesh level 𝐿 + 1 s.t. 𝑣𝑛 = ̃𝑣𝑛 + ̂𝑣𝑛
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Prediction with the neural net

domain Ω1. Prolongate

5. Restrict

Artificial
Neural
Network

2. Calculate nonlinear residual
and other input

Patch from mesh on level L

3. Get input
for ANN
from patch

4. Add error
back to
solution

Prediction is local, independent for patches on level 𝐿
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Network input and output

Input

Nonlinear residual of the velocity on the patch
Peclet number
Prolongated velocity field 𝑃( ̃𝑣𝐿)
Mesh information (element size, aspect ratio, ...)

Output

Velocity correction ̂𝑣𝐿+1 for the patch (overlaps are averaged)
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Network architecture

GRU, in: Nin, out: NGRU

Input

(rn, vn, P eL, hc
)

Fully connected NGRU ⇥Nout

Convolutional block Convolutional block

Convolution reducing

number of filters

Output dn 2 RNout

Figure 4: The neural network architecture that was used.

5.3 A general formulation of DNN-MG

After the detailed description of DNN-MG for the solution of the Navier-Stokes equations
we will in the following show how it can be applied to a general PDE in variational
form u 2 V : A(u)(�) = F (�), 8� 2 V , where A(·)(·) is a semi-linear form (linear
in the second argument) and V is a Banach space of test functions for the problem.
Given a suitable Galerkin formulation in the discrete subspace Vh ⇢ V the abstract
Newton iteration for the solution of the problem Ah(xh) = fh can be formulated exactly
as for the Navier-Stokes equations, compare Eq. 7 and Eq. 8. The Newton-Krylov
approach based on the preconditioned GMRES iteration and a geometric multigrid solver
as preconditioner is highly robust and it can be applied to a variety of PDE models (as
is done in Gascoigne [5]). The DNN-MG solver in Algorithm 2 can hence in principle be
applied to various PDEs.
More generally, DNN-MG does not strictly require a geometric multigrid solver but

only an algorithm that can solve on coarse levels and an interpolation onto one or
multiple finer levels. However, the geometric multigrid framework gives us immediately
access to a nested hierarchy of problems.

5.4 Algorithmic Complexity of DNN-MG

The Newton-Krylov geometric multigrid method can already achieve optimal complexity,
which raises the question what advantage DNN-MG has to o↵er. Before addressing the
question from a practical point of view in the next section, we sketch in the following an
answer from a theoretical point of view.
The Newton-Krylov geometric multigrid framework achieves linear complexity O(N)

in the number N of degrees of freedom, which roughly quadruples with each global mesh
refinement, i.e. NL+1

⇡ 4NL. The constant hidden in O(N), however, can be very

15

In total 8634 trainable parameters (Up to ≈ 80, 000 improves results and consistency)
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Integration with the time stepping

𝑡𝑛 𝑡𝑛+1time step

multigrid solution
neural network

̂𝑣𝐿+1
𝑛̃𝑣𝐿+1

𝑛

𝒫(𝑣𝐿
𝑛) ℛ(𝑏𝐿+1

𝑛+1)

temporal consistency through GRU-cell memoryℎ𝑡−1

𝑏𝐿+1
𝑛+1 = Rhs( ̃𝑣𝐿+1

𝑛 + ̂𝑣𝐿+1
𝑛 )
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𝑡𝑛 𝑡𝑛+1time step

multigrid solution
neural network

̂𝑣𝐿+1
𝑛̃𝑣𝐿+1

𝑛

𝒫(𝑣𝐿
𝑛) ℛ(𝑏𝐿+1

𝑛+1)

temporal consistency through GRU-cell memoryℎ𝑡−1

𝑏𝐿+1
𝑛+1 = Rhs( ̃𝑣𝐿+1

𝑛 + ̂𝑣𝐿+1
𝑛 )

𝒫(𝑣𝐿
𝑛)

𝑡𝑛: Prolongate numerical solution, predict error
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𝑡𝑛 𝑡𝑛+1time step

multigrid solution
neural network

̂𝑣𝐿+1
𝑛̃𝑣𝐿+1

𝑛

𝒫(𝑣𝐿
𝑛) ℛ(𝑏𝐿+1

𝑛+1)

temporal consistency through GRU-cell memoryℎ𝑡−1

𝑏𝐿+1
𝑛+1 = Rhs( ̃𝑣𝐿+1

𝑛 + ̂𝑣𝐿+1
𝑛 )

ℛ(𝑏𝐿+1
𝑛+1)

𝑡𝑛+1: Assemble an improved RHS on fine level and restrict back to coarse level
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DNN-MG algorithmAlgorithm 2 DNN-MG for the solution of the Navier-Stokes equations. Lines 6-9 (blue)
provide the modifcations of the DNN-MG method compared to a classical Newton-
Krylow simulation with geometric multigrid preconditioning.

1: for all time steps n do

2: while not converged do . Newton-GMRES method for Eq. 6

3: �zi  multigrid(L, An
L, b

n
L, �zi) . Algo. 1 as preconditioner

4: zi+1  zi + ✏ �zi

5: end while

6: ṽL+1
n  P(vL

n) . Prolongation on level L+ 1

7: dL+1
n  N (ṽL+1

n , ⌦L, ⌦L+1) . Prediction of velocity correction

8: bL+1
n+1
 Rhs(ṽL+1

n + dL+1
n , fn, fn+1) . Set up rhs of Eq. 6 for next time step

9: bLn+1
 R(bL+1

n+1
) . Restriction of rhs to level L

10: end for

layer k in the network, a GRU is given by

zkn = �z
�
W (z)

k hk�1

n + U (z)
k hkn�1 + b(z)k

�
(10a)

rkn = �r
�
W (r)

k hk�1

n + U (r)
k hkn�1 + b(r)k

�
(10b)

hkn = ztk � hkn�1 + (1� zkn)� �h
�
W (h)

k hk�1

n + U (h)
k (rkn � hkn�1) + b(h)k

�
(10c)

where � denotes the element-wise product and the W (·)
k and b(·)k are weight matrices and

bias vectors determined by training. The so called update gate vector zkn 2 Rq in Eq. 10
controls to what extend hkn�1

is carried over to the output hkn at the current time n and
the reset gate vector rkn 2 Rq controls the contribution of hkn�1

to the nonlinearity of
the cell. Together, zkn 2 Rq and rkn 2 Rq thus control the memory of a GRU cell, i.e. to
what extent the past hidden output hkn�1

contributes to the current one hkn.

5 A deep neural network multigrid solver

In this section, we develop the deep neural network multigrid solver (DNN-MG). It uses
a recurrent neural network to predict the correction of a coarse mesh solution that has
been prolongated (or interpolated) onto one or multiple mesh levels. Through this, we
can obtain solutions that are more accurate than those obtained with the coarse mesh
only while being computationally more e�cient than performing the full (multigrid)
computations on the fine mesh level(s).
We will develop the DNN-MG solver in the context of the Navier-Stokes equations and

return to the general formulation at the end of the section. To simplify the exposition,
we will also assume that the neural network operates on only one finer level L + 1.
However, bridging more levels is possible as we demonstrate in Sec. 6.6.

10
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Neural network of DNN-MG

Training phase
Application

Low-fidelity
solution ̄𝑉

High-fidelity
solution 𝑉𝑓

Training data
generation
On each patch:
Input: Residual
𝐴𝑓𝑥𝑓 − 𝑏𝑓
Peclet numbers
velocity
cell sizes
Targets: Error
𝑉 ′ = 𝑉𝑓 − 𝑉̄

Neural
Network
Model

Low-fidelity
solution ̄𝑉

High-fidelity
solution 𝑉𝑓

̄𝑉

𝑉𝑓

Training

Enhance model
and solution

Inference
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Training and test setup
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Results: velocity fields

c.)

(a) multigrid solution on 𝐿 + 1 levels, (b) DNN-MG, (c) multigrid solution on 𝐿 levels
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Drag and lift functionals
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Generalization
a.)

b.)

c.)
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Generalization

top: multigrid solution on 𝐿 + 1 levels, bottom: DNN-MG

34/40



Generalization

top: multigrid solution on 𝐿 + 1 levels, bottom: DNN-MG

35/40



Computation time
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Figure 11: Comparison of the wall-clock times of the di↵erent mehods

We also increase its internal size to 58 560 trainable parameters by setting NGRU = 96
to account for the larger number of degrees of freedom.

Figure 9 and Table 2 show the obtained values for the drag and lift functionals. When
comparing to the drag and lift for the L+1 case in Fig. 8, it must be noted that di↵erent
data is used for training in the two cases. A comparison should thus consider whether the
DNN-MG method is able to learn the respective data (i.e. L+1 and L+2, respectively)
and not whether the total error can be reduced. Figure 9 and Table 2 show that with
the larger mesh and newtork in the L+ 2 case one obtains predictions for the drag and
in particular the lift that are of very high quality and significantly improved compared
to the predictions for L+1. For L+2, minimum and maximum of the lift have an error
of less than 1% whereas the lift error was about 15% in the L + 1 case. Further, the
enhanced frequency and amplitude of the lift functional is especially notable.

The computation time of DNN-MG with a two level prediction is very similar to
the one level case. The additional prolongation and restriction computations do not
add noticeable workload. Copying the larger input and output data and evaluating the
larger network also adds less than 1% to the runtime compared to DNN-MG (L + 1).
However, we need about 50% more time to generate the training data for the two level
predictions and the training times increases by ⇡ 5%.

6.7 Generalizability

For the practicality of the DNN-MG method it is important that a neural network
trained on one flow performs well also on similar ones, i.e. that it generalizes to flows
beyond those seen during training. The results in Sec. 6.4 already demonstrated that the
network is able to do so under small perturbations of the geometry of the obstacle. In
the following, we consider three more substantial changes to the flow: a channel without
an obstacle, a channel with two obstacles, and a flow in an L-shaped domain, Unless
stated otherwise, we reuse the network trained as discussed in Sec. 6.3 for the channel
with a single obstacle. In this section we again use level L as coarse resolution and L+1
as fine one on which the neural network component of DNN-MG operates.
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Simulation time
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Results

DNN-MG can improve coarse solution
DNN-MG saves time compared to fine mesh solution by using prior knowledge
Local approach enables application of one network to different domains

▶ Efficient evaluation, simple training data generation, effective generalization

DNN-MG generalizes well to other situations
Applicable to general domains and boundary conditions
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Outlook

Stability and approximation rate
Extend DNN-MG to integrate better with the MG and FEM framework

▶ Use Residual in the loss function to try unsupervised approaches
Implement DNN-MG with a semi-supervised approach

▶ Generate new data and retrain if necessary

Test on 3d cases, more problems and other equations
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Thank you!
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