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Motivation

m Navier-Stokes equations are central for many applications (atmospheric and ocean
dynamics, aerospace engineering, process engineering, ...)

m Existing numerical methods have matured over decades but still very large costs
for highly resolved simulations

P ~ 10'! degrees of freedom to resolve flow around airfoil, even more for atmospheric

dynamics

m Can we combine existing numerical methods and machine learning to

retain the advantages of the former but overcome their shortcomings?
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The incompressible Navier-Stokes equations

1

v+ (v-V)v— Re

Av+Vp=f on[0,T]xQ

V-v=0 on]|0, T] x Q.
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The incompressible Navier-Stokes equations

1

v+ (v-V)v— Re

Av+Vp=f on[0,T]xQ
V-v=0 on]|0, T] x Q.

with initial and boundary conditions

v(0, -) = vy(-) on Q
v=2ovP  on]0, T] x TP
1

E(?L.V)v—pﬁzo in [0, T] x 'V,
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Discretization of incompressible Navier-Stokes equations
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Discretization of incompressible Navier-Stokes equations

Finite element discretization via weak formulation:
1

(Opvor, O) + (v, - Vg, &) + Re

(Voy, Vo) — (pp, V- o) = (f, 1)

(V-up, &)+ Z ar(V(pp — mhpn)s V(& — mh&p)) =0

Te,,

for all ¢, € V},, &, € L;, where V,, C H(€) is the finite element test function space
for the velocity (subject to the boundary conditions) and L, C L,(f2) is those for the

pressure.
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Discretization of incompressible Navier-Stokes equations

Time discretization with second-order (implicit) Crank-Nicolson scheme:

1
%(2/1{3@” + Up - vvn? ¢h> + Tm(vvna v(bh) - (pnv V- ¢h) = Rh3<vn—17 f{n,n—l}? ¢h>
Vv, &) + Z ap(V(p, —m,p,), V(E, —m,€,)) =0
TeQ,

for all (!bh € Vh’ gh c Lh'

8/40



Discretization of incompressible Navier-Stokes equations

Time discretization with second order Crank-Nicolson scheme:

1
ﬁ(vvn? v¢h) - (pn7 V- ¢h) = Rhs(”nflv f{n,n71}7 gbh)

(Vv &)+ D ap(V(p, — mp,), V(E, — ) =0

TeQ,

1
Q(Q/kvn + U, vvna th) +

for all ¢, € V3, &, € L. Implicit solve for unknown z,, = (v,,,p,,)-
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Discretization of incompressible Navier-Stokes equations

Solve

Ah (1'”) = Rhs(vnfb f{n,nfl}d ¢h)
for x,, = (v,,,p,,) using Newton iteration
A (@ )w = Rhs(v, 1, finn-1y, @) — An(aY), 2 =270 40

for all ¢, € V},, &, € L;, where A is the Jacobian of A,.
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A (@ )w = Rhs(v, 1, finn-1y, @) — An(aY), 2 =270 40

for all ¢, € V},, &, € L;, where A is the Jacobian of A, . At each Newton step a

linear system needs to be solved.
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Discretization of incompressible Navier-Stokes equations

Solve
Ap(x,) = Rhs(v,_4, f{n,nfl]d o)
for x,, = (v,,,p,,) using Newton iteration
A3 (@ D)0 = Rhs(v, 1, Funoty, 60) — Ap(@0Y), 20 =200 4 00

for all ¢, € V},, &, € L;, where A is the Jacobian of A, . At each Newton step a
linear system needs to be solved. GMRES with multi-grid pre-conditioner to efficiently

obtain robust solution.
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Discretization of incompressible Navier-Stokes equations

Multi-grid pre-conditioner:

yavd ya v
Wl

Restriction Prolongation

yad a
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Discretization of incompressible Navier-Stokes equations

Multi-grid pre-conditioner:

yavd ya v
Wl

Restriction Prolongation

yad a

Solve linear system on a fine mesh level by restricting (projecting) it to coarser and

coarser levels, solving directly on the coarsest one, and then prolongating

(interpolating) solution back across the levels.
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Discretization of incompressible Navier-Stokes equations

For each time step:
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Discretization of incompressible Navier-Stokes equations
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Discretization of incompressible Navier-Stokes equations

For each time step:

— Newton solve for z,, = (v,,,p,,); for each Newton step:
— Solve linear system with GMRES; for each GMRES step:

— Use one sweep of geometric multi-grid as pre-conditioner

— Correct v,, using neural network and use in next RHS(v,,, f{nﬂ,l})
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Idea of deep neural network multigrid solver

7Lr1, fn+1

— Perform classical computations up to level L
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Idea of deep neural network multigrid solver

yd
T
257 neural network

tr; fn+l

— Perform classical computations up to level L resulting in (7,,,D,,)

— Neural network computes correction 9,, using mesh level L + 1 s.t. v,, =0,, + 7,
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Prediction with the neural net

Artificial
Network
domain €2

Patch from mesh on level L

m Prediction is local, independent for patches on level L
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Prediction with the neural net
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Prediction with the neural net

3. Get input
for ANN
from patch \
2. Calculate nonlinear residual Artificial
and other input ::‘;:rk
5. Restrict /
- domain 2
\—/ 4. Add error
back to
solution

Patch from mesh on level L

m Prediction is local, independent for patches on level L
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Network input and output

Input

m Nonlinear residual of the velocity on the patch

Output
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Network input and output

Input
m Nonlinear residual of the velocity on the patch

Peclet number

m Prolongated velocity field P(7;)
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Network input and output

Input
m Nonlinear residual of the velocity on the patch

Peclet number

m Prolongated velocity field P(7;)
m Mesh information (element size, aspect ratio, ...)
Output

m Velocity correction 0, ; for the patch (overlaps are averaged)
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Network architecture

Input
(rn, vn, Per, h°)

GRU, in: Njy, out: Ngru

|

Fully connected Ngru X Nout

N

Convolutional block Convolutional block

Convolution reducing
number of filters

Output dy, € RNout

In total 8634 trainable parameters (Up to a 80,000 improves results and consistency)
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Integration with the time stepping

h, . temporal consistency through GRU-cell memory

UvLLH /ULH pL+l = RhS( L+1 +UL+1)

n+1

neural network

multigrid solution

/\/

time step
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Integration with the time stepping

h, temporal consistency through GRU-cell memory

’U

HL+L pEtt — RhS( L+1 +UL+1)

n+1

neural network

multigrid solution

t, time step

t,,: Prolongate numerical solution, predict error
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Integration with the time stepping
h

- temporal consistency through GRU-cell memory

L+1 o DL+l pLe1 ~L+1 SL+1
Un @' Un bn+1 - RhS(’Un + v, )

neural network

multigrid solution

/\/

time step thi1

t,.1: Assemble an improved RHS on fine level and restrict back to coarse level
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DNN-MG algorithm

1: for all time steps n do

2 while not converged do

3 0z; < MULTIGRID(L, A7, b}, §z;)
4 Zitl & 2 + €07

5: end while

6 DT — P(vk)

7 A« N(0E Qp, Qrar)

8: bifl — Rhs(v, " +d5t, fu, fot1)

9: bh < R(by13)

n+1
10: end for
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> Newton-GMRES method for Eq. 6

> Algo. 1 as preconditioner

> Prolongation on level L + 1

> Prediction of velocity correction

> Set up rhs of Eq. 6 for next time step
> Restriction of rhs to level L



Neural network of DNN-MG

Training data

o V. generation
High-fidelity f On each patch: Inference Low-fidelity
solution V¢ \ 2N solution V'

Input: Residual L
Training  Neural
— > Network
Model

Ay =05
Peclet numbers
velocity
cell sizes

V Targets: Error High-fidelity

Low-fidelity
v/ = V=V solution V¢

solution V'

Enhance model
and solution
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Neural network of DNN-MG

Training data
Vf generation

High-fidelle On each patch:
lution V' 8
SR Input: Residual .
Training  Neural
— > Network

Model

Ay =B
Peclet numbers
velocity
_ cell sizes
Low-fidelity 1% Targets: Errot
solution V' - V= Vi-V

Training phase
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Neural network of DNN-MG

27/40

Inference Low-fidelity
solution V'
Neural
Network
Model
High-fidelity
solution V¢

Enhance model
and solution

Application



Training and test setup
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Results: velocity fields

—_— | |
000400 1 15 2 25 3 37e+00

(a) multigrid solution on L + 1 levels, (b) DNN-MG, (c) multigrid solution on L levels
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Results: velocity fields

a.)
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Drag and lift functionals

x10~1 x10~%
4 -
3 -
2 -
1 -
—— DNN-MG
04 —— MG
—— MG (L+1)
71 -
—2 4
3.1 =37
—4
3.0 1
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
time ¢ time t

32/40




Generalization

(a) multigrid solution on L + 1 levels, (b) DNN-MG, (c) multigrid solution on L levels
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Generalization

top: multigrid solution on L + 1 levels, bottom: DNN-MG
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Generalization

|
I

1 5 20e+00
Velocity Magnitude

top: multigrid solution on L + 1 levels, bottom: DNN-MG
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Computation time

MG (fine) 498

MG
I ANN
W In-/output of ANN
DNN-MG 273.9 B Multigrid solver

HEE Other calculations

T T T T T
0 100 200 300 400 500
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Simulation time

600 | 50| |
"o _ —-—32xXn
o 400 1 - “ 64X n
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Q

m Simulation time (left) and time spent on network evaluation
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Results

m DNN-MG can improve coarse solution
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Results

m DNN-MG can improve coarse solution

DNN-MG saves time compared to fine mesh solution by using prior knowledge

Local approach enables application of one network to different domains

P> Efficient evaluation, simple training data generation, effective generalization

DNN-MG generalizes well to other situations

Applicable to general domains and boundary conditions
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Outlook

m Stability and approximation rate
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Outlook

Stability and approximation rate

m Extend DNN-MG to integrate better with the MG and FEM framework
P Use Residual in the loss function to try unsupervised approaches
m Implement DNN-MG with a semi-supervised approach

P> Generate new data and retrain if necessary

Test on 3d cases, more problems and other equations
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Thank youl!
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