DNN-MG: Neural network multigrid

solver for the Navier-Stokes equations

Christian Lessig?

(with Nils Margenberg? Robert Jendersie?> Dirk Hartmann® Thomas Richter?)

IHelmut-Schmidt-University Hamburg, 20Otto-von-Guericke-University Magdeburg, 3Siemens AG

December 13, 2021

Motivation

m Navier-Stokes equations are central for many applications (atmospheric and ocean

dynamics, aerospace engineering, process engineering, ...)

1/40

Motivation

m Navier-Stokes equations are central for many applications (atmospheric and ocean
dynamics, aerospace engineering, process engineering, ...)

m Existing numerical methods have matured over decades but still very large costs
for highly resolved simulations

1/40

Motivation

m Navier-Stokes equations are central for many applications (atmospheric and ocean
dynamics, aerospace engineering, process engineering, ...)

m Existing numerical methods have matured over decades but still very large costs
for highly resolved simulations

P ~ 10'! degrees of freedom to resolve flow around airfoil, even more for atmospheric

dynamics

1/40

Motivation

m Navier-Stokes equations are central for many applications (atmospheric and ocean
dynamics, aerospace engineering, process engineering, ...)

m Existing numerical methods have matured over decades but still very large costs
for highly resolved simulations

P ~ 10'! degrees of freedom to resolve flow around airfoil, even more for atmospheric

dynamics

m Can we combine existing numerical methods and machine learning to

retain the advantages of the former but overcome their shortcomings?

1/40

The incompressible Navier-Stokes equations

1

v+ (v-V)v— Re

Av+Vp=f on[0,T]xQ

V-v=0 on]|0, T] x Q.

2/40

The incompressible Navier-Stokes equations

1

v+ (v-V)v— Re

Av+Vp=f on[0,T]xQ
V-v=0 on]|0, T] x Q.

with initial and boundary conditions

v(0, -) = vy(-) on Q
v=2ovP on]0, T] x TP
1

E(?L.V)v—pﬁzo in [0, T] x 'V,

3/40

Discretization of incompressible Navier-Stokes equations

4/40

Discretization of incompressible Navier-Stokes equations

5/40

Discretization of incompressible Navier-Stokes equations

6/40

Discretization of incompressible Navier-Stokes equations

Finite element discretization via weak formulation:
1

(Opvor, O) + (v, - Vg, &) + Re

(Voy, Vo) — (pp, V- o) = (f, 1)

(V-up, &)+ Z ar(V(pp — mhpn)s V(& — mh&p)) =0

Te,,

for all ¢, € V},, &, € L;, where V,, C H(€) is the finite element test function space
for the velocity (subject to the boundary conditions) and L, C L,(f2) is those for the

pressure.

7/40

Discretization of incompressible Navier-Stokes equations

Time discretization with second-order (implicit) Crank-Nicolson scheme:

1
%(2/1{3@” + Up - vvn? ¢h> + Tm(vvna v(bh) - (pnv V- ¢h) = Rh3<vn—17 f{n,n—l}? ¢h>
Vv, &) + Z ap(V(p, —m,p,), V(E, —m,€,)) =0
TeQ,

for all (!bh € Vh’ gh c Lh'

8/40

Discretization of incompressible Navier-Stokes equations

Time discretization with second order Crank-Nicolson scheme:

1
ﬁ(vvn? v¢h) - (pn7 V- ¢h) = Rhs(”nflv f{n,n71}7 gbh)

(Vv &)+ D ap(V(p, — mp,), V(E, —) =0

TeQ,

1
Q(Q/kvn + U, vvna th) +

for all ¢, € V3, &, € L. Implicit solve for unknown z,, = (v,,,p,,)-

9/40

Discretization of incompressible Navier-Stokes equations

Solve

Ah (1'”) = Rhs(vnfb f{n,nfl}d ¢h)
for x,, = (v,,,p,,) using Newton iteration
A (@)w = Rhs(v, 1, finn-1y, @) — An(aY), 2 =270 40

for all ¢, € V},, &, € L;, where A is the Jacobian of A,.

10/40

Discretization of incompressible Navier-Stokes equations

Solve

Ah (1'”) = Rhs(vnfb f{n,nfl}d ¢h)
for x,, = (v,,,p,,) using Newton iteration
A (@)w = Rhs(v, 1, finn-1y, @) — An(aY), 2 =270 40

for all ¢, € V},, &, € L;, where A is the Jacobian of A, . At each Newton step a

linear system needs to be solved.

11/40

Discretization of incompressible Navier-Stokes equations

Solve
Ap(x,) = Rhs(v,_4, f{n,nfl]d o)
for x,, = (v,,,p,,) using Newton iteration
A3 (@ D)0 = Rhs(v, 1, Funoty, 60) — Ap(@0Y), 20 =200 4 00

for all ¢, € V},, &, € L;, where A is the Jacobian of A, . At each Newton step a
linear system needs to be solved. GMRES with multi-grid pre-conditioner to efficiently

obtain robust solution.

12/40

Discretization of incompressible Navier-Stokes equations

Multi-grid pre-conditioner:

yavd ya v
Wl

Restriction Prolongation

yad a

13/40

Discretization of incompressible Navier-Stokes equations

Multi-grid pre-conditioner:

yavd ya v
Wl

Restriction Prolongation

yad a

Solve linear system on a fine mesh level by restricting (projecting) it to coarser and

coarser levels, solving directly on the coarsest one, and then prolongating

(interpolating) solution back across the levels.

14/40

Discretization of incompressible Navier-Stokes equations

For each time step:

15/40

Discretization of incompressible Navier-Stokes equations

For each time step:

— Newton solve for z,, = (v,,,p,,); for each Newton step:

16/40

Discretization of incompressible Navier-Stokes equations

For each time step:

— Newton solve for z,, = (v,,,p,,); for each Newton step:
— Solve linear system with GMRES; for each GMRES step:

17/40

Discretization of incompressible Navier-Stokes equations

For each time step:

— Newton solve for z,, = (v,,,p,,); for each Newton step:
— Solve linear system with GMRES; for each GMRES step:

— Use one sweep of geometric multi-grid as pre-conditioner

18/40

Discretization of incompressible Navier-Stokes equations

For each time step:

— Newton solve for z,, = (v,,,p,,); for each Newton step:
— Solve linear system with GMRES; for each GMRES step:

— Use one sweep of geometric multi-grid as pre-conditioner

— Correct v,, using neural network and use in next RHS(v,,, f{nﬂ,l})

19/40

Idea of deep neural network multigrid solver

7Lr1, fn+1

— Perform classical computations up to level L

20/40

Idea of deep neural network multigrid solver

yd
T
257 neural network

tr; fn+l

— Perform classical computations up to level L resulting in (7,,,D,,)

— Neural network computes correction 9,, using mesh level L + 1 s.t. v,, =0,, + 7,

21/40

Prediction with the neural net

Artificial
Network
domain €2

Patch from mesh on level L

m Prediction is local, independent for patches on level L

22/40

Prediction with the neural net

2. Calculate nonlinear residual Artificial
Neural

and other input —

domain 2

Patch from mesh on level L

m Prediction is local, independent for patches on level L

22/40

Prediction with the neural net

3. Get input
for ANN
from patch

2. Calculate nonlinear residual Artificial

. Neural
and other input —
domain 2 /
4. Add error
back to
solution

Patch from mesh on level L

m Prediction is local, independent for patches on level L

22/40

Prediction with the neural net

3. Get input
for ANN
from patch \
2. Calculate nonlinear residual Artificial
and other input ::‘;:rk
5. Restrict /
- domain 2
\—/ 4. Add error
back to
solution

Patch from mesh on level L

m Prediction is local, independent for patches on level L

22/40

Network input and output

Input

m Nonlinear residual of the velocity on the patch

Output

23/40

Network input and output

Input
m Nonlinear residual of the velocity on the patch

m Peclet number

Output

23/40

Network input and output

Input
m Nonlinear residual of the velocity on the patch
m Peclet number

m Prolongated velocity field P(v;)

Output

23/40

Network input and output

Input
m Nonlinear residual of the velocity on the patch

Peclet number

m Prolongated velocity field P(7;)
m Mesh information (element size, aspect ratio, ...)

Output

23/40

Network input and output

Input
m Nonlinear residual of the velocity on the patch

Peclet number

m Prolongated velocity field P(7;)
m Mesh information (element size, aspect ratio, ...)
Output

m Velocity correction 0, ; for the patch (overlaps are averaged)

23/40

Network architecture

Input
(rn, vn, Per, h°)

GRU, in: Njy, out: Ngru

|

Fully connected Ngru X Nout

N

Convolutional block Convolutional block

Convolution reducing
number of filters

Output dy, € RNout

In total 8634 trainable parameters (Up to a 80,000 improves results and consistency)

24/40

Integration with the time stepping

h, . temporal consistency through GRU-cell memory

UvLLH /ULH pL+l = RhS(L+1 +UL+1)

n+1

neural network

multigrid solution

/\/

time step

25/40

Integration with the time stepping

h, temporal consistency through GRU-cell memory

’U

HL+L pEtt — RhS(L+1 +UL+1)

n+1

neural network

multigrid solution

t, time step

t,,: Prolongate numerical solution, predict error

25/40

Integration with the time stepping
h

- temporal consistency through GRU-cell memory

L+1 o DL+l pLe1 ~L+1 SL+1
Un @' Un bn+1 - RhS(’Un + v,)

neural network

multigrid solution

/\/

time step thi1

t,.1: Assemble an improved RHS on fine level and restrict back to coarse level

25/40

DNN-MG algorithm

1: for all time steps n do

2 while not converged do

3 0z; < MULTIGRID(L, A7, b}, §z;)
4 Zitl & 2 + €07

5: end while

6 DT — P(vk)

7 A« N(0E Qp, Qrar)

8: bifl — Rhs(v, " +d5t, fu, fot1)

9: bh < R(by13)

n+1
10: end for

26/40

> Newton-GMRES method for Eq. 6

> Algo. 1 as preconditioner

> Prolongation on level L + 1

> Prediction of velocity correction

> Set up rhs of Eq. 6 for next time step
> Restriction of rhs to level L

Neural network of DNN-MG

Training data

o V. generation
High-fidelity f On each patch: Inference Low-fidelity
solution V¢ \ 2N solution V'

Input: Residual L
Training Neural
— > Network
Model

Ay =05
Peclet numbers
velocity
cell sizes

V Targets: Error High-fidelity

Low-fidelity
v/ = V=V solution V¢

solution V'

Enhance model
and solution

27/40

Neural network of DNN-MG

Training data
Vf generation

High-fidelle On each patch:
lution V' 8
SR Input: Residual .
Training Neural
— > Network

Model

Ay =B
Peclet numbers
velocity
_ cell sizes
Low-fidelity 1% Targets: Errot
solution V' - V= Vi-V

Training phase

27/40

Neural network of DNN-MG

27/40

Inference Low-fidelity
solution V'
Neural
Network
Model
High-fidelity
solution V¢

Enhance model
and solution

Application

Training and test setup

0.41

0.41

(0.2, 0.2) Tyan
1—‘in @} 0.1 Reggin - 133§ out
~ r
smaller 0.1 wall
2.2
(0.2, 0.2) Tyall
i ®> 0.12 Ret2edSt =160 out
0\.58 1_‘wall
2.2

28/40

Results: velocity fields

—_— | |
000400 1 15 2 25 3 37e+00

(a) multigrid solution on L + 1 levels, (b) DNN-MG, (c) multigrid solution on L levels

29/40

Results: velocity fields

a.)

—_— | |
000400 1 15 2 25 3 37e+00

(a) multigrid solution on L + 1 levels, (b) DNN-MG, (c) multigrid solution on L levels
30/40

Results: velocity fields

a.)

—_— | |
000400 1 15 2 25 3 37e+00

(a) multigrid solution on L + 1 levels, (b) DNN-MG, (c) multigrid solution on L levels

31/40

Drag and lift functionals

x10~1 x10~%
4 -
3 -
2 -
1 -
—— DNN-MG
04 —— MG
—— MG (L+1)
71 -
—2 4
3.1 =37
—4
3.0 1
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
time ¢ time t

32/40

Generalization

(a) multigrid solution on L + 1 levels, (b) DNN-MG, (c) multigrid solution on L levels

33/40

Generalization

top: multigrid solution on L + 1 levels, bottom: DNN-MG

34/40

Generalization

|
I

1 5 20e+00
Velocity Magnitude

top: multigrid solution on L + 1 levels, bottom: DNN-MG

35/40

Computation time

MG (fine) 498

MG
I ANN
W In-/output of ANN
DNN-MG 273.9 B Multigrid solver

HEE Other calculations

T T T T T
0 100 200 300 400 500

36/40

Simulation time

600 | 50| |
"o _ —-—32xXn
o 400 1 - “ 64X n
S)
= E 10| :

N H H H H

0 ‘\\ \\\ «»‘ Ny\ Cb‘ ob‘ QD‘ Qa‘ é i é
DT T 4T 4 o+ \
(9\\) A AR #parameters (x10%)
Q

m Simulation time (left) and time spent on network evaluation

37/40

Results

m DNN-MG can improve coarse solution

38/40

Results

m DNN-MG can improve coarse solution

m DNN-MG saves time compared to fine mesh solution by using prior knowledge

38/40

Results

m DNN-MG can improve coarse solution

m DNN-MG saves time compared to fine mesh solution by using prior knowledge

m Local approach enables application of one network to different domains

38/40

Results

m DNN-MG can improve coarse solution

m DNN-MG saves time compared to fine mesh solution by using prior knowledge
m Local approach enables application of one network to different domains

P> Efficient evaluation, simple training data generation, effective generalization

38/40

Results

m DNN-MG can improve coarse solution

DNN-MG saves time compared to fine mesh solution by using prior knowledge

Local approach enables application of one network to different domains

P> Efficient evaluation, simple training data generation, effective generalization

DNN-MG generalizes well to other situations

38/40

Results

m DNN-MG can improve coarse solution

DNN-MG saves time compared to fine mesh solution by using prior knowledge

Local approach enables application of one network to different domains

P> Efficient evaluation, simple training data generation, effective generalization

DNN-MG generalizes well to other situations

Applicable to general domains and boundary conditions

38/40

Outlook

m Stability and approximation rate

39/40

Outlook

m Stability and approximation rate

m Extend DNN-MG to integrate better with the MG and FEM framework

39/40

Outlook

m Stability and approximation rate
m Extend DNN-MG to integrate better with the MG and FEM framework

P Use Residual in the loss function to try unsupervised approaches

39/40

Outlook

m Stability and approximation rate
m Extend DNN-MG to integrate better with the MG and FEM framework
P Use Residual in the loss function to try unsupervised approaches

m Implement DNN-MG with a semi-supervised approach

39/40

Outlook

m Stability and approximation rate

m Extend DNN-MG to integrate better with the MG and FEM framework
P Use Residual in the loss function to try unsupervised approaches

m Implement DNN-MG with a semi-supervised approach

P> Generate new data and retrain if necessary

39/40

Outlook

Stability and approximation rate

m Extend DNN-MG to integrate better with the MG and FEM framework
P Use Residual in the loss function to try unsupervised approaches
m Implement DNN-MG with a semi-supervised approach

P> Generate new data and retrain if necessary

Test on 3d cases, more problems and other equations

39/40

Thank youl!

m N. Margenberg, D. Hartmann, C. Lessig, and T. Richter. A neural network
multigrid solver for the navier-stokes equations. Submitted to Journal of

Computational Physics, 2020.

m N. Margenberg, R. Jendersie, T. Richter, and C. Lessig. Deep neural networks for
geometric multigrid methods. In ECCOMAS 2021, 2021.

m N. Margenberg, C. Lessig, and T. Richter. Structure preservation for the deep

neural network multigrid solver. Electronic Transactions of Numerical Analysis,
2020.

El=iE

