Effect of climate change on the hydrological cycle

May 2008 Paul O'Gorman

In collaboration with Tapio Schneider Caltech

Big changes in water vapor with climate change

GFDL climate model under AIB global warming scenario

Atmospheric water vapor and thermodynamics

Effects of big increase in water vapor?

Effect of climate change on:

I) Mean precipitation: (O'Gorman and Schneider, JOC 2008)

- growth of global precipitation?
- change in region where condensation and precipitation occurs?
- 2) Precipitation extremes?

Idealized General Circulation Model (GCM) as testbed for effects of climate change

Snapshot of midtropospheric vorticity in idealized GCM

Idealized General Circulation Model (GCM) as testbed for effects of climate change

Idealized GCM has 'full' large-scale fluid dynamics with:

- mixed layer ocean as lower boundary condition
- semigray radiation and no clouds or ice

Optical thickness of longwave radiative absorber varied to mimic changes in greenhouse gases

Mean precipitation

Global mean precipitation in idealized GCM

16 equilibrium simulations with different LW optical depths

Energy constraints on global mean precipitation

Evaporation limited by energy balance at surface

Distribution of mean precipitation in idealized GCM

Movement of extratropical max and subtropical min of precipitation

Subtropical precipitation and water vapor budget

Opposing changes in divergence and evaporation

Large scale condensation rate as climate changes

Implications for precipitation, clouds, ...

Discrepancy between climate models and observations (red) in tropics ?

Tropical precipitation relative to 1979-2000 (Allan and Soden, 2007)

Precipitation extremes

Effect of climate change on intense precipitation events

- High quantiles of daily precipitation, e.g. 0.999 corresponds to:
 - daily precipitation exceeded with probability 1/1000
 - a return period of ~3 years
- Longer accumulations (e.g. 5 days) may be relevant for flooding

High quantiles of precipitation scale like water vapor?

- Trenberth (1999) and Allen and Ingram (2002) argue for extremes scaling like water vapor:
 - extreme precipitation balanced by moisture convergence
 - assume updraft intensity unchanged
- Pall et al (2007) speculate on 'super Clausius-Clapeyron' growth of extremes

High quantiles of precipitation scale like water vapor?

Pall et al. 2007 (HadCM3 transient run)

Mean and extreme precipitation grow slower than water vapor in idealized GCM

Change per degree global warming between two experiments

Scaling of precipitation extremes

- Take account of:
 - circulation changes
 - water vapor
 - latent heat release
 - temperatures in extreme events

Can account for extremes if include latent heating, circulation changes, and temperature when precipitating

Change per degree global warming between two experiments

Growth of precipitation extremes in IPCC models

Multi-model mean change per degree global warming (AIB 2000-2100) (scaling without ω_{rms})

Precipitation extremes (0.999) grow like scaling in extratropics

Change per degree extratropical warming (AIB 2000-2100)

No agreement for precipitation extremes (0.999) in tropics

Change per degree tropical warming (AIB 2000-2100)

Conclusions

- Neither mean nor extreme precipitation grow like water vapor
- Region of large-scale condensation moves poleward and upward as climate warms
- Extratropical maximum in precipitation doesn't always follow storm track
- Can explain precipitation extremes in models in extratropics but little agreement in tropics