Dynamical Schwarzschild models of globular clusters

Glenn van de Ven
Institute for Advanced Study
glenn@ias.edu
Stellar systems

M45
NGC 6397
NGC 5139
NGC 1705
NGC 7742
M51
NGC 4526
NGC 4365
NGC 4526
M32
M87

KITP, Apr 7, 2009

Glenn van de Ven, "Schwarzschild models GCs"
Fossil record

• How do stellar systems form and evolve?
• Wealth of structure in morphology and kinematics
• Range in stellar population properties (age, metallicity, ...)
• Link between dynamics and stellar populations?

• Clean fossil record in early-type galaxies and globular clusters
• Galaxies: integral-field spectroscopy
• Globular clusters: discrete stellar kinematics + population properties
Early-type galaxies

- Integral-field spectroscopy
- Schwarzschild’s method
- Triaxial dynamical model of NGC4365
Integral-field spectroscopy

... a spectrum at every position on the plane of the sky
Stellar velocity fields

NGC 4660 [-150/+150 km/s]

NGC 4365 [-58/+58 km/s]

Oblate
Axisymmetric

Triaxial

KITP, Apr 7, 2009

Glenn van de Ven, "Schwarzschild models GCs"
Image of numerical orbit
Schwarzschild’s method

- Surface brightness \rightarrow (MGE) gravitational potential
- Grid of $(E,I_2,I_3) \rightarrow$ initial orbit conditions \rightarrow orbit library
- Weighted superposition of orbits that best fits photometry and kinematics \rightarrow dynamical model

Schwarzschild (1979), Richstone & Tremaine (1988), Rix et al. (1997), van der Marel (1998), Cappellari et al. (2002), Gebhardt et al. (2003), ...

KITP, Apr 7, 2009 Glenn van de Ven, "Schwarzschild models GCs"
Fitting simultaneously photometry and kinematics in triaxial geometry, including a possible black hole and/or dark matter halo

Intrinsic shape

\[T = \frac{(1-p^2)}{(1-q^2)} \]

Oblate: \(p=1 \) (a=b>c), \(T=0 \)
Prolate: \(p=q \) (a>b=c), \(T=1 \)

... and viewing direction

\((\theta, \phi, \psi) = (68^\circ, 73^\circ, 91^\circ) \)
Orbital decomposition

- Long-axis tube orbits
- Short-axis tube orbits

- Prograde short-axis
- Retrograde short-axis

Rotation cancels except center

Glenn van de Ven, "Schwarzschild models GCs"
Globular clusters: ω Cen

- discrete kinematics: proper motions and line-of-sight velocities
- distance, inclination, M/L
- inner disk and tidal striping

\(\omega \) Cen (NGC 5139)

Proper motions \(\sim 10000 \) (van Leeuwen et al. 2000)

Line-of-sight velocities \(\sim 4000 \) (4 data-sets)

\(\nu \) (km/s) = 4.74 D (kpc) \(\mu \) (mas/yr)

Diameter \(\omega \) Centauri \(\sim 2 \times \) diameter full moon

Loke Kun Tan (StarryScapes)

Glenn van de Ven, "Schwarzschild models GCs"
Smooth velocity and dispersion fields

- Horizontal: in direction of major x'-axis
- Vertical: in direction of minor y'-axis
- In direction of l.o.s. z'-axis

1 arcmin \sim 1.45 pc

Glenn van de Ven, "Schwarzschild models GCs"
Corrected velocity field

- **Horizontal**
 - Velocity: 0.16 mas/yr

- **Vertical**
 - Velocity: 0.22 mas/yr

- **L.O.S. z’-axis**
 - Velocity: 6.86 km/s
 - Observation area: x' (arcmin) (-15 to 15)

Glenn van de Ven, "Schwarzschild models GCs"
Smooth velocity and dispersion fields

1 arcmin \approx 1.45\,\text{pc}

horizontal: in direction of major axis

vertical: in direction of minor axis

in direction of line-of-sight axis

KITP, Apr 7, 2009
Glenn van de Ven, "Schwarzschild models GCs"
Schwarzschild model

KITP, Apr 7, 2009
Glenn van de Ven, "Schwarzschild models GCs"
Best-fit parameters

\[D = 4.8 \pm 0.3 \text{ kpc,} \]
\[i = 50^{\circ} \pm 4^{\circ} \]
\[\frac{M}{L_{V}} = 2.5 \pm 0.1 \frac{M_{\odot}}{L_{\odot}} \]
\[L_{V} = 1.0 \pm 0.1 \times 10^{6} L_{\odot} \]
\[M = 2.5 \pm 0.3 \times 10^{6} M_{\odot} \]
M/L variation with radius?

Consistent with constant $M/L_V = 2.5 \pm 0.1 \ M_\odot/L_\odot$

1 arcmin ~ 1.45 pc
Phase-space distribution

Main component central non-rotating ‘bulge’

Outwards increasing rotation and flattening

Inner maximum rotating disk (~4% mass)
Tidal interaction and multiple populations

- ω Centauri mean rotation ($L_z > 0$) and orbit around Milky Way center opposite \rightarrow prograde orbits ($L_z < 0$) tidally removed?

- Impulse approximation: $|\Delta v| \sim \sigma$ around 16 arcmin (tidal radius around 45 arcmin)
 \[\text{Dinescu et al. (1999)} \]

- Multiple stellar populations
 \[\text{(Freeman & Rodgers 1975, Norris et al. 1997, Pancino et al. 2003, ...)} \]

Metal-rich $[\text{Ca/H}] > -1.2$
- Centrally concentrated
- No apparent rotation
- Nearly round

Metal-poor $[\text{Ca/H}] < -1.2$
- Throughout galaxy
- Rapidly rotating
- Flattened

Non-rotating ‘bulge’?
Rotating flattened component?

KITP, Apr 7, 2009

Glenn van de Ven, "Schwarzschild models GCs"
Globular clusters: M15

- mass-to-light ratio
- IMBH or dark remnants?

M15 (NGC 7078)

- D=10 kpc (1"=0.05 pc)
- SB profile: $r_c=0.05$ pc, central slope=-0.62 ± 0.06
- 1540 l.o.s. velocities
- 703 HST proper motions
Distance and inclination

![Graph showing distance and inclination](image)

KITP, Apr 7, 2009

Glenn van de Ven, "Schwarzschild models GCs"
M/L variation with radius

M/L per Gaussian
mass/luminous density
constant M/L = 1.6 ± 0.2

1 arcmin ~ 3 pc

Glenn van de Ven, "Schwarzschild models GCs"
IMBH or dark remnants?

- $D = 10.3 \pm 0.05$ kpc
- $i = 60 \pm 15$ degrees

- From $M_{\text{BH}} - \sigma$ relation:
 $\sim 10^3 M_\odot$ ($\sigma \sim 11 \text{ km/s}$)

- $r_{\text{BH}} \sim 0.5'' \sim 0.025$ pc

- Within $r_c = 0.05$ pc
 $M_c = 3.4 \times 10^3 M_\odot$
 $\rho_c = 7.4 \times 10^6 M_\odot/\text{pc}^3$

- $M_{\text{tot}} = 4.4 \times 10^5 M_\odot$
Outlook and summary
Next steps

- HST proper motions: IMBH?
- Correlated and higher order velocity moments, or...
- Fitting directly discrete kinematics with Max. Likelihood methods
- Including color, metallicity and age indicators, etc.:
 link kinematics and stellar properties in single model
- Synergy with particle-based models?
Summary in figures

ω Cen

M15

Summary in figures

ω Cen

M15

R_e=1.23 R_e=1.53 R_e=1.91 R_e=2.37 R_e=2.95 R_e=3.67 R_e=4.57 R_e=5.69 R_e=7.08 R_e=8.81 R_e=11.0 R_e=13.6

ω Cen

M15

KTP, Apr 7, 2009

Glenn van de Ven, "Schwarzschild models GCs"
...the end
Extra: ω Cen
Some properties

- Most massive GC in Milky Way: \(M \approx 2-5 \times 10^6 \, M_\odot \)
- One of most flattened GCs: \(q' \approx 0.9 \)
- Relatively loosely bound: \(\log(r_t/r_c) \approx 1.24 \)
 tidal radius \(r_t \sim 45' \), core radius \(r_c \sim 2.6' \)
- Small heliocentric distance: \(D \approx 5 \, \text{kpc} \)
 RR Lyrae and eclipsing binary
- Complicated composition with multiple stellar populations
 - Self-enrichment (isolated cluster/nucleus dwarf galaxy)?
 - (Subsequent) interaction/merger GCs?

Smooth velocity and dispersion fields

- Horizontal: in direction of major x'-axis
- Vertical: in direction of minor y'-axis
- In direction of l.o.s. z'-axis

1 arcmin ~ 1.45 pc

Glenn van de Ven, "Schwarzschild models GCs"
Corrected velocity field

0.16 mas/yr

0.22 mas/yr

6.86 km/s

Horizontal

Vertical

I.o.s. z'-axis

KITP, Apr 7, 2009

Glenn van de Ven, "Schwarzschild models GCs"
Measuring ‘solid-body’ rotation

Any axisymmetric object:

\[
\langle v_z \rangle(x', y') = -4.74D \tan i \langle \mu_y \rangle(x', y')
\]

Residual solid-body rotation

KITP, Apr 7, 2009

Glenn van de Ven, "Schwarzschild models GCs"
Constraint on inclination

- Best-fit solid-body rotation
 \[sbr = 0.029 \text{ mas/yr/arcmin} \]

- canonical \(D = 5.0 \pm 0.2 \text{ kpc} \)
 inclination \(i = 41 - 57^\circ \)

- flattening:
 observed \(q' = 0.88 \pm 0.01 \)
 intrinsic \(q = 0.78 \pm 0.03 \)
MGE mass model

- 1D: 8 Gaussians → 2D: flattening profile Geyer et al. (1983)
- \(E(B-V) = 0.11, D = 5.0 \pm 0.2 \text{ kpc}: L_V \sim 1.0 \pm 0.1 \times 10^6 L_\odot \)

1 arcmin ~ 1.45 pc
Polar grid of apertures

Reflected to first quadrant, around 80 stars per aperture

- Proper motions: 28 apertures, total 2295 stars
- L.o.s. velocities: 27 apertures, total 2223 stars

KITP, Apr 7, 2009
Glenn van de Ven, "Schwarzschild models GCs"
Averaged kinematics

- Fitting to average kinematics \((V,\sigma,...)\) of stars within aperture:
 - Linear method ensures global best-fit
 - Faster than using discrete velocities

- How to extract velocity moments?
 - Gaussian fit to velocity histograms
 - Instrumental dispersion: \(\sigma_{fit}^2 = \sigma^2 + \sigma_{ins}^2\)
 - Maximum likelihood estimation:

\[
L(V,\sigma,...) = \prod_{i=1}^{n} \int_{-\infty}^{\infty} L(v) \frac{1}{\sqrt{2\pi\sigma_i}} e^{-\frac{1}{2} \left(\frac{v_i-v}{\sigma_i} \right)^2} dv
\]
Rotational/pressure supported

- max V/σ at $R \sim 8$ arcmin
 \sim at maximum v_{los}
- $V/\sigma > 0.5$ above isotropic oblate rotator in $(V/\sigma, \varepsilon)$
 \sim rotational support
- Outwards (partly) pressure supported

$$\sigma_{\text{RMS}}^2 = \left(\sigma_R^2 + \sigma_\theta^2 + \sigma_\phi^2\right)/3$$

KITP, Apr 7, 2009

Glenn van de Ven, "Schwarzschild models GCs"
Anisotropy

- Principal axis velocity ellipsoid $\sigma_+, \sigma_-, \text{and } \sigma_\phi$
- In meridional plane:
 - Almost isotropic near equatorial plane
 - Tangential anisotropic towards symmetry axis
- 3D (including azimuthal)
 - Radial anisotropic center
 - Tangential anisotropic in outer parts
- Not two-integral $F(E,L_z)$

$$\sigma_t^2 = \left(\sigma_\theta^2 + \sigma_\phi^2\right)/2$$

Glenn van de Ven, "Schwarzschild models GCs"
Intrinsic velocity moments

\[\sigma_\phi^2 = \langle v_\phi^2 \rangle - \langle v_\phi \rangle^2 \]

\[\sigma_\theta^2 = \langle v_\theta^2 \rangle \]

\[\sigma_R^2 = \langle v_R^2 \rangle \]

\[\sigma_{R\theta}^2 = \langle v_R v_\theta \rangle \]

Axisymmetric:

\[\langle v_R \rangle = \langle v_\theta \rangle = \langle v_R v_\phi \rangle = \langle v_\theta v_\phi \rangle = 0 \]
Conclusions ω Centauri

- Significant perspective and residual solid-body rotation
- Amount solid-body rotation and D·tan(i) directly from data
- Axisymmetric anisotropic Schwarzschild model:
 \[D = 4.8 \pm 0.3 \, \text{kpc}, \quad M/L_V = 2.5 \pm 0.1 \, \text{M}_\odot/\text{L}_\odot, \quad M = 2.5 \pm 0.3 \times 10^6 \, \text{M}_\odot \]
- Substructure in distribution function:
 - Main component center non-rotating ‘bulge’
 - Outwards increasing rotation and flattening
 - Inner (~1-3 arcmin) maximum rotating disk ~ 4% mass

... linked with multiple stellar populations?
... tidally stripped dwarf galaxy?
Extra: M15
Dispersion profiles

1 arcmin ~ 3 pc

1540 l.o.s. velocities

Kinematic maps

703 HST proper motions

1 arcmin ~ 3 pc
MGE mass model

1 arcmin ≈ 3 pc

KITP, Apr 7, 2009
Glenn van de Ven, "Schwarzschild models GCs"
Schwarzschild model

horiz.

vert.

l.o.s.

1 arcmin ~ 3 pc

KITP, Apr 7, 2009

Glenn van de Ven, "Schwarzschild models GCs"