X-ray Binaries in Globular Clusters Constraints on GC Dynamics and Neutron stars vs. white dwarfs

Josh Grindlay (Harvard) and collaborators: Craig Heinke, Peter Edmonds, Fernando Camillo, Haldan Cohn and Phyllis Lugger

KITP Conf. on Globular Clusters, Jan. 29, 2003

Overview of talk

- Review of bright LMXBs and their GCs
- Chandra views of 47Tuc and NGC6397: the compact binary population revealed
- MSPs in 47Tuc & NGC6397: re-recycled?
- Binary ejection & cluster disruption in bulge

• Neutron stars vs. WDs in globulars

13 LMXBs in 12 globular clusters:										
Cluster	l ogl x	P hinary	LogRho c	[Fe/H]	R galetr	7 disk				
	(erg/s)		(Msun/pc^3)		(kpc)	(kpc)				
N1851	36.2	~82min?	5.3	-1.2	16.7	-6.9				
N6440	32.5-37		5.3	-0.3	1.3	0.6				
N6441	36.5	5.5hours	5.2	-0.5	3.5					
N6652	32.5-36	42min(??)	4.5	-1	2.4	-1.9				
N6624	37-37.5	11min+~1d*	5.3	-0.4	1.2	-1.1				
N6712	36	21min	3.1	-1	3.5	-0.				
N7078	36.5, 36	17.2d	5.4	-2.2	10.4	-4.				
Ter1	32-36		3.5	-0.3	1.8	0.1				
Ter2	36		4.7	-0.4	0.9	0.3				
Ter5	32-37		5.5	-0.3	0.7	0.2				
Ter6	32-36		5.4	-0.5	1.6	-0.4				
Liller1	32-36		5.4	0.2	2.6	(
	*probable triple with ~1d outer binary period									

47Tuc: initial Chandra data results, cont.

• BY Draconis stars (chromospherically active m-s binaries; *ABs*) detected in large numbers: 29 HST IDs. $L_x \sim 1-10 \times 10^{30}, kT \leq 1 keV$ (usually), $P_{binary} \sim 0.5-2d$

• Limit on central BH from Bondi accretion & n ~0.1cm⁻³ from variation in DM of MSPs $M_{BH} < 470 M_O$, but dependent on uncertain (advection?) $\varepsilon_{accretion}$

= MSP = AB

MSPs in 47Tuc: the initial Chandra view

• 9 of the 16 MSPs with precise radio timing positions detected firmly, 5 marginally (2 un-resolved)

All but 1 (MSP-J) very *soft*: kT~0.2keV emission from polar caps. & L_x~1-4 x 10³⁰ ⇒ departure from L_x - Edot relation

• Significant underlying "red" source pop. and incompleteness: ~35-90 MSPs, total

47Tuc: first looks at NEW Chandra data

4 x 65 ksec exposures with ACIS-S (better soft response) with ~1, 3, 10d separations (Sept. 30 - Oct. 10, 2002)

and

HST-ACS imaging (V, R, $H\alpha$), for 3 (of Chandra's 4) visits at 3 orbits each

Scroll through smoothed (minimally) Chandra images...

Initial results from new 47Tuc Chandra data

- All resolved MSPs (15/17) detected; spectra will be possible on summed images (>100cts)
- At least 150 sources detected significantly by WAVDETECT in same 2 x 2.5 arcmin central box; many more if crowding considered
- New flaring (mostly ABs, but also CVs?) and steady (MSPs, CVs?) sources detected

47Tuc vs. NGC6397: Chandra Results							
N	GC 6397	47/Tue					
distance (kpc)	~ 2.5	~ 4.6					
mass (M _{sun})	~ 2 x 10 ⁵	~ 106					
core radius (arcsec)	~ 5	~ 23					
core radius (pc)	~ 0.06	~ 0.5					
central density ~ (M _{sun} /pc ³)	$2 \ge 10^{5}$	~10'					
central velocity dispersion (km/s)	~ 5	~ 12					
relative collision rate	1	~ 30					

NGC 6397: NEW Chandra data 2 x 28 ksec exposures with ACIS-S with 2d separation (May 13, 15, 2002) Scroll through smoothed (minimally) Chandra images...

Initial results from new NGC6397 Chandra data

- CV2 highly variable; others relatively constant. No new obvious CVs (N ~9-10 total in cluster)
- U18 relatively constant: consistent with being like known MSP: a doubly-exchanged sysem with "red straggler" secondary since optical IDs same...
- MSP PSR1740-5340 shows marginal variability consistent with radio eclipse (but not required by data)
- Relatively small number ABs (only ~2 new variables?)

<u>Comparison Cha</u> <u>47Tuc vs. NGC</u>	<u>ndra So</u> 2 6397 (ource Counts: initial data)	
<u>Source</u>	<u>47Tuc</u>	<u>NGC6397</u>	
\overline{qLMXB} (NSs)	2	1	
MSPs (NSs)	~90	1	
CVs (WDs)	~30	~10	
ABs (m-s stars)	>30	~4	
$\Gamma_{\rm c}$ (rel. coll. rate)	~3	~ 0.3	
M _{GC} (rel. mass)	5	1	
\sim (NS/WD)/(Γ_{e}/M_{G}	_C) ~5	~0.6	
NSs ~10X overabundant OR CVs produced vs. MSPs	vs. WDs scattered	in 47Tuc ([Fe/H]? in N6397 core collap	?) se

Compact Binary Ejection?

- MSP in NGC6397 well out in cusp: ejected in same encounter that swapped in RS secondary
- *qLMXBs* in NGC6652 out at >8 r_c (Heinke et al 2001); ~0.6 r_h in NGC 6293 (Jonker et al 2003)
- LMXB/MSP XTEJ0929-31 and othrs in halo
- Best evidence from external galaxies GC sources

Sco X-1 Ejected from a Globular? (even?!)

Posting of Jan. 29, 2003, on astro-ph: astro-ph/0301580 [abs, ps, pdf, other] :

Title: The origin of Scorpius X-1 Authors: I. Felix Mirabel, Irapuan Rodrigues Comments: 4 pages, 1 figure. Animation and high resolution figures can be retrived from the NRAO press release: this http URL Journal-ref: Astronomy & Astrophysics, 398, L25--L28 (2003)

We have used multi-wavelength observations of high precision to derive the space velocity and compute the orbit around the Galactic Centre of the prototype X-ray binary Scorpius X-1. An origin in the local spiral arm of the Milky Way is ruled out. The galactocentric kinematics of Scorpius X-1 is similar to that of the most ancient stars and globular clusters of the inner Galactic halo. Most probably, this low-mass X-ray binary was formed by a close encounter in a globular cluster. However, it cannot be ruled out that a natal supernova explosion launched Scorpius X-1 into an orbit like this from a birth place in the galactic bulge. In any case, the Galactocentric orbit indicates that Scorpius X-1 was formed more than 30 Myrs ago

Conclusions

- CVs are indeed over-produced in globulars (& confirms HG83 that CVs dominate qLMXBs)
- MSPs vs. CVs may probe IMFs or GC initial conditions
- Active binaries are bright x-ray markers of binary formation/destruction (destroyed relative to CVs in NGC6397?)
- Compact binaries from GCs may populate galactic bulge