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Ways to achieve strong interactions in quantum gases

Feshbach resonance: 

Rotation:

scattering length diverges,          
Fermi energy is the only energy scale 
===> non-perturbative

Optical Lattices:

each Landau level is highly degenerate, 
===> within each Landau level interaction 
is the only energy scale

wave function localized at each site,  
===> tunneling suppressed and 
interaction enhanced

More Intriguing Physics: resonance + rotation
resonance + optical lattices 



Experimental Motivation
Rotating Fermion Superfluid:  

Stable vortex lattices created

Experimental procedure
To create a strongly interacting Fermi gas, spin-polarized fermionic
6Li atoms were sympathetically cooled to degeneracy by 23Na atoms
in a magnetic trap24. The Fermi cloud was then loaded into an optical
dipole trap, and an 875G external magnetic field was applied. Here
a 50%/50% spin mixture of the two lowest hyperfine states of 6Li
was prepared. Between these two states, labelled j1l and j2l, there is a
300-G-wide Feshbach resonance located at 834 G (refs 25, 26).
Evaporative cooling (achieved by reducing the laser power)
accompanied by a magnetic field ramp to 766G on the BEC-side
of the resonance typically produced a BEC of 3 £ 106 molecules3.
Previous experiments studying the rotation of atomic BECs

employed magnetic traps operating at low bias fields27–31. Because
the Feshbach resonance in our system occurs between two high-field
seeking states that cannot be trapped magnetically, an optical dipole
trap operating at high magnetic bias fields was necessary. Our set-up
employed a trapping beam with a 1/e2 radius of 123 mm (wavelength
1,064 nm), radially confining the gas with a trap frequency of 59Hz at
a power of 145 mW. Axial confinement with trap frequency
n z ¼ 23Hz was provided by an applied magnetic field curvature
that decreased the radial trap frequency to n r ¼ 57Hz. The aspect
ratio of the trapwas 2.5. In this trap, at a field of 766G, condensates of
1 £ 106 molecules (the typical number in our experiment after
rotating the cloud) have Thomas–Fermi radii of about 45 mm radially
and 110 mm axially, a peak molecular density of 2.6 £ 1012 cm23, a
chemical potential of about 200 nK, and a characteristic microscopic
length scale of 1/kF < 0.3 mm. Here, the Fermi wavevector kF is
defined by the Fermi energy (EF) of a non-interacting two-state
mixture of 6Li atoms of mass m with total atom number N in a
harmonic trap of (geometric) mean frequency !q; EF ¼ " !qð3NÞ1=3 ;
"2k2F=2m: Throughout this Article we will estimate the interaction
parameter 1/k Fa using the average number of fermion pairs
N/2 ¼ 1 £ 106. Here, a is the scattering length between atoms in
states j1l and j2l: At a field of 766G, 1/kFa ¼ 1.3. Because this gas is
strongly interacting, it is difficult to extract a temperature from the
spatial profile. For weaker interactions (at 735G) the condensate
fraction was in excess of 80%, which would isentropically connect to
an ideal Fermi gas32 at T/T F ¼ 0.07. The BEC–BCS crossover
(1=kFjaj, 1) occurs in the region between 780G and 925G.
The trapped cloud was rotated about its long axis using a blue-

detuned laser beam (wavelength 532 nm)28,29,33. A two-axis acousto-
optic deflector generated a two-beam pattern (beam separation
d ¼ 60 mm, gaussian beam waist w ¼ 16 mm) that was rotated
symmetrically around the cloud at a variable angular frequency Q.

The two beams with 0.4mW power each produced a repulsive
potential of 125 nK for the 6Li cloud, creating a strongly anisotropic
potential. This method was first tested using a weakly interacting,
atomic BEC of 23Na in the stretched upper hyperfine state in an
optical trap with n r ¼ 60Hz, n z ¼ 23Hz. Fully equilibrated lattices
of up to 80 vortices were observed. The vortex number decayedwith a
1/e lifetime of 4.2 ^ 0.2 s, while the atom number decayed, owing to
three-body losses and evaporation, with a lifetime of 8.8 ^ 0.4 s. The
roundness of the optical trap and its alignment with both the optical
stirrer and the axes of the magnetic potential were critical. Any
deviation from cylindrical symmetry owing to misalignment, optical
aberrations, or gravity rapidly damped the rotation. The generation
of vortices in sodium was comparatively forgiving, and had to be
optimized before vortices in 6Li2 could be observed.

Observation of vortex lattices
In experiments with 6Li close to the Feshbach resonance, the
interaction strength between atoms in states j1l and j2l can be freely
tuned via the magnetic field. Thus, it is possible to choose different
magnetic fields to optimize the three steps involved in the creation of
a vortex lattice: stirring of the cloud (for 800ms at a typical stirring
frequency of 45Hz), the subsequent equilibration (typically 500ms)
and time-of-flight expansion for imaging. To stay close to the

Figure 2 | Vortices in a strongly interacting gas of fermionic atoms on the
BEC- and the BCS-side of the Feshbach resonance. At the given field, the
cloud of lithium atoms was stirred for 300ms (a) or 500ms (b–h) followed
by an equilibration time of 500ms. After 2ms of ballistic expansion, the

magnetic field was ramped to 735G for imaging (see text for details). The
magnetic fields were 740G (a), 766G (b), 792G (c), 812G (d), 833G (e),
843G (f), 853G (g) and 863G (h). The field of view of each image is
880mm £ 880mm.

Figure 3 | Optimized vortex lattices in the BEC–BCS crossover. After a
vortex lattice was created at 812 G, the field was ramped in 100ms to 792G
(BEC-side), 833G (resonance) and 853G (BCS-side), where the cloud was
held for 50ms. After 2ms of ballistic expansion, the magnetic field was
ramped to 735G for imaging (see text for details). The field of view of each
image is 880mm £ 880mm.
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Fermion Superfluid in Optical Lattices: 
Loss of superfluidity as lattice increases

V0 = 0

3

FIG. 3: Values of V0’s are (a) 0 Er , (b) 2.5 Er , (c) 4 Er

, (d) 5 Er , (e) 6 Er , (f) 7 Er , (g) 9 Er , (h) 2.5 Er .
(a-g) were taken after an adiabatic ramp up to the final V0,
while (h) was taken after first ramping up to 10 Er , before
ramping down to 2.5 Er .

FIG. 4: Values of magnetic fields are 842 G (filled circles),
892 G (open squares) and 942 G (filled triangles). Peak op-
tical densities were estimated from fits to the peaks, includ-
ing background subtraction. The inset (color online) shows
a sample density profile of the central and one pair of inter-
ference peaks (black dotted line), with a bimodal fit to one
side peak (red solid line). Each point is the average of three
different images with six interference peaks per image. Error
bars show s. d.

peak optical density occurred between 5 and 6 Er . Fur-
ther increase of the magnetic field resulted in decreasing
overall visibility, until interference peaks could no longer
be observed regardless of lattice depth.

The loss of phase coherence with increasing lattice
depth is consistent with the qualitative description of
the superfluid to Mott-insulator transition. However,
the usual single-band description is no longer applicable,
since in the strong-coupling regime the on-site interaction
strength should be comparable to the band gap !ω, where
ω is the onsite trap frequency. Furthermore, Pauli block-
ing forbids the multiple occupation of the lowest state
of an individual lattice site by identical fermions, and

FIG. 5: The width of the central peak is used as a measure of
phase coherence after an adiabatic ramp up to 8 Er followed
by a fast ramp down to 2.5 Er at a fixed magnetic field of 822
G. Filled circles were extracted with the use of a gaussian fit,
and diamonds with a bimodal fit. Also plotted for compari-
son is the gaussian width of the central peak for a dephased
sample, in which a field gradient was applied during the ramp
up of the lattice (open circles). All points were taken for 6.5
ms time-of-flight.

modification of the single particle tunneling rate is ex-
pected due to virtual pair breaking transitions [14]. One
may still be tempted to use the standard bosonic Hub-
bard model and estimate the critical lattice depth Vc for
an assumed value of onsite interaction energy U = !ω
and non-interacting, single particle tunneling J , but the
obtained Vc ≈ 3 Er is significantly smaller than our ob-
servation, which is in turn much smaller than the Vc > 10
Er observed for weakly interacting atomic BECs [19, 23].
Along with the observed insensitivity of Vc to magnetic
field, this demonstrates that models based on weak in-
teractions are inadequate.

Fig. 3h demonstrates the reversibility of the transi-
tion from a long range coherent state to a state without
strong coherence. We now study the time scale for this
recoherence, in analogy with similar measurements per-
formed across the superfluid to Mott-insulator transition
in atomic BECs [19]. Fig. 5 shows that phase coher-
ence was restored on a sub-millisecond time scale, on the
order of the the single-particle tunneling time of about
500 µs (for a shallow lattice of 2.5 Er ). When the same
lattice ramp sequence was applied to a superfluid which
had been dephased by a magnetic field gradient [19] the
system did not regain phase coherence on the time scales
that we probed. Therefore, evaporative cooling is neg-
ligible during this time. The short recoherence time of
the condensate is evidence that the system stayed in its
ground state or at least in a low entropy state when the
lattice was ramped up.

Fig. 5 also provides evidence that the system could
not recohere during the 150 µs magnetic field ramp. In
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Part I:
Superfluid-Insulator Transition of Strongly 

Interacting Fermi Gases 

Hui Zhai and Tin-Lun Ho, arXiv: 0704.2957
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Question: How SF-Insulator transition depends on as



Answer from mean-field theory
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Model
Single particle physics: 

band structure H0 = −
h̄2
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Many-body physics: 
Cooper instability
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Outline of the calculation: Pairing susceptibility
αG = WG +

m

4πh̄
2
as

Condition for the onset of superfluidity 
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Critical Lattice Depth for the Onset of Insulator

V > Vonset
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Part II:
Critical Rotational Frequency of Superfluid 

Fermi Gases across Feshbach Resonance

Hui Zhai and Tin-Lun Ho, Physical Review Letters, 97, 180414 (2006)



Question: How critical frequency depends on as

BEC

Ω/ω1

0

Normal cloud?????

Type-II 

superconductor 

Magnetic 
field

BCS
−

1

kF as

T

H

Tc

Hc2

∆ = 0

∆ != 0

Critical rotational 
frequency <==> Analogy 
of Hc in superconductor



Answer: Seeing integer Landau levels

En−1
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En+1

µ

Ω/ω⊥

SF

zoom-in plot of high 
rotational limit

A sequence of jumps 
reveal the features of 

Landau levels
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Outline of the calculation: Pairing susceptibility
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