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Berry phase effects in multiband systems

e Standard Berry's phase picture: Adiabatic
evolution of a system described by Hamil-
tonian H(\) in the A-parameter space.
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degeneracy
point

Degeneracies in the spectrum are sources of the “magnetic field."”
e Example: Electron Bloch states in a crystal, |un,(p)). Band-crossings
are degeneracy points, which produce a non-trivial “gauge field.”

e,
An(p) =1 <Hn(p) :.'(_“N(p)>
dp




Anomalous velocity

e Classical Egs. of motion for an electron in a multiband system
[Karplus & Luttinger (50's), Sundaram & Niu (99), Haldane (04)]
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Interesting generalizations: (i) Non-Abelian fields in systems with de-
generate bands [Murakami et al. (2003)] ); (ii) Dual “electric field" in
interacting electron systems [Shindou & Balents, cond-mat/0603089].

Important observation: All is needed to produce an anomalous veloc-

ity is a degeneracy in the band structure. Periodic potential is not
necessary.




Degeneracies in spin-orbit coupled systems

e Isotropic Luttinger model (3D p-doped semiconductors)

A= (1427)p* — 24 (b - J) 2]
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e Spin-orbit coupling in a 2DEG
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— Rashba interaction

hp = ap xz

— Linear Dresselhaus interaction

hp - _31 (p;l‘-a _py)

— Cubic Dresselhaus term

hp = ;33 (p;rpf; - —pyp:%)




Possible relation between
the Berry’s phase and spin transport

¢ Model (Murakami et al., 2003): Spin-orbit coupled system, e.g.,
described by Luttinger model, in an external electric field, E.

e Anomalous velocity:
(A) _ BO\) P

< E, X is the band index (H- and L-holes)

e Dual field: Byua = Vp x A(p) and  A(p) = idiag {(’Z"i'(p)e-)pz’_?}
U(p) is the matrix, which diagonalizes the Luttinger Hamiltonian.
e Spin current:
1, . e
JE’) =3 (cavan + Vanoa) x> (AloalA) ‘___5;\_1)
A=bands ’P

Result: There is a spin-current flowing perpendicular to E.
Conjecture: This spin current leads to spin accumulation at the edges.




Electric-field-induced spin accumulation

Experiment: A thin film of GaAs or InGaAS in the presence of
an external electric field.
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Ref.: Y.K. Kato et al., Science 306, 1910 (2004)




Electric-field-induced spin accumulation

Experiment: A two-dimensional electron gas in the presence of
an external electric field
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Ref.: V. Sih et al., Nature Phys. 1, 31 (2005)




Spin Hall effect: Experiment & Theory

There is a large gap between the experiment, which measures
a spin density and the Berry's phase approach, which calculates
spin currents. An important question is: What is the connection
between them, if any?

Problems of the spin-current-based theory:

1. Spin is not conserved. No continuity equation
0Sa
ot

+V. I, #0

2. There is no obvious relation between the spin-Hall current
and observables.

3. The concept of Fermi surface Berry's phase can not be gen-
eralized to disordered systems.




Physics of spin accumulation in a clean

spin-orbit coupled system (Luttinger model)

T. Stanescu & VG [PRB 74, 205331 (2006)]



Refraction and

‘“total internal reflection”

Single-particle QM problem: Luttinger model + hard-wall boundary:

=

J is a spin-3/2 operator (4 x 4 matrix). 1 satisfies boundary condition

Classification of states in the bulk: Two double degenerate bands, heavy

1
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and light holes with chiralities £3/2 and 4+1/2 correspondingly.
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Spin-polarized edge states

HH+
HH-
LH+

heavy

incident
wave

reflected
waves

e Casel (0 < Hc = arcsin /¢,

q: = kcos ¢. ¢(0) = arctan

Important property:
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e Casell (8 > 6¢)
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Spin accumulation

It is possible to construct a basis parameterized by the heavy-hole
momentum k and an index X\ (certain mixture of chiralities).

Sad(ry =2 2 (Sa)pkr)Fk(Er, eV)
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Spin Hall effect is electric-field-induced
Friedel oscillations with property

AP

Spin density decays as a power law.
(Stanescu & VG, cond-mat/0606670)

{(arbitrary units)
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Friedel “beatings”

< S\_ > (z)

Asymptotically exact result (zkp > 1):

o _ DAk 3 [ . SVE . [, ]
(8,)(z) = — {5|n(2}€1.F,¢.) + £sin (Qkp\/éx..) - msm {kp(l + \/E)z,”

¢ = my,/my is the ration between the light and heavy hole masses.




Disordered spin-coupled systems

Spin diffusion



Spin relaxation and diffusion approximation

Hydrodynamic approximation holds if the distances over which the den-
sities vary are much larger than the relevant equilibration lengths.
Diffusion equation for spin density
1 . . .

Pat ..., “Ts_l iIs a spin relaxation rate

b

“Required” hierarchy of length-scales plzl & 1< Ls = /Drs
Spin relaxation mechanism:
Momentum-dependent spin dynamics;
Diffusion randomizes momentum and

leads to spin relaxation. .

Diffusion Eq. is usually OK if eso/Fg < (p,:[)_l
e Rashba & Dresselhaus models:
e Luttinger model: NO




Gradient expansion

Kernel of the diffusion equation
1

AT

Hab(w;I’, I’/) = Tr {(fa(;r (e:]_ r—r )(fb( 4(3:2,[’ — I’)} w=¢€1 — €2

Spin-charge diffusion equation (integral form):
pa(®) = 3 [ Map(r.t)py(a)d s’
it
po is the charge density and p 4, . are spin densities.

Green's functions are local, G(r) e~"/2l Kernel is almost a §-function:

lim Mgp(w;r, r’) = [1 + iwT + ’DTVQ] Oapd(r — 1 H-Z (EF) (E;f)

B /

Usual diffusion spin-dependent corrections




Bulk spin diffusion equation

General form:

3, 1 .
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Spin precession o eéo spin relaxation o Ego spin-charge coupling o Ego
(non-universal)

Uniform polarization far from the boundaries:

;J_.‘f = 73,Caj] = const

Steady state equation for pg(r) = pg(r) — ;‘-?'3“:3

1 | _
:Duga';ﬂ VQ + P, G'_f."f":*'v"}"' - 1'").-"3(1‘ ) =0

Tev 3

Replacement V — iq defines an eigenvalue problem for g (cubic equation).




Problem in a half-space: Eigenvalues and amplitudes

Consider a problem in a half-space with a boundary at » = 0.
Eigenvalues: g = £kq{ + ﬁ/\%
General form of the solution

,(TJ(:.;(:I‘.) = A, cos (k'fl;_p + (.__;){__l_:) P /A1 + B,e * /Ao

(2 amplitudes) x (3 spin components) + (3 phase-shifts) = 9

Diffusion equation applied for two eigenvectors provides
six relations. T hree more relations are needed...

Boundary conditions are the “missing” equations

f"m.r’f".:’(;”) =0

=0




Derivation of boundary conditions

BC's can be derived by expanding the inte-

gral equation near the edge [VG, Burkov,

& Das Sarma PRB 74, 115331 (2006)]
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Example: Boundary with a “reflectivity” R ~(1 - R)
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Two types of boundary conditions for spin

Expansion of the “integral” diffusion equation near the interface:

1 4+ R?

pa(0) = pa(0) 4+ clonpa(0) + ...

e If (1—R?) ~ 1 (e.g., a transmitting boundary with a ballistic contact
or a medium with a long mean-free path)

pa(0) = 0, Dirichlet BCs
o If R=1 (e.g., hard wall), SO corrections become important:

InV pa(0) = B,,pp(0) + CoaVpo(0), von Neumann BCs




Results iIn the Rashba model

e Partially transparent boundary e Impenetrable boundary

p(0) = —p=(0) and p’(0) = p2(0) + np5",

pz,2(0) =0 _ :
7 1S @ non-universal constant
(spectrum and boundary-dependent)
For hard wall and quadratic spectrum, n = 0.
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Published in Nature, 437 pp. 1330-3 (27 Oct. 2005)

Observation of spin Coulomb drag in a
two-dimensional electron gas

C.P. Weber,” N. Gedik, J.E. Moore, and .J. Orenstein
Physics Department, University of California, Berkeley and
Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

Jason Stephens and D.D. Awschalom
Center for Spintronics and Quantum Computation,
University of California, Santa Barbara, California 93106, USA

FIG. 2: Time-dependence of the spin-grating’s amplitude.
The lines are fits of the data to S(g,w). The values of [ de-
termined from these fits are indicated in each panel. Due to
laser heating, the temperature 7. of the electron gas is higher
than the lattice temperatures indicated.

Spin grating amplitude (a.u.)




Relaxation of injected spin density

Diffusion Eq. in Fourier space:

pa(w: q) — I_Iab(w: q)pb(w: q)

Green's function of the spin-charge-coupled diffusion Eq.

1
1—T(w,q)
T he real space-time dependence of the diffuson describes a dif-
fusive relaxation of the corresponding component of the spin
density. E.g., if at t = 0, we had p.(r) = 6(r), D-.(t,r) gives the
subsequent dynamics.
Without spin-orbit coupling, we would have the usual diffuson

D(t,r) L ex -
L, 1) = —
’ (27 D)4/ 2 P1" 4D

D(w,q) =




Spin relaxation in spin grating experiments

Spin-grating experiments. probe
spin relaxation at a finite k-vector:

&
Di,;’(tk) = Z A;(k)e‘-:_"“’."(kj ¢
(=0

If all «w;(k) are real - no oscillations.

Results for the Rashba case:

[ iwg(k) = 5+ k2% - %\1 — 327m2g2a2k>2

Spin grating amplitude (a.u.)

w1 (k) = 1 4+ k2 4 31/1 — 327252022

iwp(k) = 3 4 k% — 3/1 + 16k2

| iws(k) =3 4+ K2+ 3y/1 4 1642




Effective spin-orbit interaction
and spin dynamics in atomic systems
T. Stanescu, C. Zhang, and VG
[cond-mat/0703500]



Atomic system in a spatial-varying laser field

l0)

Q4

1)

Hamiltonian: ﬁ = ﬁkin —I— Vtrap —I_ ﬁa_|

Atom-laser interaction:

Q,

Y

2)

|3)

Ha—1 = —[Q1(r)|0 >< 1| + Q2(r)|0 >< 2| 4+ Q3(r)|0 >< 3[]] +h. c.




Degenerate dark states

Useful parametrization of the position-dependent frequencies
Qi(r) = Q sind cosg¢ 1

Q5(1) Q2 sinf sing ™2
Q3(r) = 2 cosd el

One can find a matrix U(r), which diagonalizes H,_.

New “band structure” includes a pair of degenerate dark states

ug) sin¢ e~|1) — cos ¢ e~ |2),
lus) = cosf cosg¢ e 1) 4+ cosd sing e |2) —sin¢|3), E; = Eo

But (!) the kinetic part produces new terms in the Hamiltonian:

ot V2\
(57—[ = U ! (I) (—E) U (I)




Non-Abelian gauge field vs.
pseudo-spin-orbit coupling

E.g., consider the case: S1 = 5> = S(r) = mvgy, S3 =0, and ¢ = mv,x

e Picture I: Particles in a non-Abelian gauge potential

Horr = % (—ivT - 2&)2 +V

with a vector potential

A — VS —1COSOV
— \icosOVe cos2ovS

e Picture II: Particles with (pseudo) spin-orbit interaction

2 2
_ mw - -
Herr = (p + 7’2) I+ 600>+ Hso

2m 2
Pseudo-spin-orbit coupling is:

Hop = VOPxOy — V1PyOz, | Vo = —Vy, COSH and vy = sin? Ous /2




Spin relaxation in a harmonic trap

Let us polarize all spins
in the z-direction, P(0) =1 0

_1.

Spin polarization dynamics, |P(t) = +(Po|P-(t)|do)
Polarization operator, P. = [d?%r Wi(r)5.-W(r)

The Heisenberg representation, P.(t) =U"1(t)P.U(t)
Time-evolution operator, U(t) = exp (—sz”FZt)




Spin relaxation In a symmetric trap

| Polarization in the
| weak-coupling limit
0.6f ._ __
=4l i py a1 - BVE [ cos (i)
0.2_ _
Hpre————
0 0.5 1 1.5 2 2.5 3

The 27 /w periodicity is due to the equal spacing between the harmonic
oscillator levels. When the SO coupling is large, the polarization exhibits
fast relaxation followed by periodic echoes.




Remanent “magnetization” of the cloud
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The spin polarization dynamics depends both on the strength of SO
coupling and the number of particles. In thermodynamic limit the quan-
tum dynamics are delta-function-like peaks followed by periods of zero

polarization.




Spin relaxation in an elliptic trap
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Relaxation curves in an elliptic trap wy > wo. If the lasers are oriented
along the principal axes (§ = 0 or 6§ = «w/2), the relaxation curves are
identical to those of an isotropic trap with the corresponding w (blue
and orange curves). If wy /w1 = p/q, the period of the relaxation curves

becomes ¢27 /w1 = p27/wo.




Summary

In clean SO coupled systems, the effect of spin accumulation is
due to the localized edge states.

In disordered systems, spin transport is described in terms of a
matrix spin diffusion equation; spin accumulation depends on the
structure of the edges and may occur without bulk spin currents.

Observed temporal oscillations in spin-grating experiments may be
due to strong spin-charge coupling, which leads to qualitatively
different time dynamics of spin-charge diffusion.

Spatial-varying laser fields in cold atomic systems, lead to an ef-
fective SO coupling. The spin dynamics in a trapped system is
similar to spin relaxation in spin-orbit-coupled quantum dots.




