Coexistence of Ordinary Elasticity and Superfluidity in a Model of a defect-free Supersolid

Christophe Josserand, D'Alembert Institute, CNRS and Paris VI.

Yves Pomeau \& Sergio Rica, LPS-ENS (Paris) and DFI-Univ. Chile (Santiago)

Outline

- Motivations: Supersolid experiments
- Gross-Pitaevskii model
- Ground state and perturbations
- NCRI and Elasticity
- Perspectives

Figure 1 Torsional oscillator used in this experiment. The design of the oscillator follows those used by Reppy and collaborator ${ }^{18}$. The Vycor glass disk has a diameter of 15 mm and a thickness of 4 mm . The cylindrical drive and detection electrodes are aligned off-centre from, and are capacitively coupled to, the central electrode attached to the torsion bob. The signal from the detection electrode (proportional to the amplitude) is sent to the lock-in amplifier through a current preamplifier. The lock-in provides a driving voltage, which controls the ampiliude of oscillation, to complete the phase-locked loop and keep the oscillator in resonance. The mechanical Q of the oscillator is 10^{6} at low temperature, allowing the determination of the resonant period to a precision of 0.2 ns . The resonant period is 967,640 ns when the Vycor disk is empty, and is 971,900 ns near 0.2 K when pressurized with solid ${ }^{4} \mathrm{He}$ at 62 bar. Measurements were also made with a

E. Kim \& M. Chan
Nature 427, 225-227 (2004)

Fig. 4. Phase diagram of liquid and solid helium.

K-C, Science 305, I94I-I944 (2004)

Remarks

- Can we have a Supersolid? (Penrose and Onsager 1956, Andreev and Lifshitz (1969), Chester (1970), Prokof'ev and Svistunov (2005)...)
- What should be a Supersolid? (Leggett (I970)...)
- Role of the disorder (Rittner and Reppy (2006)).

S. Sasaki, R. Ishiguro, F. Caupin, H.J. Maris and S. Balibar, Science 3I3, I098-II 00 (2006).

- experimental puzzle
- paradox between NCRI and absence of flow out of grain boundaries
- annealing effects and role of the disorder
- Gross-Pitaevskii approach for describing supersolid state

G-P Equation
$i \hbar \frac{\partial \psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi+\psi \int \mathrm{d} \boldsymbol{r}^{\prime} U\left(\boldsymbol{r}^{\prime}-\boldsymbol{r}\right)\left|\psi\left(\boldsymbol{r}^{\prime}, t\right)\right|^{2}$,

- Mean-field approach
- valide in the dilute gas limit
- semi-classical equation:

$$
\psi=\sqrt{\rho} e^{i \Phi}
$$

- NLS limit for Dirac potential
- Quantitative agreement with BEC and qualitative description of liquid He 4 .
- Hamiltonian system (or also Lagrangian structure)
- Conservation of the number of particle

$$
\imath \partial_{t} \psi=\frac{\delta H}{\delta \psi^{*}}
$$

$$
H=\frac{1}{2} \int d r\left(|\nabla \psi|^{2}+|\psi|^{2} \int d y\left|\psi\left(r^{\prime}\right)\right|^{2} U\left(r-r^{\prime}\right)\right)
$$

$$
N=\int d r|\psi|^{2}
$$

- Hydrodynamic form of the equation
- Bernoulli-like equation with quantum pressure

For: $\quad U(r)=g \delta(r)$

$$
\begin{gathered}
\frac{\partial \rho}{\partial t}+\frac{\hbar}{m} \boldsymbol{\nabla} \cdot(\rho \boldsymbol{\nabla} \phi)=0 \\
\hbar \frac{\partial \phi}{\partial t}+\frac{\hbar^{2}}{2 m}(\boldsymbol{\nabla} \phi)^{2}+g \rho+\frac{\hbar^{2}}{4 m}\left(\frac{(\boldsymbol{\nabla} \rho)^{2}}{2 \rho^{2}}-\frac{\nabla^{2} \rho}{\rho}\right)=0
\end{gathered}
$$

- Dispersion law by perturbation around homogenous solution

$$
\hbar \omega=\frac{\hbar^{2}}{m} \sqrt{\frac{k^{4}}{4}+\frac{m}{\hbar^{2}} \rho_{0} \hat{U}(k) k^{2}} \quad \hbar \omega=\frac{\hbar^{2}}{m} \sqrt{\frac{k^{4}}{4}+\frac{m}{\hbar^{2}} \rho_{0} k^{2}}
$$

For the Dirac potential

For soft core interaction

$$
U(x)=U_{0} \Theta(x-a)
$$

$$
\hat{U}(k)=4 \pi a U_{0}(\sin (k \cdot a) /(k \cdot a)-\cos (k \cdot a)) / k^{2}
$$

$$
\hat{U}(k)=2 \pi a \cdot J 1(k \cdot a) / k
$$

- roton minimum as precursor of crystallization
- pattern formation

Fig. 2. A three dimensional contour plot of density $|\psi|^{2}=0.3$ of a numerical Simulation of eqn. (1) in a 32^{3} box with periodic boundary conditions. As before the scheme conserves the total energy and mass and all conditions are the same as Fig. 1 but $U_{0}=0.02$ and $a=4$. a and b are two different view directions.

Fig. 1. We plot the density modulations $|\psi|^{2}$ (the dark points means a large mass concentration) of a numerical Simulation of eqn. (1) in a 128^{2} with periodic boundary conditions. We use a CrankNicholson scheme that conserves the total energy and mass. The potential interaction is modeled as a soft core interaction: $U\left(\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|\right)=U_{0} \theta\left(a-\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|\right)$, with $\theta(s)$ the Heaviside function. The mesh size is $d x=1$, the non-local interaction parameters are chosen as $a=8$ and $U_{0}=0.01$ (physical constants \hbar and m are 1), finally the initial condition is an uniform solution $\psi=1$ plus small fluctuations. In a) is an early stage of crystallization with the presence of dislocations while in b) is a late stage one gets a free-defect state.

- Regular pattern (hexagons in 2D, hcp in 3D)
- non commensurate crystal (not one atom per peak, similar to Nepomnyashchii)
- Long-wave/slow-time, short-scale/fast scale separation
- Homogenization technique
- Calculation of an Effective Lagrangian for the long/slow perturbations

$$
\mathcal{L}=-\int\left[\hbar \rho \frac{\partial \phi}{\partial t}+\frac{\hbar^{2}}{2 m}\left(\rho(\boldsymbol{\nabla} \phi)^{2}+\frac{1}{4 \rho}(\boldsymbol{\nabla} \rho)^{2}\right)\right] \mathrm{d} \boldsymbol{r}-\frac{1}{2} \int U\left(\left|\boldsymbol{r}-\boldsymbol{r}^{\prime}\right|\right) \rho(\boldsymbol{r}) \rho\left(\boldsymbol{r}^{\prime}\right) \mathrm{d} \boldsymbol{r} \mathrm{~d} \boldsymbol{r}^{\prime} .
$$

$$
\begin{gathered}
\rho(\boldsymbol{r}, t)=\rho_{0}(\boldsymbol{r}-\boldsymbol{u}(\boldsymbol{r}, t) \mid n(\boldsymbol{r}, t))+\tilde{\rho}(\boldsymbol{r}-\boldsymbol{u}, n, t)+\ldots \\
\phi(\boldsymbol{r}, t)=\Phi(\boldsymbol{r}, t)+\tilde{\phi}(\boldsymbol{r}-\boldsymbol{u}, n, t)+\ldots
\end{gathered}
$$

Where n, u and Phi are slow and large scale varying functions while ~ functions are rapid and short scale (on the order of the peak scale) varying functions.

Effective Lagrangian

$$
\begin{aligned}
\mathcal{L}_{e f f}=-\hbar n \frac{\partial \Phi}{\partial t}- & \frac{\hbar^{2}}{2 m}\left[n(\nabla \Phi)^{2}-\varrho_{i k}(n)\left(\nabla \Phi-\frac{m}{\hbar} \frac{\mathrm{D} u}{\mathrm{D} t}\right)_{i}\left(\nabla \Phi-\frac{m}{\hbar} \frac{\mathrm{D} u}{\mathrm{D} t}\right)_{k}\right]+ \\
& -\mathcal{E}(n)-\frac{1}{2} \lambda_{i k l m} \epsilon_{i k} \epsilon_{l m}
\end{aligned}
$$

where

$$
\frac{\mathrm{D} \boldsymbol{u}}{\mathrm{D} t}=\frac{\partial u}{\partial t}+\frac{\hbar}{m} \nabla \Phi \cdot \nabla \boldsymbol{u} .
$$

where the new parameters (rho, Epsilon, lambda's) come from explicit calculations based on the ground state solution on a cell unit.

Hamiltonian:

$$
\begin{aligned}
H & =\Phi_{t} \frac{\delta \mathcal{L}}{\delta \Phi_{t}}+\boldsymbol{u}_{t} \cdot \frac{\delta \mathcal{L}}{\delta \boldsymbol{u}_{t}}-\mathcal{L} \\
& =\frac{\hbar^{2}}{2 m}(n-\varrho(n))(\boldsymbol{\nabla} \Phi)^{2}+\frac{m \varrho}{2}\left(\frac{\mathrm{D} \boldsymbol{u}}{\mathrm{D} t}\right)^{2}+\mathcal{E}(n)+\frac{1}{2} \lambda_{i k l m} \epsilon_{i k} \epsilon_{l m}
\end{aligned}
$$

Calculations for $\rho_{i j}$

- Lagrangian for the fast and short phase:
$\mathcal{L}_{\tilde{\phi}}=-\frac{\hbar^{2}}{2 m} \int\left(2 \rho_{0} \boldsymbol{A} \cdot \boldsymbol{\nabla} \tilde{\phi}+\rho_{0}(\boldsymbol{\nabla} \tilde{\phi})^{2}\right) d \boldsymbol{r}, \quad$ where $\boldsymbol{A}=\left(\boldsymbol{\nabla} \Phi-(\boldsymbol{\nabla} \Phi \cdot \nabla) \boldsymbol{u}-\frac{m}{\hbar} \partial_{t} \boldsymbol{u}\right)$
- Euler-Lagrange equation:

$$
\boldsymbol{A} \cdot \boldsymbol{\nabla} \rho_{0}+\boldsymbol{\nabla} \cdot\left(\rho_{0} \boldsymbol{\nabla} \tilde{\phi}\right)=0 .
$$

- Periodic solution for the phase: $\quad \tilde{\phi}=K_{i} A_{i} \quad \nabla_{i} \rho_{0}+\boldsymbol{\nabla} \cdot\left(\rho_{0} \nabla K_{i}\right)=0$.
- So that the effective contribution (slow, large scale):

$$
\mathcal{L}_{\tilde{\phi}}=\frac{\hbar^{2}}{2 m} \int \varrho_{i j} A_{i} A_{j} d r \quad \rho_{i j}=\frac{1}{V} \int_{V} \rho_{0}(r) \nabla K_{i} \cdot \nabla K_{j} d r
$$

- for isotropic ground-state solutions we can assume: $\varrho_{i j}=\varrho(n) \delta_{i j}$

Superfluid dynamics at $\mathrm{T}=0$

$$
\begin{aligned}
\hbar \frac{\partial \Phi}{\partial t}+\frac{\hbar^{2}}{2 m}\left[(\nabla \Phi)^{2}-\varrho^{\prime}(n)\left(\nabla \Phi-\frac{m}{\hbar} \frac{\mathrm{D} \boldsymbol{u}}{\mathrm{D} t}\right)^{2}\right]+\mathcal{E}^{\prime}(n)+\frac{1}{2} \lambda_{i k l m}^{\prime} \epsilon_{i k} \epsilon_{l m} & =0 \\
m \frac{\partial}{\partial t}\left[\varrho(n)\left(\frac{\mathrm{D} u_{i}}{\mathrm{D} t}-\frac{\hbar}{m} \frac{\partial \Phi}{\partial x_{i}}\right)\right]-\frac{\partial}{\partial x_{k}}\left(\lambda_{i k l m} \epsilon_{l m}\right)+\hbar \frac{\partial}{\partial x_{k}}\left[\varrho\left(\frac{\mathrm{D} u_{i}}{\mathrm{D} t}-\frac{\hbar}{m} \frac{\partial \Phi}{\partial x_{i}}\right) \frac{\partial \Phi}{\partial x_{k}}\right] & =0 \\
\frac{\partial n}{\partial t}+\frac{\hbar}{m} \nabla \cdot(n \nabla \Phi)-\frac{\hbar}{m} \frac{\partial}{\partial x_{k}}\left(\varrho(n)\left(\delta_{i k}-\partial_{k} u_{i}\right)\left(\partial_{i} \Phi-\frac{m}{\hbar} \frac{\mathrm{D} u_{i}}{\mathrm{D} t}\right)\right) & =0
\end{aligned}
$$

General Lagrangian structure besides the particular G-P calculations (Son (2005))

Intimous-Implicit coupling between elasticity and quantum phase

With the B.C.

$$
\frac{\hbar}{m}\left(n \partial_{k} \Phi-\varrho\left(\delta_{i k}-\partial_{k} u_{i}\right)\left(\partial_{i} \Phi-\frac{m}{\hbar} \frac{\mathrm{D} u_{i}}{\mathrm{D} t}\right)\right) \hat{e}_{k}=n V_{k} \hat{e}_{k}
$$

- small perturbations around $u=0$, zero phase gradient and constant peak density n .
- decoupling between shear waves and phase-compressive waves
- phase mode disappears at the transition supersolid-solid (when rhon-->n)

$$
\begin{gathered}
\frac{\partial^{2} \Phi}{\partial t^{2}}=\frac{\mathcal{E}^{\prime \prime}(n)}{m}\left(\varrho(n) \nabla^{2} \Phi+(n-\varrho(n)) \frac{\partial \boldsymbol{\nabla} \cdot \boldsymbol{u}}{\partial t}\right) \\
K \nabla^{2}(\boldsymbol{\nabla} \cdot \boldsymbol{u})=(n-\varrho(n))\left(\frac{\partial^{2}(\boldsymbol{\nabla} \cdot \boldsymbol{u})}{\partial t^{2}}-\frac{\hbar}{m} \frac{\partial \nabla^{2} \Phi}{\partial t}\right) \\
\left(v^{2}-\frac{K+4 \mu / 3}{m(n-\varrho)}\right)\left(v^{2}-\frac{\mathcal{E}^{\prime \prime}(n)}{m} \varrho\right)=v^{2}\left((n-\varrho) \frac{\mathcal{E}^{\prime \prime}(n)}{m n}\right)
\end{gathered}
$$

NCRI

- rotation of a container at constant angular velocity

$$
\nabla^{2} \Phi=0 \quad \text { in } \quad \Omega \quad \text { with } \quad \nabla \Phi \cdot \hat{e}=(m / \hbar)(\boldsymbol{\omega} \times \boldsymbol{r}) \cdot \hat{e} \quad \text { on } \quad \partial \Omega .
$$

- Moment of Inertia defined from the Energy: $\quad E=\frac{1}{2} I_{s s} \omega^{2}$

$$
I_{s s}=m(n-\varrho(n)) \mathcal{I}_{p f}+m \varrho(n) \mathcal{I}_{r b}
$$

- Relative change of moment of inertia as Supersolid phase appears:

$$
\left(I_{s s}-I_{r b}\right) / I_{r b}=-(1-\varrho(n) / n)\left(1-\mathcal{I}_{p f} / \mathcal{I}_{r b}\right)
$$

Numerical simulation of G-P at 2D

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

No mass flow under pressure gradients

Conclusions-Perspectives

- Model of Supersolid with a complex coupling between elasticity and phase
- shows the apparent paradoxal effects of NCRI and absence of mass flow under stress
- 3D simulations
- Role of the disorder
- Annular geometry (ID calculations)

