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Figure 1 Torsional oscillator used in this experiment. The design of the oscillator follows
those used by Reppy and collaborators'®, The Vycor glass disk has a diameter of 15 mm
and a thickness of 4mm. The cylindrical drive and detection electrodes are aligned
oft-centre from, and are capacitively coupled to, the central electrode attached to the
torsion bob., The signal from the detection electrode (proportional to the amplitude) is sent
to the lock-in amplifier through a current preamplifier. The lock-in provides a driving
vaoltage, which controls the amplitude of oscillation, to complete the phase-locked loop
and keep the oscillator in resonance. The mechanical @ of the oscillator is 10° at low
temperature, allowing the determination of the resonant period to a precision of 0.2 ns.
The resonant period is 867,640 ns when the Viycor disk is empty, and is 971,900 ns near
(.2 K when pressurized with salid “He at 62 bar. Measurements were also made with a
dummy torsional cell with the Vycor glass disk replaced by a solid brass disk.
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Fig. 4. Phase diagram of liquid and solid helium.
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Remarks

® Can we have a Supersolid? (Penrose and

Onsager 1956, Andreev and Lifshitz (1969),
Chester (1970), Prokof’ev and Svistunov
(2005)...)

® What should be a Supersolid? (Leggett
(1970)...)

® Role of the disorder (Rittner and Reppy
(2006)).
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experimental puzzle

paradox between NCRI and absence of flow
out of grain boundaries

annealing effects and role of the disorder

Gross-Pitaevskii approach for describing
supersolid state




G-P Equation

) ral-iﬂ HE 9 ' Irre ! f J 2
hr = Ly w+w/drb(r ), )7,

Mean-field approach

valide in the dilute gas limit

. . . _ P
semi-classical equation: V= \/pe

NLS limit for Dirac potential

Quantitative agreement with BEC and
qualitative description of liquid He4.




® Hamiltonian system (or also Lagrangian
structure)

® Conservation of the number of particle

N = [ drlyP




® Hydrodynamic form of the equation

® Bernoulli-like equation with quantum
pressure

For: U(r)=go(r)

dp h

(Vo) y> L,
p




® Dispersion law by perturbation around
homogenous solution

hz k4 m A 2 4 :
ho = \/ +thoU(k)k2 h(o—fln\/kJrn;pokz For the Dirac

m\ 4

4 h potential

For soft core interaction U(x) =Uy®(x—a)

U (k) = 4maUy(sin(k-a)/(k-a) — cos(k-a))/k*

Uk)=2ra-J1(k-a)/k




® roton minimum as precursor of
crystallization

® pattern formation
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Fig. 2. A three dimensional contour plot of density |1/ = 0.3 of a numerical Simulation of eqn. (1)
in a 32° box with periodic boundary conditions. As before the scheme conserves the total energy and
mass and all conditions are the same as Fig. 1 but U; = 0.02 and a = 4. a and b are two different view
directions.




Fig. 1. We plot the density modulations [¢/|* (the dark points means a large mass concentration)
of a numerical Simulation of eqn. (1) in a 128° with periodic boundary conditions. We use a Crank-
Nicholson scheme that conserves the total energy and mass. The potential interaction is modeled as a
soft core interaction: U(|r — v'|) = Ubf(a — |r — r'|), with 8(s) the Heaviside function. The mesh size
is dr = 1, the non-local interaction parameters are chosen as a = 8 and U, = (.01 (physical constants
h and m are 1), finally the initial condition is an uniform solution ¥ = 1 plus small fluctuations. In a)
is an early stage of crystallization with the presence of dislocations while in b) is a late stage one gets
a free-defect state.




Regular pattern (hexagons in 2D, hcp in 3D)

non commensurate crystal (not one atom
per peak, similar to Nepomnyashchii)

Long-wave/slow-time, short-scale/fast scale
separation

Homogenization technique

Calculation of an Effective Lagrangian for the
long/slow perturbations




o(r,t) = d(r,t) + o(r —u,n,t) + ...

Where n, u and Phi are slow and large scale
varying functions while ~ functions are rapid
and short scale (on the order of the peak
scale) varying functions.




Effective Lagrangian
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where the new parameters (rho, Epsilon, lambda’s) come from
explicit calculations based on the ground state solution on a cell unit.

Hamiltonian: sp sp
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Calculations for i

® |agrangian for the fast and short phase:

A2

2711

f (EpnA Vo + pn{v*.i?’}g) dr, where A = (V@ — (V& V)u — T,u)

. A-Vpy+V-(pVo)=0.
® Euler-Lagrange equation: o (p” )

® Periodic solution for the phase: ¢ = K4, Vipo + V- (0 VK;) = 0.

® So that the effective contribution (slow, large scale):

2 1
p— h /Ql_}ﬂfﬂj dr le:V/VpO(r)VKlVKJdr

“ 2m

® for isotropic ground-state solutions we can assume:




Superfluid dynamics at T=0
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General Lagrangian structure besides the particular G-P calculations (Son (2005))

Intimous-Implicit coupling between elasticity and quantum phase
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Sound waves

® small perturbations around u=0, zero phase gradient and
constant peak density n.

® decoupling between shear waves and phase-compressive
waves

® phase mode disappears at the transition supersolid-solid
(when rhon-->n)
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® rotation of a container at constant angular velocity
V2P =0 in N with V&-é=(m/A)(wxr)-é on a1.

1 2

Moment of Inertia defined from the Energy: E = Lsw

Iss = T”‘{” — Q{”jjjﬁf + TH'QI:H}I”'b

Relative change of moment of inertia as Supersolid phase
appears:

({ss — Ip) /1y = —(1 — o(n)/n)(1 — Iil?f.';I?*-b}
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Conclusions-Perspectives

Model of Supersolid with a complex
coupling between elasticity and phase

shows the apparent paradoxal effects of
NCRI and absence of mass flow under stress

3D simulations
Role of the disorder

Annular geometry (1D calculations)




