Experimental demonstration of anyonic

 statistics with photonsJKP
Christian Schmid
Witlef Wieczorek
Reinhold Pohlner
Nikolai Kiesel
Harald Weinfurter

[^0]
Overview

- In condensed matter anyons appear in ground or excited states of two dimensional systems:
- Superconducting electrons in a strong magnetic field (Fractional Quantum Hall Effect)
- Lattice systems (Kitaev's toric code/hexagonal lattice, Wen's models, Ioffe's model, Freedman-NayakShtengel model...)
- Energy gap protects anyons:
- if I get anyonic statistics I do not need gap.
- Relatively large systems:
- employ largest implementable system.
- Close the gap between theory and experiment.

Overview

- Anyonic statistics is a property of a (highly entangled) wavefunction.
- Engineer states rather than cool - same effect.
- Employ the toric code model.
- One plaquette: one anyon and path of another.
- No Hamiltonian: is like algorithmic encoding.
- How to generate, manipulate, measure anyons?
- The control manipulations are exactly the same with Hamiltonian or larger system.
- Future work: $\quad H \neq 0, L \gg 1$

Anyons

Anyons have non-trivial statistics.

Consider as composite particles of fluxes and charges. Then phase is like the Aharonov-Bohm effect.

Anyons: do they live among us?

Create two localized "things" with effective charge and magnetic field.

Anyons: do they live among us?

Create two localized "things" with effective charge and magnetic field.
Braid them -> PHASE FACTOR: Effective gauge theory!

Toric Code (also ECC)

Consider the lattice Hamiltonian

$$
H=-\sum_{p} Z_{1} Z_{2} Z_{3} Z_{4}-\sum_{s} X_{1} X_{2} X_{3} X_{4}
$$

Spins live on the vertices.

There are two different types of plaquettes, p and s, which support ZZZZ or XXXX interactions respectively.
The four spin interactions involve spins at the same plaquette.

Toric Code

Consider the lattice Hamiltonian

$$
H=-\sum_{p} Z_{1} Z_{2} Z_{3} Z_{4}-\sum_{s} X_{1} X_{2} X_{3} X_{4}
$$

It is easy to find the ground state of this Hamiltonian.
First observe that
$\left[H, Z_{1} Z_{2} Z_{3} Z_{4}\right]=0,\left[H, X_{1} X_{2} X_{3} X_{4}\right]=0$
$\left[X_{1} X_{2} X_{3} X_{4}, Z_{1} Z_{2} Z_{3} Z_{4}\right]=0$
$\left(X_{1} X_{2} X_{3} X_{4}\right)^{2}=\left(Z_{1} Z_{2} Z_{3} Z_{4}\right)^{2}=1$
Eigenvalues of $X X X X$ and $Z Z Z Z$ terms are 1 and -1

Toric Code

Consider the lattice Hamiltonian

$$
H=-\sum_{p} Z_{1} Z_{2} Z_{3} Z_{4}-\sum_{s} X_{1} X_{2} X_{3} X_{4}
$$

Hence, the ground state is:

$$
|\xi\rangle=\prod\left(I+X_{1} X_{2} X_{3} X_{4}\right)_{p}|00 \ldots 0\rangle
$$

The $100 \ldots 0\rangle$ state is a ground state of the $Z Z Z Z$ terms and the ($I+X X X X$) term projects that state to the ground state of the XXXX term.
[F. Verstraete, et al. PRL, 96, 220601 (2006)]

Toric Code

- Excitations are produced by Z or X rotations of one spin.
- These rotations anticommute with the X or Z part of the Hamiltonian, respectively.
- Z excitations on s plaquettes.
- X excitations on p plaquettes.
- X and Z excitations behave as anyons with respect to each other.

One plaquette

It is possible to demonstrate the anyonic properties with one s plaquette only. Then the Hamiltonian takes the form

$$
\begin{aligned}
H= & -X_{1} X_{2} X_{3} X_{4} \\
& -Z_{1} Z_{2}-Z_{2} Z_{3}-Z_{3} Z_{4}-Z_{4} Z_{1}
\end{aligned}
$$

The following state is the ground state

$$
\begin{aligned}
|\xi\rangle & =\frac{1}{\sqrt{2}}\left(I+X_{1} X_{2} X_{3} X_{4}\right)\left|0_{1} 0_{2} 0_{3} 0_{4}\right\rangle \\
& =\frac{1}{\sqrt{2}}\left(\left|0_{1} 0_{2} 0_{3} 0_{4}\right\rangle+\left|1_{1} 1_{2} 1_{3} 1_{4}\right\rangle\right)
\end{aligned}
$$

GHZ state!

One plaquette

One can demonstrate the anyonic statistics with only this plaquette. First create excitation with Z rotation at one spin:

$$
|Z\rangle=Z_{1}|\xi\rangle=\frac{1}{\sqrt{2}}\left(\left|0_{1} 0_{2} 0_{3} 0_{4}\right\rangle-\left|1_{1} 1_{2} 1_{3} 1_{4}\right\rangle\right)
$$

Energy of ground state

$$
H|\xi\rangle=-5|\xi\rangle
$$

Energy of excited state

$$
H|Z\rangle=-3|Z\rangle
$$

One plaquette

One can demonstrate the anyonic statistics with only this plaquette. First create excitation with Z rotation at one spin:

$$
|Z\rangle=Z_{1}|\xi\rangle=\frac{1}{\sqrt{2}}\left(\left|0_{1} 0_{2} 0_{3} 0_{4}\right\rangle-\left|1_{1} 1_{2} 1_{3} 1_{4}\right\rangle\right)
$$

Now we want to move an X anyon around the Z one. What we really want is the path that it traces and this can be spanned on the spins 1,2,3,4.
Note that the second anyon from the Z rotation is outside the system.

One plaquette

One can demonstrate the anyonic statistics with only this plaquette. First create excitation with Z rotation at one spin:

$$
|Z\rangle=Z_{1}|\xi\rangle=\frac{1}{\sqrt{2}}\left(\left|0_{1} 0_{2} 0_{3} 0_{4}\right\rangle-\left|1_{1} 1_{2} 1_{3} 1_{4}\right\rangle\right)
$$

Assume there is an X anyon outside the system. With successive X rotations it can be transported around the plaquette.

One plaquette

One can demonstrate the anyonic statistics with only this plaquette. First create excitation with Z rotation at one spin:

$$
|Z\rangle=Z_{1}|\xi\rangle=\frac{1}{\sqrt{2}}\left(\left|0_{1} 0_{2} 0_{3} 0_{4}\right\rangle-\left|1_{1} 1_{2} 1_{3} 1_{4}\right\rangle\right)
$$

Assume there is an X anyon outside the system. With successive X rotations it can be transported around the plaquette.

One plaquette

One can demonstrate the anyonic statistics with only this plaquette. First create excitation with Z rotation at one spin:

$$
|Z\rangle=Z_{1}|\xi\rangle=\frac{1}{\sqrt{2}}\left(\left|0_{1} 0_{2} 0_{3} 0_{4}\right\rangle-\left|1_{1} 1_{2} 1_{3} 1_{4}\right\rangle\right)
$$

Assume there is an X anyon outside the system. With successive X rotations it can be transported around the plaquette.

One plaquette

One can demonstrate the anyonic statistics with only this plaquette. First create excitation with Z rotation at one spin:

$$
|Z\rangle=Z_{1}|\xi\rangle=\frac{1}{\sqrt{2}}\left(\left|0_{1} 0_{2} 0_{3} 0_{4}\right\rangle-\left|1_{1} 1_{2} 1_{3} 1_{4}\right\rangle\right)
$$

Assume there is an X anyon outside the system. With successive X rotations it can be transported around the plaquette.

One plaquette

One can demonstrate the anyonic statistics with only this plaquette. First create excitation with Z rotation at one spin:

$$
|Z\rangle=Z_{1}|\xi\rangle=\frac{1}{\sqrt{2}}\left(\left|0_{1} 0_{2} 0_{3} 0_{4}\right\rangle-\left|1_{1} 1_{2} 1_{3} 1_{4}\right\rangle\right)
$$

Assume there is an X anyon outside the system. With successive X rotations it can be transported around the plaquette.
The final state is given by:

$$
\begin{aligned}
& \mid \text { Final }\rangle=X_{1} X_{2} X_{3} X_{4}|Z\rangle= \\
& \left.-\frac{1}{\sqrt{2}}\left(\left|0_{1} 0_{2} 0_{3} 0_{4}\right\rangle-\left|1_{1} 1_{2} 1_{3} 1_{4}\right\rangle\right)=-\mid \text { Initial }\right\rangle
\end{aligned}
$$

One plaquette

$$
\begin{aligned}
& \mid \text { Final }\rangle=X_{1} X_{2} X_{3} X_{4}|Z\rangle= \\
& \left.-\frac{1}{\sqrt{2}}\left(\left|0_{1} 0_{2} 0_{3} 0_{4}\right\rangle-\left|1_{1} 1_{2} 1_{3} 1_{4}\right\rangle\right)=-\mid \text { Initial }\right\rangle
\end{aligned}
$$

After a complete rotation of an X anyon around a Z anyon (two successive exchanges) the resulting state gets a phase π (a minus sign): hence ANYONS! A property we used is that $X_{1} X_{2} X_{3} X_{4}|\xi\rangle=|\xi\rangle$ which is true.
A crucial point is that these properties can be demonstrated without the Hamiltonian!!!
An interference experiment can reveal the presence of the phase factor.

Interference Experiment

Create state

$$
|\xi\rangle=\frac{1}{\sqrt{2}}\left(\left|0_{1} 0_{2} 0_{3} 0_{4}\right\rangle+\left|1_{1} 1_{2} 1_{3} 1_{4}\right\rangle\right)
$$

With half of an Z rotation on spin $1, Z_{1}^{1 / 2}$, one can create the superposition between an Z anyon and the vacuum:

$$
e^{-i \varphi} Z_{1}^{1 / 2}|\xi\rangle=(|\xi\rangle+i|Z\rangle) / \sqrt{2}
$$

for $\varphi=3 \pi / 4$. Then the X anyon is rotated around it:

$$
X_{1} X_{2} X_{3} X_{4}(|\xi\rangle+i|Z\rangle) / \sqrt{2}=(|\xi\rangle-i|Z\rangle) / \sqrt{2}
$$

Then we make the inverse rotation

$$
e^{i \varphi} Z_{1}^{-1 / 2}(|\xi\rangle-i|Z\rangle) / \sqrt{2}=|\mathrm{Z}\rangle
$$

Interference Experiment

That we obtained the $|Z\rangle$ state is due to the minus sign produced from the anyonic statistics.
If it wasn't there then we would have returned to the vacuum state $|\xi\rangle$.
Distinguish between $|\xi\rangle$ and $|Z\rangle$ states:
$H^{\otimes 4}|\xi\rangle$ has even number of 1 's.
$H^{\otimes 4}|Z\rangle$ has odd number of 1's.

$$
H^{\otimes 4}|\xi\rangle \propto|0000\rangle+|0011\rangle+|0101\rangle+|0110\rangle+|1001\rangle+|1010\rangle+|1100\rangle+|1111\rangle
$$

$$
H^{\otimes 4}|Z\rangle \propto|0001\rangle+|0010\rangle+|0100\rangle+|1000\rangle+|0111\rangle+|1011\rangle+|1101\rangle+|1110\rangle
$$

Experimental process (preliminary)

Qubit states 0 and 1 are encoded in the polarization, V and H, of four photonic modes.

The states that come from this setup are of the form:

$$
\begin{gathered}
|\Psi\rangle=a|G H Z\rangle+b|E P R\rangle \otimes|E P R\rangle= \\
a(|H H H H\rangle+|V V V V\rangle)+
\end{gathered}
$$

$$
\begin{aligned}
& b(|V H V H\rangle+|H V V H\rangle+|V H H V\rangle+|H V H V\rangle) \text { n } \\
& \text { Measurements and }
\end{aligned}
$$

Experimental process (preliminary)

Consider correlations:

$$
\operatorname{tr}\left[\left(\cos \gamma \sigma^{x}+\sin \gamma \sigma^{y}\right)^{\otimes 4}|Z\rangle\langle Z|\right]=-\cos (4 \gamma)
$$

Visibility > 64\%
Fidelity:

$$
F=\left|a_{1}\right|^{2}+\left|a_{16}\right|^{2}+a_{1}^{*} a_{16}+a_{1} a_{16}^{*}>70 \%
$$

Witness for genuine 4-qubit entanglement:

$$
\begin{aligned}
& W_{G H Z_{4}}=\frac{1}{2} \mathbf{1}-\left|G H Z_{4}\right\rangle\left\langle G H Z_{4}\right| \\
& \Rightarrow \operatorname{tr}\left(W_{G H Z_{4}} \rho\right)<0
\end{aligned}
$$

\square Anyon

Conclusions

- Invariance of vacuum w.r.t. to closed paths:
$|Z\rangle=Z_{i}|\xi\rangle$
- Fusion rules: $Z_{i} Z_{j}|\xi\rangle=|\xi\rangle \quad e \times e=1$

Useful for:

$$
Z_{i} Z_{j}|Z\rangle=|Z\rangle \quad \int \quad 1 \times e=e
$$

- quantum anonymous broadcasting,
- quantum error correction,
- topological quantum memory (?) ...

Non-abelian statistics can be detected similarly.
Implement Hamiltonian and larger systems.

[^0]: tume

