Superfluid Phases of a Fermi Gas with Unequal Spin Populations

Guthrie Partridge Ramsey Kamar Wenhui Li Yean-an Liao

Special thanks to Henk Stoof

Pairing with Mismatched Fermi Surfaces

e.g. magnetized superconductor

Many predictions since 1963 (many recent cold atom theory papers):

- Fundamental incompatibility between magnetism and superconductivity

 straightforward to make a polarized atomic gas
- Implications for nuclei, QCD, pairing of quarks in neutron stars

Unequal Spin Populations with Atoms

Use RF sweeps to transfer population between hf levels of ⁶Li

Define polarization $P = (N_1 - N_2) / (N_1 + N_2)$

P controlled to be in the range 0 < P < 1

Measure *P* by independent probes of $|1\rangle$ and $|2\rangle$

Experiments with ⁶Li at MIT and Rice (*Science*, 2006)

Images Show Phase Separation - Unitarity

- 1. Paired core 2. Sharp phase boundaries 3
 - 3. Core deformation

P=0

P = 0.18

P = 0.37

Dark center indicates paired core

P = 0.6

P = 0.79

P = 0.95

Partridge et al., PRL 97, 190407 (2006)

Deformation of Superfluid Core

Deformation produces a characteristic dip in the axial difference distribution The core is compressed axially with increasing *P*

Deformation Produced by Surface Tension

Theory without surface tension

T.N. de Silva and E.J. Mueller, PRL 97, 070402 (2006)

Calculation by M. Haque and H.T.C.Stoof

Deformation is produced by surface tension at the superfluid/normal phase boundary \rightarrow phase separation *requires* surface tension

3D Density Reconstruction - Atom Tomography

Column densities (cut through image)

Phase boundary is very steep

Reconstructed real-space densities using Abel transform (thanks to E. Mueller for code)

Central core is evenly paired

Central Core is Evenly Paired

No Clogston limit: atoms paired even for $\Delta E_{\rm F} > \Delta/2^{\frac{1}{2}}$

Temperature Dependence-2 Regimes

Low temperature: $T < 0.05 T_F$

- sharp phase boundary
- paired core for all P

"High" temperature: $T \approx 0.2 T_F$

- no distortion
- partially polarized shell
- paired center up to finite P

High T Phase also has Paired Center

Evenly paired for nearly all P

No Clogston limit

Theory by C-C Chien, Q Chen, Y He, and K Levin, cond-mat/0612103:

Center also paired for low P, but becomes unpaired for P > 60-70%

Clogston limit

Proposed Phase Diagram at Unitarity

M. Parish *et al.*, Nature Phys. **3**, 124 (2007)

C-C Chien, Q Chen, Y He, K Levin, cond-mat/0612103

Proposed Phase Diagram at Unitarity

- sharp phase boundary
- distortions from surf. tension at phase boundary
- paired core for all P

 $(N_1 - N_2)/(N_1 + N_2)$

Intermediate T-Phase Separation for $P > P_c$

 $T \approx 0.1 T_{\rm F}$

Partridge et al., Science 311, 503 (2006)

Comparison with MIT Data

Subsequent to our paper, MIT reported *in-situ* images showing paired core:

Shin, ..., Ketterle, PRL **97**, 030401 (2006)

- partially polarized shell
- no distortions
- fully paired center only to finite P

Compares with our high temperature data:

- partially polarized shell
- no distortions
- fully paired center only to finite P

Surface Tension Effects Expected in MIT Expt.

Observation of Phase Separation in a Strongly Interacting Imbalanced Fermi Gas

Y. Shin,* M. W. Zwierlein, C. H. Schunck, A. Schirotzek, and W. Ketterle

Department of Physics, MIT-Harvard Center for Ultracold Atoms, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA (Received 15 June 2006; published 18 July 2006; corrected 21 July 2006)

M. Haque and H.T.C. Stoof, cond-mat/0701464

Evenly paired center does *not* prove phase separation – property shared by the Sarma phase

No evidence of deformation

Yes Phase separation Maybe Sarma phase No Clogston limit

Clogston limit

- No FFLO
- No DFS

Surface tension between fully paired and fully polarized phases \rightarrow Smoking gun for phase separation

Open Questions

- Why no Clogston limit in phase separated phase?
- Is MIT data phase separated or Sarma? Why no surface tension?
- Problems with MIT *T* fitting?
- Geometry dependence?
- Future
 - map phase diagram vs. *T*, *P*, $k_{\rm F}a$
 - search for FFLO phase

M. Parish *et al.*, Nature Phys. **3**, 124 (2007)

Guthrie Partridge

Yean-an Liao

Henk Stoof