Fluctuating quantum spin nematics

Tarun Grover (Indian Institute of Science, Bangalore)

T. Senthil (MIT)

Quantum magnetism of Mott insulators

Electronic Mott insulators - charges localize below Some energy scale "U"

Active low energy degree of freedom - electron

The some energy scale "U" Fate of local moments at low temperature?? (Typically J~t²>0;) interaction, ring t ~ electron hopping exchange, etc.

Mott insulators of S = 1 bosons $I_{mambelow}$

5 Imambekov et. al. '83

7ip 02

Focus on odd# of bosons per site

Low energy physics: S=1 quantum magnet

To leading order in t/v,

Heff $\approx -J \sum_{\langle rr' \rangle} \vec{s}_r \cdot \vec{s}_r - k \sum_{\langle rr' \rangle} (\vec{s}_r \cdot \vec{s}_r)^2$

Biquadratic term natural for bosons.

Tuning J/K in optical lattices of Na²³

Why are bosons interesting for quantum magnetism?

- 1. Large biquadratic term
 - =) easy access to phenomena not so
- commonly seen in electronic quantum magnets
- 2. Possible route to exotic phenomena
 - (quantum spin liquids, Landau-forbidden quantum
 - phase transitions, ...) in natural models

The problem

$$H = -\sum_{r'} J_{rr}, \vec{S}_r, \vec{S}_r, -\sum_{r'} k_{rr'} \left(\vec{S}_r, \vec{S}_r, \right)^2$$

?? Properties in various dimensions??

More interesting physics when $|\mathcal{T}_{K}| \lesssim o(1)$

natural for bosonic Mott insulators.

Spin nematic ordering in d = 2,3

Mean field theory: Biquadratic term

(Chen, Levy '73)

Favors spin nematic order

$$Q_{xB} = \left(\frac{S_x S_B + S_B S_x}{Z} - \frac{2S_{xB}}{3} \right) \neq 0$$

though $\langle \vec{S} \rangle = 0$.

Confirmed through Monte Carlo calculations.

(Harada, Kawashima 02, 03)

Physics of the spin nematic

Spontaneous single-ion anisotropy without magnetic ordering Breaks spin rotation but not time reversal Spons fluctuale in a single plane perpendicular to a spontaneous hard axis d.

??``Disordered spin nematic" in one dimension??

In d=1 spin nematic order 15 quantum fluctuations. un stable to

Old proposal: Featureless gapped paramagnetic ground state ("disordered spin nematic")
analagous to Haldane blace of (Chubukov '91) - analogous to Haldane phase of antiferro S=1 chains.

(Lauchli et. al. 05) However no evidence for such a state

Dimer order in d= 1

 True ground state: a dimerized valence bond solid paramagnet

Dimer order spontaneously breaks lattice translation symmetry

Towards one dimension: killing the spin nematic

Towards one dimension: killing the spin nematic Harada, Kawashima,

Weaken vertical bonds

by a factor & relative

Troyer '67)

to horizontal ones

> Increase quantum fluctuations

Eventually lose nematic order beyond some critical A.

Harada, Kawashima,

Troyer '07

Phase diagram

Natural regime for Mott insulator in (Quadrupolar) Ferromagnetic Nematic Neel Ha I dane Dimer

Quantum phase transition out of the spin nematic

 Nematic-dimer transition seems to be second order despite their distinct broken symmetries

(Landau-forbidden)

Estimates for some critical exponents available.

Questions

1. Why no featureless ``disordered spin nematic" in the 1d chain?

2. Mechanism for appearance of dimer order when nematic ordering is destroyed?

3. Theory of possible Landau-forbidden spin nematic- dimer transition?

Topological defects of the spin nematic

Spontaneous hard axis
$$\hat{J} \in S^2/\mathbb{Z}_2$$

(as $\hat{J} = L - \hat{J}$ are the same state)
 \Rightarrow Point \mathbb{Z}_2 vortices ("disclinations") in $d=2$.
 $\hat{J} = \frac{1}{2} + \frac{1}$

Killing nematic order – role of defects

Insights from theory of classical nematics. (Lammert et al. T Conventional isotropic "Topological
isotropic Nematic

> Disclination core energy

Killing nematic order – role of defects

"Disclination core energy"

Quantum is different

Killing the nematic Dimerized paramagnet by condensing "Topological" (Increase disclinations leads baramagnet quantum to dimer order fluctuations) due to quantum Spin nematic Berry phase effects core energy"

Berry phases of the defects

Consider single
$$S=1$$
 moment in time varying hard axis $JL = (\hat{J}(H).\hat{S})^2$
Adiabatic evolution of \hat{J} to $-\hat{J}$
 $= | 14gd \rangle \longrightarrow -|14gd \rangle$

Berry phases of the defects

Drag disclination in loop enclosing a site) at that site $J \rightarrow -J$ acquire phase of T.

=) Defects move on sites of dual lattice

With TI-flux thru each plaquette.

Berry phases and dimerization

Implication: Defects transform nontrivially under lattice translations

-) if defects condense
 - (a) spin nematic order is destroyed
 - (b) lattice translation symmetry is booken

leading to dimer order. (Similar conclusion in d=1)

Theory for the nematic-dimer transition

$$H_{eff} = H[\hat{d}] + H_{defect} + H_{stahshcal}$$
 $H[\hat{d}] \rightarrow dynamics of hard axis \hat{d}$
 $H_{defect} \rightarrow Z_{2}$ disclinations in background \bar{n} -flux per plaquette

H statisheal: impose d'acquires phase of TT on going around a defect

Continuum field theory for nematic-dimer transition-l

Heff not convenient due to statistical interaction "Duality" techniques => reformulate as S. = So [], and + Smonopole ("anisotropic NCCP2 model") B = 3- component complex unit vector a = U(i) gauge field coupled minimally to D

5 monspole doubled space-time monopoles of U(i) gauge field

Continuum field theory for the nematic-dimer transition-II

Nematic order parameter $Q_{p} \sim \left(\stackrel{\sim}{D}_{x} \stackrel{\sim}{D}_{y} + \stackrel{\sim}{D}_{y} \stackrel{\sim}{D}_{z} - \stackrel{\sim}{S}_{y} \right)$

Dimer order parameter of Single monopole

Transition described by condensation

Single monopole

Sperator

of D

Crude estimate of instanton scaling dimensions

$$S = S_o(\vec{D}, a_\mu) + S_{monopole}$$

Crude estimate suggests Smonopole may be irrelevant!

=) 2nd order nematic-dimer transition

With a 'deconfined' quantum critical point.

Consequences for numerics

Most spectacular .- Enlarged symmetry at the critical point:

Dimer order parameter -> XY-like near critical point

=) Power law for vertical dimer order with same exponent as horizontal dimer order!

Future issues

Most important - direct simulation of the action $S_0(\vec{D}, a_{\mu})$ to (a) test for irrelevance of doubled monspoles

(b) calculate critical exponents.

Summary

```
Bosonic Mott insulators with spin:
  Natural model quantum magnets with
potentially exotic quantum phase transitions
(and quantum phases).
```