Molecules with electric and magnetic dipoles: magnetoassociation of alkali-metal with closed-shell atoms

Jeremy Hutson Durham University, UK

KITP 14 March 2013

Magnetoassociation to form alkali dimers

- Tune directly from atomic state (separated atoms) to molecular state by sweeping the magnetic field slowly (adiabatically) over an avoided crossing (Feshbach resonance)
- Magnetoassociation makes molecules in a single state, so a good starting-point for STIRAP to reach absolute ground state
- Alkali-metal dimers all have singlet ground states: no electron spin
- We would like to extend magnetoassociation to molecules with electron spin as well as electric dipole
- Molecules formed from an alkali-metal atom (²S)
 and a closed-shell atom (¹S, e.g. Sr, Yb) are a good option

Magnetoassociation to form alkali-metal dimers

- For alkali dimers, there is a complicated pattern of near-dissociation molecular levels below each atomic threshold, which can be tuned across threshold with magnetic fields
- A zero-energy Feshbach resonance occurs where each level crosses threshold. For example, for ⁸⁷Rb¹³³Cs below the lowest (aa) threshold:

Magnetoassociation to form alkali-metal dimers

- For alkali dimers, there is a complicated pattern of near-dissociation molecular levels below each atomic threshold, which can be tuned across threshold with magnetic fields
- A zero-energy Feshbach resonance occurs where each level crosses threshold. For example, for ⁸⁷Rb¹³³Cs below the lowest (aa) threshold:
- Alkali-metal atoms all have non-zero nuclear spin i and $s=\frac{1}{2}$
- Atomic quantum numbers are $f=i\pm\frac{1}{2}$ (at low field) and m_f
- Alkali dimers (²S+²S) have 2 potential curves, singlet (S=0) and triplet (S=1)
- Collision Hamiltonian is

 $H = T + \xi_a i_a \cdot s_a + \xi_b i_b \cdot s_b + H_{Zeeman}$

+ \sum_{s} |S> V_S(R) <S| +V_{dipolar}(R)

- Molecular states have different spin character to atomic states
- Hamiltonian couples molecular states to atomic states
 - => Feshbach resonances

The need for theory

- Need potential curves that reproduced energy levels to understand level patterns and avoided crossings for full control
- For two ²S atoms there are 5 sources of angular momentum:
 - 2 electron spins
 - 2 nuclear spins (I=7/2 for ¹³³Cs)
 - Mechanical rotation (L or N)
- In a magnetic field only M_{tot} is conserved (not total angular momentum)
- Basis set (s_ai_af_a)(s_bs_bf_b)FM_FLM_LM_{tot} or fully decoupled: labels such as 6g(6) indicate FL(M_F) [s, p, d... for L=0,1,2...]
- Homonuclear dimer is a special case: Far from avoided crossings, F, M_F and L are nearly conserved, and a small basis set is adequate
- Near avoided crossings, nothing but M_{tot} is conserved: over 200 spin basis functions (channels) sometimes needed.
- Hamiltonian couples everything:

$$H = T + \xi_a i_a s_a + \xi_b i_b s_b + H_{Zeeman}$$
$$+ \sum_{S} |S > V_S(R) < S| + V_{dipolar}(R)$$

Use coupled-channel expansion for molecular wavefunction

$$\Psi_n = \sum_i \Phi_i(SIL)\psi_i(R)$$

where $\Phi_i(SIL)$ are basis functions for (all the) angular momenta.

Substitute in Schrödinger equation to produce coupled radial equations:

$$\frac{d^2\psi_{jn}}{dR^2} = \sum_k \left[W_{jk}(R) - E_n \delta_{jk} \right] \psi_{kn}(R)$$

- For scattering, propagate coupled equations from short range (R ~ 5 a_0) to long range (1000 to 10000 a_0) and match to Bessel functions to get S-matrix; then scattering length $a(k) = (ik)^{-1} (1-S_{00})/(1+S_{00})$
- MOLSCAT program can converge on resonances [poles and zeroes in a(B)]
- Bound-state calculations (BOUND program) also use coupled-channel propagation approach, *not* radial basis set
 - Time *linear* in number of steps: no problem handling 200+ channels
 - Can propagate quickly to very long (Airy-based log-derivative propagator)
 - Can easily find bound states within 10 kHz of dissociation
- BOUND and MOLSCAT implement many different collision systems (alkali-alkali, atom-molecule, molecule-molecule): can plug in new subroutines for new cases.

What is different for alkali $(^{2}S) + ^{1}S$ atom systems?

- Only one molecular electronic state: $^{2}\Sigma$
- The molecular Hamiltonian
 H = T + V(r) + ξi.s + H_{Zeeman}
 is diagonal in atomic quantum numbers
- Curves correlating with different atomic hyperfine / Zeeman states are essentially parallel to one another (shifted by atomic energy)

What is different for alkali $(^{2}S) + ^{1}S$ atom systems?

- Only one molecular electronic state: $^{2}\Sigma$
- The molecular Hamiltonian
 H = T + V(r) + ξi.s + H_{Zeeman}
 is diagonal in atomic quantum numbers
- Curves correlating with different atomic hyperfine / Zeeman states are essentially parallel to one another (shifted by atomic energy)
- The molecular states lie parallel to the atomic thresholds (as a function of field) and have the same character
- There are crossings between molecular levels with $f=i+\frac{1}{2}$ and atomic thresholds with $f=i-\frac{1}{2}$ but no coupling
- => Feshbach resonances have zero width (i.e. do not exist)
- Fortunately, this is an oversimplification!

What makes magnetoassociation allowed?

What is there in the collision Hamiltonian that can couple states with the same L and m_f but different f? Usual Hamiltonian would be

 $H = T + V(R) + \xi i.s + B_z(g_i i_z + g_s s_z)$

- The atomic hyperfine interaction does *not* provide such a coupling: f is not a good quantum number at finite field, but the atomic and molecular states are nondegenerate eigenfunctions of $\xi_{i.s} + B_z(g_{ii_z}+g_ss_z)$ so are orthogonal => no coupling from an R-independent ξ
- But the atomic hyperfine coupling is actually *modified significantly at short range* by the presence of the 2nd atom
 - This provides a coupling that *does* mix the atomic and molecular states and can cause Feshbach resonances

[CCSD(T) calculations for RbSr with pseudopotentials]

Scattering lengths and masses

- As for the alkali-metal atoms, no *ab initio* potential is good enough to predict the absolute values of scattering lengths / binding energies: experimental measurements are essential.
- But once a binding energy is known for one isotopic combination, the ab initio potentials are good enough to predict mass-scaling.
- For heavier alkalis, binding energies (and thus crossing positions) depend substantially on isotope. E.g. for ⁸⁷RbYb:
- Axel Görlitz's group (Düsseldorf) has now measured binding energies for a several isotopologues of ⁸⁷Rb^{xxx}Yb.
- These allow fitting to produce potential curves to estimate resonance positions for any ⁸⁵RbYb or ⁸⁷RbYb species.
- But what are the widths?

How wide are the Feshbach resonances?

- Initial work on RbSr (using coupled-channel calculations) [PRL 105, 153201 (2010)] found resonance widths from 0.3 µG to 100 mG at fields between 30 G and 5000 G
- The numbers are right, but they don't provide much understanding!
- We have now developed a quantitative model based on Fermi Golden Rule that gives both insight and quantitative predictions of widths
- The Golden Rule gives a resonance width Γ (in energy) as $\Gamma = 2\pi | \int \Psi_{bound}^* H' \Psi_{free} d\tau |^2$
- This allows the magnetic field width Δ to be expressed as

 $\Delta = \pi \left[I_{m_f}(B) \right]^2 \left(I_{nk}^2 / k \right) / \left(a_{bg} \, \delta \mu_{res} \right)$

- $I_{m_f}(B)$ is a purely atomic matrix element of i.s between the two (field-dressed) states with a given f_{m_f}
- I_{nk} is a purely radial matrix element of $\Delta\xi(R)$ between the bound state and the continuum function at wavevector k (and I_{nk}^2/k is independent of k at low energy)
- a_{bg} is the background scattering length (for 1-channel scattering)
- $\delta \mu_{res}$ is the magnetic moment difference between the bound and free states (relative slope of the crossing states)

Atomic spin part gives strong field-dependence

$\Delta = \pi \left[I_{mf}(B) \right]^2 \left(I_{nk}^2 / k \right) / \left(a_{bg} \, \delta \mu_{res} \right)$

 $I_{mf}(B) = \langle a_1, m_f | i.s | a_2, m_f \rangle$ (between purely atomic field-dressed states)

- At limitingly high B, m_s and m_i are good quantum numbers and this reduces to $[I_{mf}(B)]^2 = \frac{1}{4}[i(i+1)-m_f^2+\frac{1}{4}]$ (from raising and lowering operators i₊f₋ etc.)
- But the zero-field atomic states are eigenfunctions of i.s
 => I_{m_f}(B) is zero at zero field and increases linearly with field
 => resonances that occur at low field have widths proportional to B².

Consequences for experiment:

- Low-field resonances are probably not a good bet: Need to design experiments to work at high field
- High-spin alkali metals have intrinsic advantages over low-spin ones

Radial integral is dominated by short range

$\Delta = \pi \left[I_{mf}(B) \right]^2 \left(I_{nk}^2 / k \right) / \left(a_{bg} \, \delta \mu_{res} \right)$

 $I_{nk} = \int \psi_{bound} \Delta \xi(R) \psi_{free} dR$ (between 1-d radial functions on *same* potential)

- Atomic and molecular states are orthogonal so R-independent term in $\xi(R)$ does not couple them; only $\Delta\xi(R)$ contributes and short range dominates
- Molecular state bound by < 10 GHz so stays almost in-phase with continuum

Radial integral is dominated by short range

$\Delta = \pi \left[I_{mf}(B) \right]^2 \left(I_{nk}^2 / k \right) / \left(a_{bg} \, \delta \mu_{res} \right)$

 $_{I}I_{nk} = \int \psi_{bound} * \Delta \xi(R) \psi_{free} dR$ (between 1-d radial functions on *same* potential)

- Atomic and molecular states are orthogonal so R-independent term in $\xi(R)$ does not couple them; only $\Delta\xi(R)$ contributes and short range dominates
- Molecular state bound by < 10 GHz so stays almost in-phase with continuum
- $\Delta\xi(R)$ is roughly proportional to ξ so heavy alkali metals give greater widths

Other factors

Δ proportional to $\int \psi_{\text{bound}}^* \Delta \xi(R) \psi_{\text{free}} dR |^2 / a_{\text{ba}}$

Large widths for very small a_{bq} are not really useful ($a_{bq}\Delta$ more relevant than Δ) But continuum normalisation at short range is proportional to $[1+(1-a_{ba}/a(bar))^2]^{1/2}$

=> Width is proportional to $|a_{bq}|$ when $|a_{bq}|$ » a(bar) Systems with large scattering length give the broadest resonances (but beware phase separation, as in ¹⁷⁴Yb + ⁸⁷Rb (Baumer et al.) Molecular states that "kiss" the threshold (small $\delta \mu_{res}$)

also give broad resonances

How wide are the Feshbach resonances in RbYb?

- ⁸⁵YbRb has some resonances below 1000 G but they are very narrow
 - ⁸⁵Rb¹⁷⁴Yb 1.5 μG near 100 G
 - ⁸⁵Rb¹⁷⁶Yb 0.9 mG near 900 G
- This illustrates the general B² dependence of widths at low field!
- ⁸⁷YbRb has much wider resonances but at higher field
 - ⁸⁷Rb¹⁶⁸Yb 0.6 mG near 800 G (low abundance)
 - ⁸⁷Rb¹⁷⁰Yb 6 mG near 2100 G
 - ⁸⁷Rb¹⁷⁴Yb 5 mG near 3000 G
- None of the ⁸⁷RbYb isotopologues is "lucky" enough to give double crossings that would result in enhanced widths

What about LiYb? (Gupta, Washington; Takahashi, Kyoto)

- Very little mass-scaling with Yb isotope
- Scattering length measured as |a| = 8(2) Å
- Widths are tiny for bosonic Yb (e.g. 2 μ G for ⁶Li¹⁷⁴Yb near 1000 G)
- But there is another possibility: bond formation transfers spin density from Li to Yb, so Li¹⁷¹Yb and Li¹⁷³Yb have hyperfine coupling from iyb
- $\Delta\xi(R)$ is considerably larger for Yb => wider resonances

What about LiYb? (Gupta, Washington; Takahashi, Kyoto)

- Very little mass-scaling with Yb isotope
- Scattering length measured as |a| = 8(2) Å
- Widths are tiny for bosonic Yb (e.g. 2 μ G for ⁶Li¹⁷⁴Yb near 1000 G)
- But there is another possibility: bond formation transfers spin density from Li to Yb, so Li¹⁷¹Yb and Li¹⁷³Yb have hyperfine coupling from iyb
- $\Delta\xi(R)$ is considerably larger for Yb => wider resonances
- Yb resonances have different selection rules: $\Delta m_s = -\Delta m_{yb} = \pm \frac{1}{2}$
- These are *decaying* resonances, but still pole-like
- Widths are around 0.2 mG
- This mechanism *will* give additional resonances for other alkalis, but not dramatically wider ones.

Conical intersections with ultracold molecules

- For a molecule with both an electron spin and an electric dipole moment, e.g. KRb (${}^{3}\Sigma$) or RbSr(${}^{2}\Sigma$)
- Two levels of different parity (different rotational quantum number) may cross as a function of magnetic field
- For polar molecules, an electric field can mix these two states

Conical intersections with ultracold molecules

- For a molecule with both an electron spin and an electric dipole moment, e.g. KRb (${}^{3}\Sigma$) or RbSr(${}^{2}\Sigma$)
- Two levels of different parity (different rotational quantum number) may cross as a function of magnetic field
- For polar molecules, an electric field can mix these two states
- Could create a conical intersection between eigenstates at the point where the Zeeman states are degenerate and the electric field passes through zero

Conical intersections with ultracold molecules

- For a molecule with both an electron spin and an electric dipole moment, e.g. KRb (${}^{3}\Sigma$) or RbSr(${}^{2}\Sigma$)
- Two levels of different parity (different rotational quantum number) may cross as a function of magnetic field
- For polar molecules, an electric field can mix these two states
- Could create a conical intersection between eigenstates at the point where the Zeeman states are degenerate and the electric field passes through zero

•

- Adding an optical potential produces a potential minimum that is nearly isotropic around a ring
- For bosonic ⁴¹K⁸⁷Rb, fields here are: B_z = 187 G dB_z/dX = 5 G/cm dF/dY = 6.7 kV/cm²

optical trap depth 7 μ K at 30 μ m.

Vortices with half-integer quantisation

- BEC is stable all around the ring if $a_{11} > 0$, $a_{22} > 0$ and $2a_{12} > -(a_{11}+a_{22})$.
- A conical intersection produces a *Berry phase*: along a path that encircles the intersection once, the internal molecular wavefunction (molecular rotation + spin) adiabatically changes sign. The resulting *twisted boundary condition* $\Phi(\varphi+2\pi) = -\Phi(\varphi)$ produces half-integer quantisation for a particle on a ring.
- In the Gross-Pitaevskii equation, persistent flow with half-integer angular momentum occurs if the chemical potential is large enough to overcome any residual anisotropy around the ring.
- The path around the conical intersection is originally slanted (because the crossing states have different magnetic moments) but this can be compensated with a small offset of the optical trap.

PRL 103, 083201 (2009)

- A variant based on microwave dressing could be applied to ⁸⁷Rb: PRA 84, 051402(R) (2011).
- Cute... But what is it good for?

Conclusions

- Atom pairing methods (magnetoassociation followed by STIRAP) can already produce ground-state alkali dimers below 1 μK [so far, KRb (JILA), Cs₂ (Innsbruck) + others by incoherent approaches].
- Magnetoassociation may be possible for alkali + Yb, alkali + Sr, etc.
- Widest resonances occur for heavy alkali metals at high fields
- Careful choice of Yb or Sr isotope is very important, and requires measurement of binding energy or scattering length for one isotopic combination
- Conical intersections may produce intriguing new physical effects
- Other topics we're working on:
 - Sympathetic cooling with ultracold H atoms (Maykel Leonardo González-Martínez)
 - MQDT for molecular collisions (James Croft)
 - Molecule formation in ⁸⁷RbCs (Ruth LeSueur with Innsbruck etc.)
 - Feshbach resonances in ⁸⁵RbCs and ⁸⁵Rb₂ (Caroline Blackley with Simon Cornish)
 - Cs-Cs potentials for Efimov physics (with Rudi Grimm & Paul Julienne)
 - Li-Li potentials for Fermi gases at unitarity (with Selim Jochim & Paul Julienne)

Thanks to...

- Durham group:
 - Former post-docs (now all in faculty positions):
 Pavel Soldán (Prague), Jesus Aldegunde (Salamanca), Piotr Żuchowski (Torun)
 - Current post-docs: Ruth Le Sueur, Daniel Brue (now IBM), Maykel Leonardo González-Martínez, Jesse Lutz
 - Ph D students: Alisdair Wallis (completed), James Croft (completed), Caroline Blackley, Matthew Frye (current)
 - Visiting Ph.D. students:
 - Hong Ran (Nanjing),
 - Liesbeth Janssen (Nijmegen),
 - Wojciech Skomorowski (Warsaw)
- Theory collaborator:
 - Paul Julienne (NIST): RbCs and Cs₂
- Experimental inspiration and discussions:
 - Florian Schreck, Axel Görlitz, Yoshiro Takahashi, Deep Gupta...
 - Gerard Meijer, Bas van de Meerakker (Berlin)
 - Rudi Grimm, Hanns-Christoph Nägerl (Innsbruck)
 - Ed Hinds, Mike Tarbutt (Imperial College)
 - Jun Ye, Heather Lewandowski (JILA)
 - Simon Cornish, Eckart Wrede, David Carty (Durham)
 - ... and many of their post-docs and students