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Magnetoassociation to form alkali dimers 

 

• Tune directly from atomic state (separated atoms) to molecular 
state by sweeping the magnetic field slowly (adiabatically) over an 
avoided crossing (Feshbach resonance) 

• Magnetoassociation makes molecules in a single state, so a good 
starting-point for STIRAP to reach absolute ground state 

• Alkali-metal dimers all have singlet ground states: no electron spin 

• We would like to extend magnetoassociation to molecules with 
electron spin as well as electric dipole 

• Molecules formed from an alkali-metal atom (2S)  
and a closed-shell atom (1S, e.g. Sr, Yb) are a good option 



• For alkali dimers, there is a complicated pattern of near-dissociation 
molecular levels below each atomic threshold, which can be tuned across 
threshold with magnetic fields 

• A zero-energy Feshbach resonance occurs where each level crosses 
threshold.  For example, for 87Rb133Cs below the lowest (aa) threshold:  

                             
                                

                            
                            

                                         
                                         

                          
 
                                    
    
                                     
           

                                 
                                

                                      
                 
                       

Magnetoassociation to form alkali-metal dimers 



• For alkali dimers, there is a complicated pattern of near-dissociation 
molecular levels below each atomic threshold, which can be tuned across 
threshold with magnetic fields 

• A zero-energy Feshbach resonance occurs where each level crosses 
threshold.  For example, for 87Rb133Cs below the lowest (aa) threshold:  

• Alkali-metal atoms all have 
non-zero nuclear spin i and s=½ 

• Atomic quantum numbers are 
f=i±½ (at low field) and mf 

• Alkali dimers (2S+2S) have 2 potential  
curves, singlet (S=0) and triplet (S=1)  

• Collision Hamiltonian is 
 
H = T + ξaia.sa + ξbib.sb + HZeeman 
    
      + Σ |S> VS(R) <S| +Vdipolar(R) 
         S 

• Molecular states have different 
spin character to atomic states 

• Hamiltonian couples molecular states 
to atomic states 
=> Feshbach resonances 

Magnetoassociation to form alkali-metal dimers 



The need for theory 

• Need potential curves that reproduced energy levels to understand  
level patterns and avoided crossings for full control 

• For two 2S atoms there are 5 sources of angular momentum: 
– 2 electron spins 
– 2 nuclear spins (I=7/2 for 133Cs) 
– Mechanical rotation (L or N) 

• In a magnetic field only Mtot is conserved (not total angular momentum) 
• Basis set (saiafa)(sbsbfb)FMFLMLMtot or fully decoupled:  

labels such as 6g(6) indicate FL(MF)  [s, p, d… for L=0,1,2…] 

• Homonuclear dimer is a special case: Far from avoided crossings, F, MF 
and L are nearly conserved, and a small basis set is adequate 

• Near avoided crossings, nothing but Mtot is conserved:  
over 200 spin basis functions 
(channels) sometimes needed. 

• Hamiltonian couples everything: 
 
H = T + ξaia.sa + ξbib.sb + HZeeman 
    
      + Σ |S> VS(R) <S| +Vdipolar(R) 
         S 



Use coupled-channel expansion for molecular wavefunction 

• For scattering, propagate coupled equations from short range (R ~ 5 a0)  
to long range (1000 to 10000 a0) and match to Bessel functions to get S-matrix; 
then scattering length a(k) = (ik)-1 (1-S00)/(1+S00) 

• MOLSCAT program can converge on resonances [poles and zeroes in a(B)] 
• Bound-state calculations (BOUND program) also use coupled-channel propagation 

approach, not radial basis set 
– Time linear in number of steps:  

no problem handling 200+ channels 
– Can propagate quickly to very long  

(Airy-based log-derivative propagator) 
– Can easily find bound states  

within 10 kHz of dissociation 

• BOUND and MOLSCAT implement many  
different collision systems (alkali-alkali,  
atom-molecule, molecule-molecule):  
can plug in new subroutines for new cases. 

 where Φi(SIL) are basis functions for (all the) angular momenta. 
• Substitute in Schrödinger equation to produce coupled radial equations: 

Cs2: 

Experiment (green) 
M2012 potential (blue) 

M2004 potential (grey) 



 

• Only one molecular electronic state: 2Σ 
• The molecular Hamiltonian 

   H = T + V(r) + ξi.s + HZeeman 
is diagonal in atomic quantum numbers 

• Curves correlating with different atomic hyperfine / Zeeman states are 
essentially parallel to one another (shifted by atomic energy) 

                                    
                          
                          
                            

                              
                                
                             
                

                             
                                   

                         
                    

What is different for alkali (2S) + 1S atom systems? 



• Only one molecular electronic state: 2Σ 
• The molecular Hamiltonian 

   H = T + V(r) + ξi.s + HZeeman 
is diagonal in atomic quantum numbers 

• Curves correlating with different atomic hyperfine / Zeeman states are 
essentially parallel to one another (shifted by atomic energy) 

• The molecular states lie parallel  
to the atomic thresholds  
(as a function of field)  
and have the same character 

• There are crossings between  
molecular levels with f=i+½ and 
atomic thresholds with f=i-½ 
but no coupling 

• => Feshbach resonances have 
    zero width (i.e. do not exist) 

• Fortunately, this is an 
oversimplification! 

What is different for alkali (2S) + 1S atom systems? 



• What is there in the collision Hamiltonian that can couple states with 
the same L and mf but different f? Usual Hamiltonian would be 
 
 H = T + V(R) + ξi.s + Bz(giiz+gssz) 
 

• The atomic hyperfine interaction does not  provide such a coupling: 
f is not a good quantum number at finite field, but the atomic and 
molecular states are nondegenerate eigenfunctions of ξi.s + Bz(giiz+gssz)  
so are orthogonal => no coupling from an R-independent ξ  

• But the atomic hyperfine  
coupling is actually modified  
significantly at short range by  
the presence of the 2nd atom 

• This provides a coupling that  
does  mix the atomic and  
molecular states and can  
cause Feshbach resonances 

 
[CCSD(T) calculations for RbSr with pseudopotentials] 

 

What makes magnetoassociation allowed? 



Scattering lengths and masses 

• As for the alkali-metal atoms, no ab initio  potential is good enough to 
predict the absolute values of scattering lengths / binding energies: 
experimental measurements are essential. 

• But once a binding energy is known for one isotopic combination, the ab 
initio potentials are good enough to predict mass-scaling. 

• For heavier alkalis, binding energies (and thus crossing positions) depend 
substantially on isotope. E.g. for 87RbYb: 

• Axel Görlitz’s group (Düsseldorf) has  
now measured binding energies for a  
several isotopologues of 87RbxxxYb. 

• These allow fitting to produce potential 
curves to estimate resonance positions 
for any 85RbYb or 87RbYb species. 

• But what are the widths?  



How wide are the Feshbach resonances? 

• Initial work on RbSr (using coupled-channel calculations) 
[PRL 105, 153201 (2010)] found resonance widths from 0.3 μG to 100 mG  
at fields between 30 G and 5000 G 

• The numbers are right, but they don’t provide much understanding! 

• We have now developed a quantitative model based on Fermi Golden Rule 
that gives both insight and quantitative predictions of widths 

• The Golden Rule gives a resonance width Γ (in energy) as 
          Γ = 2π│∫Ψbound

* H’ Ψfree dτ│2 

• This allows the magnetic field width Δ to be expressed as 
          Δ = π [Im_f(B)]2 (Ink

2/k) / (abg δμres) 

• Im_f(B) is a purely atomic matrix element of i.s between the two (field-dressed) 
states with a given f,mf 

• Ink is a purely radial matrix element of Δξ(R) between the bound state and the 
continuum function at wavevector k  
(and Ink

2/k is independent of k at low energy) 

• abg is the background scattering length (for 1-channel scattering) 

• δμres is the magnetic moment difference between the bound and free states 
(relative slope of the crossing states) 
 



Atomic spin part gives strong field-dependence 

   Δ = π [Imf(B)]2 (Ink
2/k) / (abg δμres) 

   Imf(B) = ‹ α1,mf│i.s│α2,mf ›  (between purely atomic field-dressed states) 
• At limitingly high B, ms and mi are good quantum numbers and this reduces to 

       [Imf(B)]2 = ¼[i(i+1)-mf
2+¼]      (from raising and lowering operators i+f- etc.) 

• But  the zero-field atomic states are eigenfunctions of i.s 
=> Im_f(B) is zero at zero field and increases linearly with field 
=> resonances that occur at low field have widths proportional to B2. 

Consequences for experiment: 

• Low-field resonances are probably not a good bet: 
Need to design experiments to work at high field 

• High-spin alkali metals have intrinsic advantages over low-spin ones 



Radial integral is dominated by short range 

   Δ = π [Imf(B)]2 (Ink
2/k) / (abg δμres) 

   Ink = ∫ψbound
* Δξ(R) ψfree dR  (between 1-d radial functions on same potential) 

• Atomic and molecular states are orthogonal so R-independent term in ξ(R) does not 
couple them; only Δξ(R) contributes and short range dominates 

• Molecular state bound by < 10 GHz so stays almost in-phase with continuum 
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Radial integral is dominated by short range 

   Δ = π [Imf(B)]2 (Ink
2/k) / (abg δμres) 

   IInk = ∫ψbound* Δξ(R) ψfree dR  (between 1-d radial functions on same potential) 
• Atomic and molecular states are orthogonal so R-independent term in ξ(R) does not 

couple them; only Δξ(R) contributes and short range dominates 

• Molecular state bound by < 10 GHz so stays almost in-phase with continuum 

• Δξ(R) is roughly proportional to ξ so heavy alkali metals give greater widths 

 



Other factors 

   Δ proportional to │ ∫ψbound
* Δξ(R) ψfree dR │2 / abg 

 
Large widths for very small abg are not really useful (abgΔ more relevant than Δ) 

But continuum normalisation at short range is proportional to [1+(1-abg/a(bar))2]1/2 
 

=> Width is proportional to │abg│ when │abg│» a(bar) 

Systems with large scattering length give the broadest resonances  
(but beware phase separation, as in 174Yb + 87Rb (Baumer et al.) 

Molecular states that “kiss”  
the threshold (small δμres)  
also give broad resonances 

 

CsY
b     



How wide are the Feshbach resonances in RbYb? 

• 85YbRb has some resonances below 1000 G but they are very narrow 
• 85Rb174Yb 1.5 μG near 100 G 

• 85Rb176Yb 0.9 mG near 900 G 

• This illustrates the general B2 dependence of widths at low field! 

• 87YbRb has much wider resonances but at higher field 
• 87Rb168Yb 0.6 mG near 800 G (low abundance) 

• 87Rb170Yb 6 mG near 2100 G 

• 87Rb174Yb 5 mG near 3000 G 

• None of the 87RbYb isotopologues is  
“lucky” enough to give double crossings  
that would result in enhanced widths  



What about LiYb? (Gupta, Washington; Takahashi, Kyoto) 

• Very little mass-scaling with Yb isotope 

• Scattering length measured as |a| = 8(2) Å 

• Widths are tiny for bosonic Yb (e.g. 2 μG for 6Li174Yb near 1000 G) 

• But there is another possibility: bond formation transfers spin density 
from Li to Yb, so Li171Yb and Li173Yb have hyperfine coupling from iYb 

• Δξ(R) is considerably larger for Yb => wider resonances 

                                                                
                                 

                    

                          

                                     
                              
                                 



What about LiYb? (Gupta, Washington; Takahashi, Kyoto) 

• Very little mass-scaling with Yb isotope 

• Scattering length measured as |a| = 8(2) Å 

• Widths are tiny for bosonic Yb (e.g. 2 μG for 6Li174Yb near 1000 G) 

• But there is another possibility: bond formation transfers spin density 
from Li to Yb, so Li171Yb and Li173Yb have hyperfine coupling from iYb 

• Δξ(R) is considerably larger for Yb => wider resonances 

• Yb resonances have different selection rules: Δms = -ΔmYb = ±½ 

• These are decaying resonances,  
but still pole-like 

• Widths are around 0.2 mG 

• This mechanism will give additional 
resonances for other alkalis, 
but not dramatically wider ones. 

 



Conical intersections with ultracold molecules 

• For a molecule with both an electron spin and an electric dipole 
moment, e.g. KRb (3Σ) or RbSr(2Σ) 

• Two levels of different parity (different rotational quantum number) 
may cross as a function of magnetic field 

• For polar molecules, an electric field can mix these two states 
                

                      
                     
                    
                   
                    
                    
                    

                              
                                   
                                  

                                        
             
                  
                     
                                     

 



Conical intersections with ultracold molecules 

• For a molecule with both an electron spin and an electric dipole 
moment, e.g. KRb (3Σ) or RbSr(2Σ) 

• Two levels of different parity (different rotational quantum number) 
may cross as a function of magnetic field 

• For polar molecules, an electric field can mix these two states 
• Could create a 

conical intersection  
between eigenstates  
at the point where  
the Zeeman states  
are degenerate and  
the electric field  
passes through zero 

                              
                                   
                                  

                                        
             
                  
                     
                                     

 



Conical intersections with ultracold molecules 

• For a molecule with both an electron spin and an electric dipole 
moment, e.g. KRb (3Σ) or RbSr(2Σ) 

• Two levels of different parity (different rotational quantum number) 
may cross as a function of magnetic field 

• For polar molecules, an electric field can mix these two states 
• Could create a 

conical intersection  
between eigenstates  
at the point where  
the Zeeman states  
are degenerate and  
the electric field  
passes through zero 

• Adding an optical potential  
produces a potential minimum that  
is nearly isotropic around a ring 

• For bosonic 41K87Rb, fields here are:  
  Bz = 187 G 
  dBz/dX = 5 G/cm 
  dF/dY = 6.7 kV/cm2 
  optical trap depth 7 μK at 30 μm.  

 



Vortices with half-integer quantisation 

• BEC is stable all around the ring if a11 > 0, a22 > 0 and 2a12 > -(a11+a22). 
• A conical intersection produces a Berry phase: along a path that 

encircles the intersection once, the internal molecular wavefunction 
(molecular rotation + spin)  adiabatically changes sign. 
The resulting twisted boundary condition     Ф(φ+2π) = -Ф(φ)  
produces half-integer quantisation for a particle on a ring. 

• In the Gross-Pitaevskii equation, persistent flow with half-integer 
angular momentum occurs if the chemical  
potential is large enough to overcome  
any residual anisotropy around the ring. 

• The path around the conical intersection  
is originally slanted (because the crossing  
states have different magnetic moments)  
but this can be compensated with a small  
offset of the optical trap. 
 
PRL 103, 083201 (2009) 

 
• A variant based on microwave dressing could  

be applied to 87Rb: PRA 84, 051402(R) (2011). 
 

• Cute...  But what is it good for? 



Conclusions 

• Atom pairing methods (magnetoassociation followed by STIRAP)  
can already produce ground-state alkali dimers below 1 μK  
[so far, KRb (JILA), Cs2 (Innsbruck) + others by incoherent approaches]. 
 

• Magnetoassociation may be possible for alkali + Yb, alkali + Sr, etc. 
 

• Widest resonances occur for heavy alkali metals at high fields 
 

• Careful choice of Yb or Sr isotope is very important, and requires measurement 
of binding energy or scattering length for one isotopic combination 
 

• Conical intersections may produce intriguing new physical effects 
 

• Other topics we’re working on: 
– Sympathetic cooling with ultracold H atoms (Maykel Leonardo González-Martínez) 
– MQDT for molecular collisions (James Croft) 
– Molecule formation in 87RbCs (Ruth LeSueur with Innsbruck etc.) 
– Feshbach resonances in 85RbCs and 85Rb2 (Caroline Blackley with Simon Cornish) 
– Cs-Cs potentials for Efimov physics (with Rudi Grimm & Paul Julienne) 
– Li-Li potentials for Fermi gases at unitarity (with Selim Jochim & Paul Julienne) 
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