

State-to-State Dynamics in Ultracold Collisions: Insights From High Resolution Spectroscopy of Weakly Bound Molecular Complexes?

Conference on New Physics with Ultracold Molecules Kavli Institute for Theoretical Physics March 11 - 15, 2013

Work done at
JILA/Department of Chemistry
and Biochemistry
National Institute for
Standards and Technology
University of Colorado
Boulder, CO

In Search of Simplicity...

Excitation (constraint)

High Resolution Laser Spectroscopy/ Dynamics (jet cooled radicals, clusters, molecular ions)

 Chemical Reaction Dynamics (state-to-state reactive scattering, stereochemistry, inelastic/reactive collision dynamics at gas-liquid interfaces)

 Single Molecule Microscopy/Kinetics (RNA folding, quantum dot blinking, SERS nanocrystals, photoelectron imaging microscopy)

Establishing a Common Lexicon

1 eV...

 $= 8065.73 \text{ cm}^{-1}$

= 241,804 GHz

= 11,605 K

= 0.003675 au

= 96.552 kJ/mol

= 23.061 kcal/mol

Take Home Messages

- Half collision dynamics in van der Waals complexes as models for Feshbach resonance scattering phenomena in ultracold collisions
- Potential for catastrophic failure (by up to factors of 10^{12}) of statistical theories for systems with small (3-4) numbers of atoms
- Importance of probing not just loss of reactant but appearance of final quantum state distributions in ultracold collision chemistry

Definitely Not a Take Home Message...

(i.e. questions welcome!)

Outline

- I. Experimental background
- II. High resolution vdWs spectroscopy "recast" as ultracold Feshbach (vibrational and rotational) and shape resonance dynamics
- III. Final quantum state product distributions from vdWs Feshbach vibrational resonance dynamics
- IV. Quo vadis? Product quantum states from ultracold chemistry (intuitions and predictions)
- V. Summary

I. Making vdWs Complexes

- Beer's Law detection (i.e., A = Nσ I) ...
- ...but with full v,J quantum resolution ($\Delta v \approx 0.0001$ cm⁻¹)
- ...at the fundamental "shot noise" limit ($\approx 10^{-6} / Hz^{1/2}$)
- Universal, state-selective and surprisingly sensitive!

Experimental Strategy

- Sub-Doppler molecular linewidths (≈ 40 MHz in Ne expansion)
- Stabilized optical transfer cavities for frequency precision
- Quantum shot noise limited sensitivity: $A_{min} \approx 1.5 \times 10^{-5}$

"Slit Jets 101" (Beer's Law at 10⁻⁹ Torr)

- "Absorbance = density (ρ) x cross section (σ) x path length"
- Optical multipass (x 100 enhancement in l)
- Slow density drop off in slit: 1/r vs $1/r^2$ (x 100 enhancement in ρ)
- Sub-Doppler velocity collimation (x 10 enhancement in σ)
- Laser noise subtraction down to "shot noise" limit (< .005% in 10 KHz)
- $\Rightarrow N_{min} \approx 10^7 \, \#/\text{cm}^3/\text{q.s.}$ for *vib*/transitions

II. vdWs Spectroscopy as Probe of Ultracold Collision Dynamics

Vibrational Predissociation Lifetime Predictions (#1)?

- $E(v=1,J) D_0 (Ar-HF) \approx 3950 \text{ cm}^{-1} 120 \text{ cm}^{-1} \approx 3830 \text{ cm}^{-1} \gg 0$
- Near linear Ar-H-F equilibrium geometry (i.e., good for momentum transfer into weak vdW bond)
- Statistical phase space, RRKM theories predict extremely rapid vib'l predissociation ($\tau_{prediss} \approx$ single HF oscillation \approx 8 fs)

Vibrational Predissociation Lifetime Predictions (#2)?

- Dissociation coordinate ($\omega_{vdW}\approx 40$ cm⁻¹) 100-fold *non-resonant* with HF vibration ($\omega_{HF}\approx 4000$ cm⁻¹)
- Requires high order multiquantum vibrational energy transfer
- Must deposit $E_{vdW} \approx 3830$ cm⁻¹ into HF rotation (very widely spaced levels) and/or relative translation of Ar + HF(v',J')
- ⇒Extremely slow vib'l prediss

Ultracold Vibrational Feshbach Resonances

- Sharp, "stick" like Ar-HF(v=1,J) rovibrational lines...
- ...with instrument limited line widths $(\Delta v_{Lor} < 1 \text{ MHz})$
- ⇒ Extremely long lived vibrational Feshbach resonances...
- ...each from single partial wave states (J = 0, 1, 2, 3...)

NIST-CU

How Long?

- ∆v_{Lor} < 1 MHz
- $\tau_{\text{prediss}} > 1/2\pi \Delta v_{\text{Lor}} > 160 \text{ ns...}$
- ... > 20,000,000 Ar-HF(v=1) vibrations
- Molecular beam depletion studies by Miller and coworkers...
- ... $\tau_{prediss} > 300 \mu s$
- \Rightarrow in excess of 36,000,000,000 Ar-HF(v=1) vibrations!
- Consistent with Ewing predictions based on exponential "quantum number gap law", $v_{\text{prediss}} \approx v_{\text{HF}}$ exp(- Δ N) < 1/(minutes to hours)
- Likely radiatively limited by HF(v=1 \rightarrow 0) emission ($\tau_{rad} \approx 10$ ms) with non-radiative, pure predissociation lifetimes >> 10 ms
- Failure of statistical RRKM theory in small complexes by 12 orders of magnitude! (8 fs vs. >> 10 ms)

Mind the (Excess Recoil Energy) Gap?

- Probability as overlap matrix element | \Precoil | \Pvdw stretch > | 2
- Exponentially dependent on ratio of $\lambda_{de\ broglie}$ for bound and continuum states...
- ...strong propensity for minimizing translational recoil energy!

He-HF: "Molecular Baseball"

 (Σ^e)

 $2B_{HF} \approx 40 \text{ cm}^{-1}$

 $D_0 \approx 5 \text{ cm}^{-1}$

<mark>"pinwheel"</mark>

"helicopters"

He + HF(v=1,j=0)

He-HF(v=1, j=0) (Σ^e)

 $\approx 3960 \text{ cm}^{-1}$

He-HF(v=0, j=0) (Σ^e)

- 2j+1=3 (j=1) internal rotor states ...
- ... each above dissociation limit to form He + HF(v=1,j=0)
- Predict faster predissociation lifetimes for pinwheel vs. helicopter "swings" of the bat

NIST-CU

Ultracold *Internal Rotor* Feshbach Resonances He---HF(v_{HF} =1, j_{HF} =1, Σ^e) "p,d,f,g,h-partial waves"

- Clear lifetime broadening (partial wave J-dependent)
- 30-300 ps "R \rightarrow T" lifetimes, even for optimal Σ^e orientation of "swing"
- Q = 400-4000 (i.e., "batting average" $\approx 1/400-1/4000$)

Ultracold Internal Rotor Shape Resonance He--HF(v_{HF} =1, j_{HF} =1, Π^f) "g-wave"

- Sudden onset of broadening at J = 4
- · "Shape resonance" tunneling through the angular momentum barrier
- Single partial wave ("g-wave", J=4) half collision

Shape Resonance Dynamics

- J = 0-4 bound (E < 0) in He-HF(v=0,j=0) lower state...
- ...but well depth decreases for j=1
 "helicopter" states (HF dipole
 points away from He)
- He-HF(v=1,j=1) upper state still energetically stable for J =0-3...
- ...but now E > 0 for J = 4
- ...trapped behind the J = 4 angular momentum barrier and tunnels to He + HF(v=1,j=1)

"Centrifugal Bond Breaking"

 $D_0 \approx 35 \text{ cm}^{-1}$

Ne-DF(v=1, j=1) $(\Pi^{e/f})$

 (Σ^e)

 $2B_{DF} \approx 20 \text{ cm}^{-1}$

Ne-DF(v=1, j=0)
$$(\Sigma^e)$$

 \approx 2900 cm⁻¹

Ne-DF(v=0, j=0) (Σ^e)

- D_0 (Ne-DF) ≈ 35 cm⁻¹ ...
- ...greater than Ne-DF (j=1) internal rotation $(2B_{DF} \approx 20 \text{ cm}^{-1})$
- Abrupt termination of spectrum at J = 8...
- ...due to centrifugal + internal rotor energy exceeding D₀ (shape resonance in lower state)

III. Product State Distributions From vdWs Feshbach Resonances

 $D_0 = 1062(1) \text{ cm}^{-1}$

- Molecular beam IR laser photofragmentation studies (R.E. Miller and coworkers)
- Angular deflection, beam velocity, momentum/energy conservation...
- ...yields correlated state-to-state product quantum distributions for pure initial vdWs "Feshbach resonances"

Minimize Recoil Energy!

- Deeply H-bonded well (1062 cm⁻¹)
- $hv-D_0 = 2800 \text{ cm}^{-1} \text{ to distribute into } (j_1, j_2)$
- · ...dominated by *near resonant* channel (2,11)

Non-statistical Product States

- Final quantum state distributions non-statistical...
- ...exquisitely sensitive to i) potential energy surface and ii) initial quantum state

IV. Quo Vadis?

- KRb + KRb \rightarrow K₂ + Rb₂ ultracold reaction kinetics (measured by loss of reactant states) experimentally at "unitary" limit
- Fantastic success!...
- ...but also a little disappointing requires knowledge only of the long range potential energy surface
- Where is the "fingerprint" of the short range potential energy surface in ultracold reactions...?
- ... in the final product quantum state distributions (e.g., Rb + Rb + Rb → Rb + Rb₂, Denschlag and coworkers)!

Product State Distributions

- $T \approx 200 \text{ nK collisions}$ in dipolar $^{40}\text{K}^{87}\text{Rb}$
- Single p-partial wave
- Control of all nuclear spin states

- "Hot" ⁴⁰K₂, ⁸⁷Rb₂ products (≈ 10 cm⁻¹ exothermic)
- Nearly classical $\mathbf{L}_{orb} = \mu \mathbf{v} \times \mathbf{b}$
- j_{K2} + j_{RB2} + L_{orb} = L_{init} = L_{final}

Simple Dynamical Constraints

- i) $L_{orb} + j_{K2} + j_{RB2} = 1$ (plus nuclear spin statistics)
- ii) Physically reasonable b_{recoil} for reverse reaction opacity ($L_{orb} \approx |j_{K2} j_{Rb2}| \approx small$)
- iii) Minimized energy in translational recoil

Simpl(istic) 1st Order Picture

- Non-statistical product states
- Strongly correlated j_{K2}, j_{Rb2} (upper left corner)
- Clear area for further theoretical and experimental efforts!

Summary

- High resolution vdWs spectroscopy as model for ultracold (COM frame) rovibrational Feshbach resonances with single partial wave resolution
- Failure of statistical RRKM theory for predicting predissociation lifetimes in 3-4 atom systems
- Highly non-statistical, correlated product state distributions - sensitive to short range PES, initial quantum state and excess recoil energy
- Critical information on dynamics and the PES at short range imprinted on the ultracold chemistry product state distributions - much work to be done to understand how!

Acknowledgment

