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The semiclassical limit of quantum mechanical transition state theory is derived by invoking the
classical path approximation for the Boltzmann density operator and making use of the stationary
phase approximation; separability of motion along a reaction coordinate is not assumed. The resulting
expression for the rate constant bears an interesting similarity to that of conventional transition state
theory, although all quantities in it refer to the full classical dynamics on the potential energy
surface. In place of the vibrational frequencies of the *““activated complex™ which appear in the
conventional theory, for example, the semiclassical expression contains characteristic frequencies
related to the stability properties of a periodic classical trajectory. Conservation of total angular
momentum is easily accounted for in a rigorous manner so that the semiclassical model can be
applied to three-dimensional dynamical systems.
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THE JOURNAL OF CHEMICAL PHYSICS 131, 214106 (2009)

Ring-polymer molecular dynamics rate-theory in the deep-tunneling
regime: Connection with semiclassical instanton theory

(Jeremy O. Richardson)and Stuart C. Althorpe
517y, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom

(Received 14 October 2009; accepted 4 November 2009; published online 3 December 2009)

We demonstrate that the ring-polymer molecular dynamics (RPMD) method is equivalent to an
automated and approximate implementation of the “Im F” version of semiclassical instanton theory
when used to calculate reaction rates in the deep-tunneling regime. This explains why the RPMD
method is often reliable in this regime and also shows how it can be systematically improved. The
geometry of the beads at the transition state on the ring-polymer potential surface describes a
finite-difference approximation to the “instanton” trajectory (a periodic orbit in imaginary time %
on the inverted potential surface). The deep-tunneling RPMD rate is an approximation to the rate
obtained by applying classical transition-state theory (TST) in ring-polymer phase-space using the
optimal dividing surface; this TST rate is in turn an approximation to a free-energy version of the
Im F instanton rate. The optimal dividing surface is in general a function of several modes of the
ring polymer, which explains why centroid-based quantum-TSTs break down at low temperatures
for asymmetric reaction barriers. Numerical tests on one-dimensional models show that the RPMD
rate tends to overestimate deep-tunneling rates for asymmetric barriers and underestimate them for
symmetric barriers, and we explain that this is likely to be a general trend. The ability of the RPMD
method to give a dividing-surface-independent rate in the deep-tunneling regime is shown to be a

consequence of setting the bead-masses equal to the physical mass. © 2009 American Institute of
Physics. [doi:10.1063/1.3267318]
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THE JOURNAL OF CHEMICAL PHYSICS 134, 054109 (2011)

Ring-polymer instanton method for calculating tunneling splittings

(Jeremy O. Richardsory and Stuart C. Althorpe
517y, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom

(Received 9 November 2010; accepted 3 December 2010; published online 1 February 2011)

The semiclassical instanton expression for the tunneling splitting between two symmetric wells is
rederived, starting from the ring-polymer representation of the quantum partition function. This leads
to simpler mathematics by replacing functional determinants with matrix determinants. By exploiting
the simple Hiickel-like structure of the matrices, we derive an expression for the instanton tunneling
splitting in terms of a minimum on the potential surface of a linear polymer. The latter is a section cut
out of a ring polymer, consisting of an infinite number of beads, which describes a periodic orbit on
the inverted potential surface. The approach is straightforward to generalize to multiple dimensions,
and we demonstrate that it 1s computationally practical by carrying out instanton calculations of

tunneling splittings in HO, and malonaldehyde in full dimensionality. © 2011 American Institute of
Physics. [do1:10.1063/1.3530589]
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Ring-polymer instanton (RPl) method

J.0. Richardson & SCA, JCP 2011
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Tunnelling between multiple minima

-

\_

Adjacency matrix

A — )\ paths

A
(A")xx

J

7
Wiy = Ay, Aginge™ 2kini/

N
splitting pattern
diagonalize W ———
Richardson & SCA, JCP 2011
y,

\_

16



Water clusters: Untangling the mysteries of the
liquid, one molecule at a time

Frank N. Keutsch* and Richard J. Saykally®

Department of Chemistry, University of California, Berkeley, CA 94720-1460

PNAS | September 11,2001 | vol.98 | no.19 | 10533-10540
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Flexible, ab initio potential, and dipole moment surfaces for water. I. Tests
and applications for clusters up to the 22-mer
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THE JOURNAL OF CHEMICAL PHYSICS 135, 124109 (2011)

Instanton calculations of tunneling splittings for water dimer and trimer

Jeremy O. Richardson, Stuart C. Althorpe,? and David J. Wales
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom

(Received 15 August 2011; accepted 30 August 2011; published online 30 September 2011)

We investigate the ability of the recently developed ring-polymer instanton (RPI) method
[J. O. Richardson and S. C. Althorpe, J. Chem. Phys. 134, 054109 (2011)] to treat tunneling in
water clusters. We show that the RPI method is easy to extend to treat tunneling between more than
two minima, using elementary graph theory. Tests of the method on water dimer and trimer yield a
set of instanton periodic orbits which correspond to all known tunneling pathways in these systems.
Splitting patterns obtained from the orbits are in good overall agreement with experiment. The agree-
ment is closer for the deuterated than for the protonated clusters, almost certainly because the main
approximation in the calculations is neglect of anharmonicity perpendicular to the tunneling path. All
the calculations were performed on a desktop computer, which suggests that similar calculations will
be possible on much larger clusters. © 2011 American Institute of Physics. [do1:10.1063/1.3640429]
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