

Selfordering and sympathetic cooling in optical resonators

Helmut Ritsch
Theoretische Physik
Universität Innsbruck

New physics with ultracold molecules KITP, March 12, 2013

Collaborations (theory):

Peter Domokos, Andras Vukics, (Budapest), Peter Horak (Southhampton), Giovanna Morigi (Saarbrücken), Aurelian Dantan (Arhus) Igor Mekhov (Oxford), Maciej Lewenstein (IFCO)

PD's +PhD's:

(Hashem Zoubi) Claudiu Genes Wolfgang Niedenzu

Tobias Griesser
Laurin Ostermann
Kathrin Sandner
Raimar Sandner
Matthias Sonnleitner
Sebastian Krämer

Master:

Stefan Ostermann Thomas Maier Dominik Winterauer

contents

Cavity cooling basics and applications

• Selforganization and superradiant cooling in a cavity generated optical lattice

 Multispecies cavity cooling and sympathetic self organisation

• Beam deceleration by cavity enhanced collective backscattering (COMORL)

Lightforces on polarizable particles in optical resonators

dispersive regime at large laser to particle detuning ⇒ dipole force dominates

 $\gamma(x) = photon loss per particle$

Classical dynamics in optical resonators

field amplitude:

 $\dot{E} = [-\kappa - \gamma(x) + i\Delta_c - iU(x)]E - \alpha,$

momentum:

 $\dot{p} = -|E|^2 \frac{d}{dx} \mathbf{U}(\mathbf{x}),$ $\dot{x} = p/m.$

detuning + loss of mode depend on atom position

position:

- red detuning: atoms drawn to field maxima
- field gets maximal for atom at antinode

particle moving along axis

Lewenstein, PRL 95: ions Horak, PRL 97: atoms Vuletic, Chu, PRL 00: atoms Vitali, PRL 02: mirrors

Cavity cooling

analytic solution for friction and diffusion for slow point partilees

friction

$$\overline{\overline{F_1}} = -k^2 \frac{\eta^2 U_0^2}{4 \, \kappa^4}$$
 temperature
$$k_B T = -\frac{\overline{D}}{\overline{F_1}} = \frac{\kappa}{2}$$
 diffusion
$$\overline{D} = k^2 \kappa \frac{\eta^2 U_0^2}{8 \, \kappa^4}$$
 κ ... cavity linewidth

- sub-Doppler cooling for $\kappa < \gamma$ (good cavity)
- no spontaneous emission needed
- suitable for all polarizable particles (molecules, nanoparticles, beads)

H. R., P. Domokos, F. Brenneke and T. Esslinger, RMP 2013,

first dedicated experiment: MPQ München, Nature 2004

Cavity cooling of a single atom

P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse & G. Rempe

Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching, Germany

Ions: PRL 2009

Cavity Sideband Cooling of a Single Trapped Ion

David R. Leibrandt,* Jaroslaw Labaziewicz, Vladan Vuletić, and Isaac L. Chuang

- temperature und cooling rate agree well with theory
- lons: multiple vibrational modes addressed (Vuletic 2011), Barrett (priv. commun.)
- new results with atom ensembles (MIT), molecules + nanobeads (Vienna)

Experiment: cavity ground state cooling of free atoms

"sub-recoil" regime:

 $\kappa < \omega_r$

A. Hemmerich, Hamburg (Science 2012)

a E/E_{rec} 116 } ħκ/E_{rec} 2ħk -2/1k 4ħk momentum distribution smaller than single photon recoil

- ⇒ Cavity cooling with Bose stimulation to replace evaporation
- ⇒ BEC formation without particle loss

Scaling of resonator induced cooling

temperature unchanged

cooling time grows

Slow cooling for large ensembles!

Selforganisation of large ensembles through super-radiant light scattering

New-geometry: transverse pump: direct excitation of atoms from side!

phase of excitation light depends on position x

collective pumpstrength R

Field in cavity generated only by atoms

 $\mathbf{R} = 0$ for random atomic distribution

 $R \sim Ng$ for regular lattice distribution

Numerical simulations of coupled dynamics including atomic motion (start with random distribution at Doppler temperature)

N-atoms:

Numerical simulations of coupled atom-field dynamics (start with random distribution at Doppler temperature)

Superradiance! quadratic dependence on atom number!

Selforganization!

Atom-field dynamics for very large particle number : => Vlasov equation for particle distribution

Continuous density approximation for cold cloud: single particle distribution function

$$f_{s}(x, p, t) := \frac{1}{N_{s}} \left\langle \sum_{j_{s}=1}^{N_{s}} \delta(x - x_{j_{s}}(t)) \delta(p - p_{j_{s}}(t)) \right\rangle \qquad \Phi_{s}(x, \alpha) = \hbar U_{0, s} |\alpha|^{2} \sin^{2}(kx) + \hbar \eta_{s}(\alpha + \alpha^{*}) \sin(kx)$$

Vlasov + *field equation*

$$\frac{\partial f_s}{\partial t} + \frac{p}{m_s} \frac{\partial f_s}{\partial x} - \frac{\partial \Phi_s(x, \langle \alpha \rangle)}{\partial x} \frac{\partial f_s}{\partial p} = 0$$

$$\dot{\alpha} = (i\Delta_c - \kappa) \alpha - i\sum_s \int \left(\alpha U_{0,s} \sin^2(kx) + \eta_s \sin(kx)\right) f_s dx dp$$

stability threshold of homogeneous distribution:

$$\frac{N\eta^2}{k_{\mathrm{B}}T}\operatorname{vp}\int_{-\infty}^{\infty}\frac{g'(\xi)}{-2\xi}\mathrm{d}\xi<\frac{\delta^2+\kappa^2}{\hbar|\delta|}$$

Niedenzu W., T. Grießer, H. Ritsch (2011), EPL, 43001

Numerical simulation of Vlasov equation (single optical period):

"phase diagram"

Experiment with atoms:

Vladan Vuletic, Stanford University (=>MIT)

10^6 Caesium atoms in resonator with transverse coherent pump field

Phase stability of coherent emission with Pi-jumps (bistable pattern)

* >10^6 Atoms trapped and cooled to ~mK with simultaneous coherent light emission

- Experiment works better than predictions and even close to cavity resonance
- 2-nd experiment with accelerations of >10⁶ g at very low saturation
- recent experiments: Renzoni (London), M. Baden + K. Arnold (Singapore)
- more theory: multimode selfordering: P. Goldbart + B. Lev, Sadchdev, ...

BEC: Observation of the phase transition to new phase with coherence + ordering present

$$\Psi(x) = \frac{1}{\sqrt{L}}c_0 + \sqrt{\frac{2}{L}}c_1 \cos kx$$

$$H = -\delta_C a^{\dagger} a + \omega_R \hat{S}_z + iy(a^{\dagger} - a)\hat{S}_x / \sqrt{N} + ua^{\dagger} a \left(\frac{1}{2} + \hat{S}_z / N\right)$$

K Baumann et al. Nature 464, 1301-1306 (2010) doi:10.1038/nature09009

2D – transverse selforganization for collimation of a fast beam

parameters for perfluoronated C60, M. Arndt, Vienna

T. Salzburger, NJP 11, 55025 (2009)

Part III

Sympathetic selforganization and multispecies cooling

No (?) experiments with molecules yet!?

Why?

B. Lev, et. al. *Phys. Rev.* A **77** 023402

- Need suitable initial conditions to reach threshold!
- sufficient high starting phase space density: $U * N \sim \kappa$ or
- sufficient intracavity power : V_opt ~ κ

Sympathetic selforganization and cooling

i.e: take an atom experiment and add some molecules!

both components selforganize in the same pattern

Sympathetic multispecies dynamics

Field commonly scattered by all species

$$\dot{\alpha} = (-\kappa + i\Delta_c)\alpha - i\sum_{l=1}^{S} N_l \int (U_{0,l}\alpha \sin^2(kx) + \eta_l \sin(kx)) f_{K,l}(x,p) dx dp$$

Joint threshold condition

$$\sum_{l=1}^{S} \frac{N_l \eta_l^2}{k_B T_l} \left(P \int_{-\infty}^{\infty} \frac{g_l'(u)}{-2u} dx \right) > \frac{\kappa^2 + \delta^2}{\hbar |\delta|}$$
 (,thermal')
$$\sum_{l=1}^{S} \frac{N_l \eta_l^2}{k_B T_l} > \frac{\kappa^2 + \delta^2}{\hbar |\delta|}.$$

common threshold strictly lower!

coupled kinetic equations individual enesmbles:

$$\begin{split} \dot{Q}_{2\to1} &= -\frac{N_1 m_1}{N_2 m_2} \dot{Q}_{1\to2} \simeq N_1 \eta_2^2 \eta_1^2 \frac{4 \sqrt{\pi} \hbar \delta^2}{(\kappa^2 + \delta^2)^2} \times \\ &\times \sqrt{\frac{\hbar \omega_{\mathrm{R},1}}{k_{\mathrm{B}} T_1}} \left(1 - \frac{T_2}{T_1} \right) \left(1 + \frac{m_1 T_2}{m_2 T_1} \right)^{-3/2} \end{split}$$

interspecies energy flux !!

Sympathetic two-species cooling at same initial temperature

$$m_2 = 200m_1, N_1 = 200, N_2 = 200,$$

Below threshold: enhanced cavity cooling

above threshold: common self ordering

- Cooling enhanced below and above the shold
- Coolind slows in fully organized phase

phase space ,, density "evolution for two-species

$$N_1 = 1500, N_2 = 100, m_2 = 80m_1$$

momentum distributions

selfordering increases phase space density!

Energy flow for different initial temperatures (cold atoms + hot molecules)

Fast thermalization and common cooling!

Part IV

Fast beam deceleration in ring cavity

theoretical idea

theoretist's idea of realistic experiment

collective dynamics of a polarisable cold gas in a ring resonator with single-side pumping (COMORL - related work on FEL / CARL)

particles rest frame

$$\frac{d}{dt}a_{\pm}(t) = \left[i\Delta_{\pm} - iNU_0 - \kappa\right]a_{\pm}(t) - iNU_0 \left\langle e^{\mp 2ikx} \right\rangle a_{\mp}(t) + \eta_{\pm}$$

collective backscattering acts like gain

$$a_{+}a_{-}^{*} = |\eta|^{2} \frac{(\Delta_{-} - NU_{0} + i\kappa)NU_{0} |R_{-}| e^{-ikx_{0}}}{\left|(\Delta_{+} - NU_{0} + i\kappa)(\Delta_{-} - NU_{0} + i\kappa) - N^{2}U_{0}^{2} |R_{-}|^{2}\right|^{2}}.$$

interference of pump and backscattered field creates periodic potential

selfordering threshold to l/2 periodic grating = moving Bragg lattice

$$\eta_{thresh} > \sqrt{ \left| \frac{k_B T \sqrt{(\Delta_- - N U_0)^2 + \kappa^2} \left((\Delta_+ - N U_0)^2 + \kappa^2 \right)}{N U_0^2} \right|}.$$

at resonance:
$$N_{cav} = (\frac{\eta_{thresh}}{\kappa})^2 > \frac{k_B T \kappa}{NU_0^2}$$

Collective particle accelerator

very large particle number continuous distribution

- backscattered light and gets amplified
- => selfconsistent accelerated/decelerated lattice (FEL / CARL)

Example 1: Instability in unidirectional cavity

 $t = 30\kappa$

 $t = 45\kappa$

Space-time order forms!

3D-particle simulation of ring cavity selfordering: inverse CARL collective atomic recoil laser (analogous to free electron laser)

field evolution

Experiments with ring resonators:

C. Zimmermann Universität Tübingen cold atoms at MOT temperature large detuning: 5 nm

Setup with BEC in Tübingen

C. Zimmermann: >10⁶ atoms collectively accelerated
A. Hemmerich: collective transverse oscillations of 10⁶ atoms

e.g: Cube C. et. al., PRL **93**, 083601.

Inverse setup: effective centre of mass deceleration ~ number of backscattered photons / particle

$$mg = -4\kappa \left| a_{-}^* a_{-} \right| \frac{k}{N}$$

$$g = - \left| \eta^2 \right| \frac{2k}{m} \frac{N \left| U_0 \right|^2 \left| R_- \right| \kappa}{\left| (\Delta_+ - NU_0 + i\kappa) (\Delta_- - NU_0 + i\kappa) - N^2 U_0^2 \left| R_- \right|^2 \right|^2}.$$

Force only limited by power – build in shutoff at low velocities

Stopping of a fast beam (particle simulation)

for a fast beam two resonance frequencies appear:

- * pump beam resonance and backscattering beam resonance
- * backscattering resonance exhibits lower threshold and more efficient stopping

Summary

- Light forces are strongly modified in optical resonators:
 e.g: dipole force turns into a dissipative force through cavity decay
- self trapping and cooling with suppressed spontaneous emission in driven mode for any sufficiently polarizable particle
- selforganisation and collective superradiance into prescribed mode (cold gas nearly at rest) allows for fast trapping/cooling of large ensembles
- CARL type deceleration with suppression of fluorescence
- Sympathetic cooling (deceleration) of many species at same time

Crystallization in 1D Systems

Cigar-shaped atomic gas alongside optical nanofiber.

$$\frac{\partial^2 E}{\partial z^2} + \left(\beta_m^2 + k_L^2 \tilde{\chi}\right) E = -k_L^2 \tilde{\chi} E_L, \tag{2}$$

$$\frac{\partial f}{\partial t} + \frac{p_z}{m} \frac{\partial f}{\partial z} - \frac{\partial}{\partial z} \left(U - \alpha \left[|E|^2 + 2E_L E_r \right] \right) \frac{\partial f}{\partial p_z} = 0$$

Field distribution

(J. Kimble + coworkers, PRL 2013)