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Cold chemistry with ions

A Coulomb crystal
( Cold chemistry with ions ) of laser-cooled Ca* ions

& lon chemistry in a new physical regime

e Exotic chemical processes

e Quantum character of ion-neutral
collisions

A bi-component Coulomb crystal with
Q@ New methods for controlling sympathetically-cooled molecular ions
chemical reactions

e Accurate quantum-state AND collision-
energy control

e Chemical reactions with single localised
particles




l Outline ]

Cold chemistry:

1. Light-assisted processes in the cold regime:
Ca*+ Rb and Ba*+Rb

2. Reactions with molecular ions at mK energies:
N2*+ Rb

Controlled chemistry:

1. Fully state- and energy-selected reactions with
Coulomb-crystallized ions

2. Reactions between Coulomb crystals and
selected conformers of complex molecules




Cold chemistry: 1. Light-assisted processes in the cold regime

l Cold chemistry '

Hybrid trap: combination of a trap for ultracold atoms with an ion trap
(originally proposed by W.W. Smith 2003)

Basel hybrid trap: 8Rb MOT superimposed on a linear RF ion trap for laser- and
sympathetically-cooled ions
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Cold chemistry: 1. Light-assisted processes in the cold regime

Cold chemistry: 1. Light-assisted processes in
the cold regime: Ca*™+ Rb and Ba* + Rb

A Ca* Coulomb crystal Cold chemical reactions between

immersed in a cloud of Ca*and Rb
ultracold Rb atoms (only Ca™* fluorescence is shown)



Cold chemistry: 1. Light-assisted processes in the cold regime

& Resonant-excitation mass spectra of

] (ii) after reaction
reaction products:

Int. fluorescence
(arb. units)
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& Potential-energy curves of CaRb*:
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Cold chemistry: 1. Light-assisted processes in the cold regime

& Measured rate constants as a & Potential energy curves of
function of Ca* level populations: excited states:
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Cold chemistry: 1. Light-assisted processes in the cold regime

(Cold reactions of Ba* + Rb )

& Ca* + Rb: NRCT, RCT and RA in lowest channel
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Cold chemistry: 1. Light-assisted processes in the cold regime

' Cold reactions of Ba* + Rb '

& Ba* fluorescence images: & Resonant-excitation mass spectra:
BaRb* Ba* Rb*
o n (i) before reaction
&
=S o~
S =
s
e .
==
ﬁ. 5 u (ii) after reaction
£ 1
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before reaction after reaction Excitation frequency £ (kHz)
& Channel-specific rate constants: & Compare with Ca* + Rb:
Rb(5s) + Ba*(6s 2S1/2): ks < 51013 cm? s ks =3(1)1072cm?3 s
+ Ba*(6p 2P112): kp = 2(1)-10-"" cm?3 s kp =1.5(6)101° cm3 s
+ Ba*(5d 2D312): ka <1102 cm3 s ka < 31072 cm3 s

Rb(5p 2P32) + Ba* (6s) : ks’ =7.210"" cm3 s



Cold chemistry: 1. Light-assisted processes in the cold regime

(Collision-energy dependence of reaction rates)

& Tuning of collision energies in Ca* + Rb:
ion kinetic energies as a function of Coulomb crystal size and shape

Experimental

image
Simulated
image
& Collision-energy distribution as & Collision-energy dependence of
a function of crystal size/shape: reaction rates:
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Cold chemistry: 1. Light-assisted processes in the cold regime

' Rate constants for Ca* + Rb : comparison with theory_)

& Non-radiative (NR) CT cross sections:
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Cold chemistry: 1. Light-assisted processes in the cold regime

( Rate constants for Ba® + Rb : comparison with theory )

Average collision energy <E_ > (eV)
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Cold chemistry: 1. Light-assisted processes in the cold regime

& Reaction dynamics: observations

¢ Rate constants are essentially constant with collision energy
* The energy dependence of the rate constants (but not their magnitude !)
seems to be similar across all channels

@ Interpretation:

e Disregarding the shape resonances, the
energy dependence can be described by
classical dynamics: the reaction proceeds

if the centrifugal barrier is overcome ol

Effective potential
|4 . (hcecm™)

® For ion-neutral collisions with V(R) < R4: D03 4
Internuclear distance R (R)

rate constant k= const.
(classical Langevin capture)

e Magnitude of rate constant is determined by short-range non-adiabatic and

radiative couplings
e Short-range coupling matrix elements are independent of the collision

energy for low energies



Cold chemistry: 2. Reactions with molecular ions at mK energies

Cold chemistry:

2. Reactions with molecular ions at mK energies: N2* + Rb

Experiment Simulation

& Reactions with molecular ions at collision energies
down to Ecoi/ke =20 mK:

& Reaction products:

Rb* Ca’ N2+

(ii) After reaction
with N, ldaded

(arb. units)

Reaction time

(i) After loading N,*

Int. flourescence

0 50 100 150 200 250
Excitation frequency f (kHz)




Cold chemistry: 2. Reactions with molecular ions at mK energies

& Rate constant vs. Rb excited-state population:

“Rb
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State-specific rate constants: N2*(X)+Rb(°S1/2): ks<2x10-1° cm3s*
N2*(X)+Rb(%P3/2): kp=2.4(13)%1038 cm3s"



Cold chemistry: 2. Reactions with molecular ions at mK energies

& Reaction mechanism: electronic energies of entrance and product channels

(a) Entrance channels ! (b) Product channels
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Cold chemistry: 2. Reactions with molecular ions at mK energies

& Rate constant in excited N2*(X) + Rb(?P3/2) channel: kp=2.4(13)%10-8 cm3s™

e Compare with Langevin (charge-induced dipole): k.=6.6x10"° cm3s-’

e Classical capture model including charge-induced dipole (CID) and charge-
quadrupole (CQ) interactions
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Controlled chemistry: 1. Fully state- and energy selected reactions

-
Controlled chemistry: 1. Fully state- and energy-selected
reactions with Coulomb-crystallized ions

' Quantum-state preparation of sympathetically-cooled molecular ions ’

State-selective threshold-
photoionisation scheme for N2

E
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Controlled chemistry: 1. Fully state- and energy selected reactions

( Population diagnostics)

& Laser-induced charge-transfer (LICT) spectroscopy: N2*+ Ar — N2+ Ar* (v >1)
N2* + Ar H (v*=0)

Before CT After CT

Spectroscopy
Laser

24 N," 1ons 12 N, " ions

LI(?Jt ﬁ:ﬂﬁﬁg?y Total population
‘ in N*=0: 93*11%

o
N*t (mf;?(ig?% ) (averaged over 5 expts.)




Controlled chemistry: 1. Fully state- and energy selected reactions

The N2* + N2 = N2 + N2* symmetric charge-
: . . =  CHEMICAL
transfer reaction studied with (almost complete) PHYSICS
state and energy control LETTERS

Coulomb crystal N2 molecular beam
with state-selected Trot=8 K: J=0 (1,2) AV
N2" ions (N*"=0) v=790 m s Theory:

T. Nagy, J. Yosa, M. Meuwly
(Uni Basel)



Controlled chemistry: 1. Fully state- and energy selected reactions

& LICT measurements of N2* ions prepared (a)
in N*=0 as a function of the reaction time:

Experiment Simulation

& Time-dependent spin-rotational state
populations N*=0,1,2 (F1,2):
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Controlled chemistry: 1. Fully state- and energy selected reactions

& Reaction mechanism and translation-to-rotation energy transfer:

. . . 180
e The reaction proceeds via a linear N4*

complex forming at the collision (Langevin) *°°
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Summary and conclusions

( Summary and conclusions )

& lon-neutral reaction experiments at energies down to
20 mK are now feasible, revealing unusual reaction
mechanisms at low temperatures and fine details of
intermolecular interactions.

& Coulomb-crystal techniques enable chemical-reaction
experiments with an energy and state control
unprecedented in ion-molecule chemistry.

& State- and energy controlled reaction experiments
reveal fine details of the reaction mechanism such as
the conversion of energy during chemical change.

& Control of the chemistry of complex molecules is
becoming a reality
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