

KITP Santa Barbara Collider Physics Workshop 12 February 2004

LUND UNIVERSITY

Whither PYTHIA?

Torbjörn Sjöstrand

Department of Theoretical Physics

Lund University

History Status Future

Origin

Q: Why rewrite?

A: Need to clean up!

Q: Why C++?

A: Only game in town!

My original idea:

- simple and robust structure
- throw out-of-date alternatives
- keep current physics ~unchanged
- many minor improvements

Lifestyle

HERWIG camp monolithic (?)

Lund camp pluralistic

lany progran
rogra
rogra
rogra
rogra
gra
=
rai
<u>മ</u>
_
\dashv
ट
0,

- JETSET, PYTHIA
- Ariadne, LDCMC
- Fritiof, Luciae
- Lepto (Aroma, Lucifer, PomPyt, ...)
- (Rapgap, Cascade)
- ((HIJING, ...))

Many physics models:

- aspect
- final-state showers
- initial-state showers
- string fragmentation
- baryon production
- Bose-Einstein
- colour reconnectionmultiple interactions

numbe

- 2 → 3
- $3 \rightarrow 4$
- ာ ယ
- V
- 3 + not
- $1 \rightarrow 2$

Evolution

Leif's idea:

before you worry about physics, create a generic platform for event generation = "a language within the language"

HERWIG++ accepted and joined ⇒ basic structure must be physics-neutral

PYTHIA7 ThePEG: administration

TheRest: physics

What is ThePEG?

What is in TheRest?

- Processes: QCD 2 ightarrow 2, e⁺e⁻ ightarrow q $\overline{
 m q}$ (LL)
- PDF: GRV 94 series(LL)
- Showers: initial- and final-state (old PYTHIA) (TS)
- Multiple interactions: none
- Beam remnants: Ariadne (LL)
- Fragmentation: simple string (Marc Bertini)
- + simple low-mass corrections (LL)
- Decays: most implemented (LL)

NOT useful for physics studies

Mainly simple pieces done \Rightarrow almost all the hard work remains

- Conversion effort: everything takes longer and costs more
- The physics hurdle is as steep as the C++ learning curve ⇒ not convenient to use postdocs
- Need continuity ⇒ as above
- No work for graduate students

A fresh start

- Lower priority than teaching, administration, master's and graduate students, answering PYTHIA questions maintaining Fortran code, ...
- Leif's interests are ThePEG, Ariadne, LDC, ...
- bad finances in Lund

Sept. 2004 – 2007?: SFT/EP group Solution?: take a sabbatical and work "full-time"! (SoFTware development for experiments)

Objectives:

- concentrate on physics, not administration
- pure standard C++, no fancy programming tricks
- independent of ThePEG (or anything else), but
- written to be modular, i.e. easy to interface
- interface to ThePEG later written by Leif(?)

New structure

Technical Notes (1)

Remaining resonance decays (Z, W, H, SUSY, ...):

- internal or SUSY Les Houches Accord decay tables
- primitive angular correlations

Initial- and final-state showers:

- ullet implement the p_\perp -ordered algorithms
- can use existing matrix-element matching code
- (introduce L-CKKW-style mixing, p_{\perp} -ordered)

Multiple interactions and beam remnants:

based on new scheme under development

String fragmentation:

- reimplement baseline model, minor physics improvements
- low-mass strings
- junction topologies

Technical Notes (2)

Particle decays:

- update decay tables
- (Bose-Einstein; overlaps with fragmentation)

Event record, parameters, data, PDF's, utilities:

- PYTHIA-style event record with LHA colour tags
- integrated manual/parameters/data in XML?
- LHAPDF parton densities?
- simple event analysis (for debug)

Outside scope:

- $\gamma p/\gamma * p/\gamma \gamma/\gamma * \gamma/\gamma * \gamma * physics$
- colour reconnection (WW/ZZ)
- SUSY evolution (use SLHA!)
- old e⁺e⁻ annihilation machinery ($\mathcal{O}(\alpha_S^2)$ ME's)
- independent fragmentation
- many out-of-use options

Summary

- Complexity of problem underestimated (C++ & physics)
- "Slave labour" not successful strategy (for me)

=>> PYTHIA7 (TheRest) nowhere near useful

Tentative schedule:

```
fall 2004
                                                                    time
   fall 2007
                  fall 2006
                                  fall 2005
stable, debugged
                complete, buggy(?)
                                  incomplete draft
                                                                    hadron-level
                                                   begin new assault
                 a few processes
 more processes
                                   LHA-style input
                                                                    parton-level
```

...but don't forget Murphy's law

Handlers

hadronization, ... hard partonic sub-processes, parton densities, QCD cascades, The PEG defines a set of abstract Handler classes for

cial Event Record and a pre-defined set of virtual function definitions These handler classes interacts with the underlying structure using a spe-

a new (C++) class inheriting from the abstract HadronizationHandler base class, implementing the relevant virtual functions The procedure to implement e.g. a new hadronization model, is to write

The structure of the generation process is extremely dynamic:

ation chain class which can do anything and can be inserted anywhere in the gener-Besides the standard Handler classes, there is also a general StepHandler

previous steps depending on the history of each event. In addition, each handler can add steps in the generation chain or redo

Class Structure of Handlers

Class Structure of an Event

another object carrying the rest of the information (colour, spin etc.) if has a pointer to a ParticleData, a Lorentz5Momentum and a pointer to needed The Particle class provides access to a lot of information. But it only

through dynamic_casting. EventInfoBase classes. This information can then be accessed inheriting from e.g. the SpinBase or the completely general Some of this information can be user-defined by creating classes

Running ThePEG

gram e.g. for Geant4 which then can be run interactively or off-line, or as a special slave proresponding to different physics models to build up an EventGenerator The end-user will use a setup program to be able to pick objects cor-

optionally, to specify the analysis to be done on the generated events generators, to modify parameters and options of the selected models and, The setup program is used to choose between a multitude of pre-defined

tured list of all available objects and allows the user to manipulate them. The Repository is the central part of the setup phase. It handles a struc-

Currently there is only a rudimentary command-line interpreter. A flashy Graphical User Interface should be built on top of this Repository.

appendix of a paper. messages. And a LATEX-file with references suitable for inclusion in an In the end of the run you will get a number of files with statistics and