

KITP Santa Barbara Collider Physics Workshop 19 February 2004

LUND UNIVERSITY

New p_\perp -ordered showers

Torbjörn Sjöstrand

Department of Theoretical Physics Lund University

Motivation The time-like shower (FSR) The space-like shower (ISR) Outlook

Background (1)

3 main approaches to showering in common use:

HERWIG: $Q^2 \approx E^2(1 - \cos \theta) \approx E^2 \theta^2/2$

- + angular ordering \Rightarrow coherence inherent
- emissions not ordered in hardness
- emissions do not cover full phase space (messy kinematics)
- kinematics constructed at the very end

PYTHIA: $Q^2 = m^2$ (timelike) or $= -m^2$ (spacelike)

- + convenient merging with ME
- \pm emissions ordered in (some measure of) hardness
- coherence by brute force \Rightarrow approximate
- kinematics constructed when daughter masses known

ARIADNE: $Q^2 = p_{\perp}^2$, (final-state) dipole emission

 $+ p_{\perp}$ ordering \Rightarrow coherence inherent

- + Lorentz invariant
- + emissions ordered in hardness
- + kinematics constructed after each branching
- (partons explicitly on-shell until they branch)
- + showers can be stopped and restarted at given p_{\perp} scale
- \Rightarrow well suited for L-CKKW (real and fictitious showers)
- $g \rightarrow q\overline{q}$ artificial
- unintegrated parton densities) in LDCMC not suited for pp on its own: ISR is primitive in ARIADNE; is sophisticated (CCFM) but complicated (forward evolution

Objective

within the shower approach Incorporate several of the good points of the dipole formalism

- \pm explore alternative p_{\perp} definitions
- + p_{\perp} ordering \Rightarrow coherence inherent
- + ME merging works as before (unique $p_{\perp}^2 \leftrightarrow Q^2$ mapping; same z)
- $+ g \rightarrow q\overline{q}$ natural
- + kinematics constructed after each branching
- (partons explicitly on-shell until they branch)
- + showers can be stopped and restarted at given p_{\perp} scale
- (not yet worked-out for ISR+FSR)
- $+ \Rightarrow$ well suited for L-CKKW (real and fictitious showers)
- $+ \Rightarrow$ well suited for simple match with 2 \rightarrow 2 hard processes

cf. LUCLUS/PYCLUS p_{\perp} vs. Durham k_{\perp} Spacelike branching: Consider branching $a \to bc$ in lightcone coordinates $p^{\pm} = E \pm p_z$ Timelike branching: $Q^2 = m_a^2 > 0$ $p_b^+ = z p_a^+$ $p_c^+ = (1-z) p_a^+$ p^- conservation $m_a = 0$ Simple kinematics 1 . $^{\perp d}$ $^{\intercal d}$ $m_c = 0$ ∥ $m_c = 0$ $^{\perp d}$ o d $Q^2 = -m_b^2 > 0$ $m_b = 0$ $m_a^2 = \frac{m_b^2 + p_\perp^2}{p_\perp^2}$ $p_{\perp}^2 = (1-z)Q^2$ 8 $p_\perp^2 = z(1-z)Q^2$ $\frac{m_c^2}{m_c^2} + p_{\parallel}^2$ 1 | 2

Strategy

1) Define
$$p_{\perp evol}^2 = z(1-z)Q^2$$
 for FSR
 $p_{\perp evol}^2 = (1-z)Q^2$ for ISR

2) Evolve downwards in $p_{\perp evol}^2$

$$d\mathcal{P}_{a} = \frac{dp_{\perp evol}^{2}}{p_{\perp evol}^{2}} \frac{\alpha_{s}(p_{\perp evol}^{2})}{2\pi} P_{a \to bc}(z) dz \exp\left(-\int_{p_{\perp evol}^{2}}^{p_{\perp max}^{2}} ...\right)$$
$$d\mathcal{P}_{b} = \frac{dp_{\perp evol}^{2}}{p_{\perp evol}^{2}} \frac{\alpha_{s}(p_{\perp evol}^{2})}{2\pi} \frac{x'f_{a}(x', p_{\perp evol}^{2})}{xf_{b}(x, p_{\perp evol}^{2})} P_{a \to bc}(z) dz \exp\left(-...\right)$$

3) Derive
$$Q^2 = p_{\perp evol}^2/z(1-z)$$
 for FSR
 $Q^2 = p_{\perp evol}^2/(1-z)$ for ISR

- 4) Do kinematics based on Q^2 and z,
- a) assuming yet unbranched partons on-shell,
- b) shuffling energy-momentum from recoil partner as required

The FSR algorithm

Find radiators and recoilers from initial list of on-shell partons

2) Evolve all radiators downwards from common $p_{\perp max}$.

b) $z_{\min}(p_{\perp evol}^2, \hat{s}) < z < z_{\max}(p_{\perp evol}^2, \hat{s})$ with $\hat{s} = (p_{rad} + p_{rec})^2$. c) Matrix-element merging by veto for many SM+MSSM decays. a) Massive quarks: $p_{\perp evol}^2 = z(1 - z)(m^2 - m_0^2)$ Pick the one that branches at the largest actual $p_{\perp evol}$. 4) Continue evolution of all radiators from recently picked $p_{\perp evol}$. d) Rotate and boost back a) Boost radiator+recoiler Construct kinematics of branching: c) φ angle nonisotropic by g polarization. b) Replace Actual $p_{\perp}^2 = m^2 \frac{z(1-z)(\hat{s}+m_1^2)^2 - \hat{s}m_1^2}{(\hat{s}-m_1^2)^2} < p_{\perp evol}^2$ Š since now z energy fraction, not lightcone radiator along +z axis to their rest frame; (so that simpler merging matrix elements). $E_2 = \frac{\hat{s} - m_1^2}{2\sqrt{\hat{s}}} \qquad E_1 = \frac{\hat{s} + m_1^2}{2\sqrt{\hat{s}}}$ mod. rec. $m_2 = 0$ $m_1^2 = \frac{\mathsf{p}_{\perp \text{evol}}^2}{z(1-z)}$ mod. rad. recoiler $E = \frac{\sqrt{s}}{2}$ m = 0 $E = \frac{\sqrt{s}}{\sqrt{s}}$ m = 0radiator $E = (1-z)E_1$ $E = zE_1$

 \Rightarrow One combined sequence $p_{\perp max} > p_{\perp 1} > p_{\perp 2} > ... > p_{\perp min}$.

Iterate until no branching above $p_{\perp {\sf min}}$

Testing the FSR algorithm

Tune performed by Gerald Rudolph (Innsbruck) based on ALEPH 1992+93 data:

	Best fit va	lues of parameters:	
parameter	name	value	comment
Λqcd	PARJ(81)	$0.141\pm.001$	\sim half of old
$2p_{\perp}$ min	PARJ(82)	0.62 ± 0.04	rather low
σ	PARJ(21)	0.360 ± 0.002	
a	PARJ(41)	0.400 fixed	
d	PARJ(42)	$1.044 \pm .025$	
€с	-PARJ(54)	.040 fixed	
€Ь	-PARJ (55)	0.0012 ± 0.0001	
qq/q	PARJ(1)	0.115 ± 0.002	dn
n/s	PARJ(2)	0.270 ± 0.004	down
	+ a few mo	re flavour parameters	0,

Quality of fit (1)

765	497	190	$Im N_{dof} =$	US
68	20	19	B	x(
(1560)	(590)	(19)	Lout	Γd
24	29	7	Lout < 0.7 GeV	Γd
170	66	25	Lin	Γd
151	207	46	$= 2p/E_{\rm Cm}$	x
22	10	20	t res. y ₃ (D)	<u>e</u>
139	26	18	nrust minor	Ţ
8	60	21	-Thrust	H
168	23	16	planarity	P
16	25	23	phericity	S
mass-ord.	p_\perp -ord.	interv.		Q
PY6.1	PY6.3	nb.of	istribution	\Box
of model	$\sum \chi^2$			

Quality of fit (2)

Generator is not assumed to be perfect, so

add fraction p of value in quadrature to the definition of the error:

	ер	d	ρ	$2p_{\perp}$ min	^QCD	$\sum \chi^2$	q
	0.012	1.044	0.360	0.62	0.141	523	0%
	0.0012	1.009	0.361	0.66	0.141	364	0.5%
I	0.013	0.980	0.364	0.69	0.140	234	1%

$N_{dof} = 1$			
90	σ	\boldsymbol{b}	ρ
\Rightarrow gene	0.012	1.044	0.360
rator is 'c	0.0012	1.009	0.361
orrect' to	0.013	0.980	0.364

ō, except $p_{\perp out} > 0.7$ GeV (10%–20% error) 2**1%**

and parameters reasonably stable

 $\langle n_{\sf gluons}
angle =$

Increasing $p_{\perp min}$ desirable since = 4.5 in PY6.1 with $m_{min} \approx 1.6$ GeV

and also higher $g \rightarrow q \overline{q}$ rates

13.0 in PY6.3 with $2p_{\perp min} = 0.6 \text{ GeV}$

The ISR algorithm

- Start with two incoming partons at hard interaction.
- 2) Evolve both radiators downwards from common $p_{\perp max}$. Pick the one that branches at the largest actual $p_{\perp evol}$.
- a) Massive quarks: not yet considered.
- b) $z_{\min}(p_{\perp evol}^2, \hat{s}, x) < z < z_{\max}(p_{\perp evol}^2, \hat{s})$ with $\hat{s} = m_{12}^2 = (p_1 + p_2)^2 = x_1 x_2 s$.
- c) Matrix-element merging by veto for Z/W/H production.
- 3) Construct kinematics of branching:

Testing the ISR algorithm

... but so far no showstoppers

Why variable Λ_{QCD} ?

J. Huston et al., Les Houches, LU TP 04–07 [hep-ph/0401145] E. Thomé, master's thesis, LU TP 04-01 [hep-ph/0401121]

Old evolution in Q^2 is not equivalent to PDF LO evolution: *(i)* angular ordering

(iii) $lpha_{
m S}((1-z)Q^2)$ rather than $lpha_{
m S}(Q^2)$ and thus cut $(1-z)Q^2 > Q_0^2$ (ii) $\hat{u} = Q^2 - \hat{s}(1-z) < 0$ (*iv*) further minor issues

 \implies slower evolution; can be compensated by raised Λ_{QCD}

For instance, with CTEQ5L, $\Lambda = 0.192$ GeV, need

 $\Lambda \approx 0.30 \text{ GeV for } q\overline{q} \rightarrow Z^0$

 $\Lambda \approx 0.48$ GeV for gg $\rightarrow H^0$

in shower to match PDF evolution rate.

and increase jet activity, not shift peak position. Unfortunately, main effect of changed A is to reduce peak height

 $m_{\rm H} = 120$ GeV. with CTEQ5L. Including FSR effects (r.m.s. for Gaussian). Primordial $k_{\perp} = 0.4$ GeV

Primordial $k_{\perp} = 2$ GeV.

Example with new shower

$gg \rightarrow H^0$ at the LHC:

dơ/dp_T (pb/Gev)

To do

- Complete ISR: heavy flavours
- Combine FSR with ISR
- Test for pp

Write it up
 TS, Les Houches, LU TP 04–05 [hep-ph/0401061]

- Combine with multiple interactions
- Rewrite in C++