How a closed quantum system reaches thermal equilibrium is a fundamental question in statistical physics. Recent work
has uncovered surprising richness in this process, leading to a new classification of quantum many-body systems into
distinct .dynamical phases.. On one extreme are many-body localized states, which fail to thermalize and can retain
accessible quantum correlations indefinitely. At the other end are maximally chaotic systems, which scramble quantum
information rapidly. I will review progress made in understanding many-body localized phases, both theoretically and
experimentally. I will then discuss a novel approach for computing the time evolution of quantum many-body systems,
which captures the emergence of chaos and hydrodynamic behavior.
Play Flash full motion video, or Flash lower bandwidth video.
Play QuickTime full motion movie
[ or Stream |
or Download ]
Or play QuickTime lower bandwidth slideshow
[ or Download ]
Or [ Download the Podcast ].
Begin streaming RealMedia.
(Or, right-click to download the audio file.)