Effects of Disorder in Double-Exchange Systems

Yukitoshi Motome (RIKEN)

in collaboration with Nobuo Furukawa (Aoyama Gakuin Univ.) Naoto Nagaosa (Univ. of Tokyo)

Outline

Effects of disorder in double-exchange systems on

- T_C of ferromagnetic transition
 - 'world-record' Monte Carlo simulation
- spin excitation spectrum
 - anomalies such as broadening, softening, etc.
- competing phases
 - disorder-induced insulator-to-metal transition
 - origin of CMR

Disorder in CMR Manganites?

Bandwidth Control?

 ionic-radius control is often called 'bandwidth control' with changing the angle and length of Mn-O-Mn bonds

A_{0.7}A'_{0.3}MnO₃

Hwang et al., 1995

 $Pr_{0.55}(Ca_{1-y}Sr_y)_{0.45}MnO_3$

Tomioka and Tokura, 2002

'average' physics works? - No.

Breakdown of 'Bandwidth Control' Picture

 \bigcirc change of $T_C >>$ change of bandwidth W

c.f. T_C scales to the bandwidth within the double-exchange theory

Another Counterexample: Anomalies in Spin Excitation

compounds with high T_C (wide bandwidth?)

Perring et al., 1997

Furukawa, 1997

simple cosine-like dispersion double-exchange theory is sufficient

Another Counterexample: Anomalies in Spin Excitation

compounds with low T_C (narrow bandwidth?)

Biotteu et al., 1997

notable deviations from the simple cosine-like dispersion anomalies: broadening, softening, anti-crossing, etc.

Disorder?

- enhancement (Coey et al., 1995)
- T_C scales to the standard deviation of A-site ionic radii for a constant average radius
- excitation spectra (Perring et al., 2000, Furukawa and Hirota, 2000)

Saitoh et al., 1999

Rodriguez-Martinez and Attfield, 2000

Yes, Disorder!

new 'disorder-controllable' compounds

- A-site ordered/disordered compounds A_{1/2}Ba_{1/2}MnO₃
- disorder-induced insulator-metal transition and CMR

Our Strategy...

- complexity itinerant electrons, Hund's coupling, degenerate orbitals, Jahn-Teller distortion, strain, etc.
- On top of those, there must be disorder: too much to begin with...
- We restart from a minimal model with disorder to examine how far we can reach and what is beyond.

DE model with Disorder

- single band
- strong Hund's-rule coupling
- classical localized spins
- on-site potential disorder

$$H = -t \sum_{\langle ij \rangle \sigma} (c_{i\sigma}^{\dagger} c_{j\sigma} + \text{H.c.}) - J_{\text{H}} \sum_{i} \vec{\sigma}_{i} \cdot \vec{S}_{i} + \sum_{i} \varepsilon_{i} n_{i}$$

$$\rightarrow -\sum_{\langle ij \rangle} (\tilde{t}_{ij} \tilde{c}_{i}^{\dagger} \tilde{c}_{j} + \tilde{t}_{ji} \tilde{c}_{j}^{\dagger} \tilde{c}_{i}) + \sum_{i} \varepsilon_{i} \tilde{n}_{i}$$

$$\tilde{t}_{ij} = t \Big\{ \cos \frac{\theta_{i}}{2} \cos \frac{\theta_{j}}{2} + \sin \frac{\theta_{i}}{2} \sin \frac{\theta_{j}}{2} e^{-i(\phi_{i} - \phi_{j})} \Big\}$$

We will add breathing-type phonons to describe phase competitions later.

Curie Temperature Tc

Monte Carlo Simulation

- truncated polynomial expansion Monte Carlo (Motome and Furukawa, 1999, 2001, 2004)
 - Chebyshev polynomial expansion for DOS

 - easy to implement parallel computation

system size	conventonal MC: O(N ⁴)	t-PEMC: O(N)
8×8×8	2.5 years	2.4 days
12×12×12	300 years	8 days
16x16x16	9500 years	21 days

CPU time for 10000 MC steps on AthlonTM MP 1500+ ($N_{PE}=1$)

How does it work?

in the clean limit (without disorder)

Heisenberg univ. class

How does it work?

dirty case (with disorder)

binary disorder $\varepsilon_i = \pm \Delta$

Heisenberg univ. class (disorder is irrelevant)

Suppression of Tc by Disorder

- reduction of T_C scales to Δ^2
- 30% reduction is achieved at Δ~0.4-0.5VV, which corresponds to ~0.5eV
 c.f. Pickett and Singh, 1997
- drawback: transition is always continuous
 - ✓ phonons?

Spin Excitation Spectrum

Spin-wave Approximation

Holstein-Primakoff transformation

$$S_i^z = S - a_i^{\dagger} a_i, \ S_i^x = \sqrt{S/2}(a_i^{\dagger} + a_i), S_i^y = \sqrt{S/2}(a_i^{\dagger} - a_i)$$

in the lowest-order of I/S expansion:

$$\langle \tilde{t}_{ij} \tilde{c}_i^{\dagger} \tilde{c}_j + \tilde{t}_{ji} \tilde{c}_j^{\dagger} \tilde{c}_i \rangle \rightarrow 2S J_{ij} (a_i^{\dagger} a_j + a_j^{\dagger} a_i - a_i^{\dagger} a_i - a_j^{\dagger} a_j)$$

$$J_{ij} = \tilde{t}_{ij} \langle \tilde{c}_i^{\dagger} \tilde{c}_j \rangle / 4S^2$$

effective exchange interaction induced by itinerant electrons

equivalent to the spin-wave Hamiltonian for Heisenberg model

spin excitation spectrum is obtained by eigenvalues/vectors of the spin-wave Hamiltonian

$$A(\vec{q}, \omega) = \sum_{l} |\langle q|l\rangle|^2 \delta(\omega - \omega_l) \qquad H_{\text{sw}}|l\rangle = \omega_l|l\rangle$$

Spin Excitation Spectrum: Disorder Strength Dependence

disorder induces broadening, branching, softening, ...

Origin of Anomalies: Friedel Oscillation in Half-metal

- features of spin-excitation anomalies:
 - robust against various types of disorder
 - more apparent in lower dimensions
 - correlation with Fermi wave number
- Friedel oscillation in half-metallic systems

Comparison with Experiments

other theoretical proposals: super-exchange interactions between localized spins (Solovyev and Terakura 1999), orbital fluctuations (Khaliullin and Lilian, 2000), electron-phonon coupling (Furukawa, 1999), electron-electron correlations (Kaplan and Mahanti, 1997; Golosov, 2000; Shannon and Chubukov, 2002)

Extension to Droplet States

(... in progress)

0.6 1D $\omega(q)$ 0.0 0.4 2D $\omega(\mathbf{q})$ (0,0) $(\pi,0)$ (π,π) (0,0)

Hennion et al. 2005

in collaboration with T. Ziman, O. Cepas (ILL) and G. Bouzerar (CNRS)

Competing Phases

FM vs COI Model

minimal model to describe the phase competition between FM and COI

$$H = \frac{-t\sum_{\langle ij\rangle\sigma}(c_{i\sigma}^{\dagger}c_{j\sigma} + \text{H.c.}) - J_{\text{H}}\sum_{i}\sigma_{i}^{z}S_{i}}{-g\sum_{i}x_{i}(n_{i} - \frac{1}{2}) + \frac{1}{2}\sum_{i}x_{i}^{2} + \frac{\lambda}{2}\sum_{\langle ij\rangle}x_{i}x_{j} + \sum_{i}\varepsilon_{i}n_{i}}$$

electron-phonon coupling elastic energy quenched disorder (breathing mode)

(classical) (on-site randomness)

2D,
$$\langle n \rangle = 0.5$$
, $J_{\rm H} = \infty$, S_i : Ising spin, $\lambda = 0.1$, $\varepsilon_i = \pm \Delta$

- Monte Carlo simulation for thermodynamics
 - distinguish: long-range order vs short-range correlation

Phase Diagram

multicritical behavior (FM vs COI)

COI is fragile against disorder

COI vanishes FM is robust

Asymmetric Change of Phase Diagram

bandwidth **FM FM**

FM

disorder

- COI is fragile against the disorder while FM is robust
- The multicritical point shifts to enlarge FM region
- disorder-induced insulator-to-metal transition

Disorder-Induced Insulator-to-Metal Transition

density of states

optical conductivity

see also Sen, Alvarez and Dagotto, 2004

Contrastive Effects of Disorder

• Disorder makes the system metallic below T_C but insulating above T_C

Role of Disorder

- pinning to commensurate CO
 - antiphase boundaries kill LRO
- domain walls: extra entropy

CO short-range correlation

insulating state with charge pseudo gap

CO LRO is never stabilized

FM overtakes in the energy competition

re-entrant behavior from high-T insulating to low-T metallic state

Origin of CMR?

- Re-entrant behavior gives a good motive to cause the enhanced CMR
- direct (numerical)
 confirmation is needed
- extention to more realistic models including orbitals, Jahn-Teller, etc.
 - ✓ pinning to orbital order/ cooperative Jahn-Teller

Summary

- Monte Carlo study of T_C
 - rapid decrease of T_C by introducing disorder
- spin excitation anomalies
 - Friedel oscillation in half-metallic systems
- phase competition between FM and COI
 - disorder-induced insulator-to-metal transition and CMR