Variational wave functions for quantum phonons coupled to spins

Federico Becca

Kavli Institute for Theoretical Physics Correlated Systems with Multicomponent Local Hilbert Spaces November 2020

F. Ferrari, R. Valenti, and FB, Phys. Rev. B 102, 125149 (2020)

F. Ferrari, R. Valenti, and FB, work in progress

1 MOTIVATIONS

2 VARIATIONAL WAVE FUNCTIONS FOR THE SPIN-PHONON PROBLEM

3 Results

- The one-dimensional Heisenberg model
- The one-dimensional $J_1 J_2$ Heisenberg model
- The $J_1 J_2$ Heisenberg model on the square lattice (no phonons)
- Preliminary results with phonons

4 CONCLUSIONS

(日) (四) (日) (日) (日)

Why should we care about phonons?

Phonons are ubiquitous in solid-state physics (Multicomponent Hilbert space)

• Mainly considered in metals for superconducting instabilities

H. Frölich, Adv. Phys. 3, 325 (1954)

J. Bardeen, L.N. Cooper, and J.R. Schrieffer, Phys. Rev. 108, 1175 (1957)

• Phonons are also relevant in Mott insulators

The superexchange coupling *J* is affected by lattice vibrations Spin-Peierls transition in one-dimensional magnets

J.P. Boucher and L.P. Regnault, J. Phys. I 6, 1939 (1996)

M.C. Cross and D.S. Fisher, Phys. Rev. B 19, 402 (1979)

Phonons as probes to spin instabilities in two-dimensional systems

• There is an increasing evidence for gapless spin-liquids in frustrated magnets Heisenberg model on the Kagome lattice

Y. Iqbal, F. Becca, S. Sorella, and D. Poilblanc, Phys. Rev. B 87, 060405 (2013)

Y.-C. He, M.P. Zaletel, M. Oshikawa, and F. Pollmann, Phys. Rev. X 7, 031020 (2017)

$J_1 - J_2$ Heisenberg model on the square lattice

- L. Wang and A.W. Sandvik, Phys. Rev. Lett. 121, 107202 (2018)
- F. Ferrari and F. Becca, Phys. Rev. B 102, 014417 (2020)
- Y. Nomura, M. Imada, arXiv:2005.14142

W.-Y. Liu, S.-S. Gong, Y.-B. Li, D. Poilblanc, W.-Q. Chen, Z.-C. Gu, arXiv:2009.01821

Is the gapless spin liquid unstable to lattice distortions? What is the pattern of lattice displacements?

< □ > < □ > < □ > < □ > < □ >

The spin-phonon problem is generically very complicated

- Often, an effective (purely electronic) Hamiltonian is considered (superconductivity)
- Large (infinite) Hilbert space even on small sizes
 Limitations for Exact diagonalization and DMRG calculations
 DMFT for superconductivity or polaron formation

The adiabatic limit has been considered

- A.E. Feiguin, J.A. Riera, A. Dobry, and H.A. Ceccatto, Phys. Rev. B 56, 14607 (1997)
- D. Augier, J. Riera, and D. Poilblanc, Phys. Rev. B 61, 6741 (2000)
- F. Becca and F. Mila, Phys. Rev. Lett. 89, 037204 (2002)
- F. Becca, F. Mila, and D. Poilblanc, Phys. Rev. Lett. 91, 067202 (2003)

Here, we define variational wave functions

- H. Watanabe, K. Seki, and S. Yunoki, Phys. Rev. B 91, 205135 (2015)
- T. Ohgoe and M. Imada, Phys. Rev. Lett. 119, 197001 (2017)
- S. Karakuzu, L. F. Tocchio, S. Sorella, and F. Becca, Phys. Rev. B 96, 205145 (2017)

(日) (四) (日) (日) (日)

Let us start softly

- On each site there is one phonon (oscillations along the chain)
- The spin-spin super-exchange is coupled (linearly) to displacements
- For the Heisenberg model with nearest-neighbor interactions the Hamiltonian is

$$\mathcal{H} = \sum_{i=1}^{L} \left[J + \mathbf{g} (\mathbf{a}_{i+1}^{\dagger} + \mathbf{a}_{i+1} - \mathbf{a}_{i}^{\dagger} - \mathbf{a}_{i}) \right] \mathbf{S}_{i} \cdot \mathbf{S}_{i+1} + \mathbf{\omega} \sum_{i=1}^{L} \left(\mathbf{a}_{i}^{\dagger} \mathbf{a}_{i} + \frac{1}{2} \right)$$

ullet Or equivalently , with $X_j=(a_j^\dagger+a_j^{})$ and $P_j=i(a_j^\dagger-a_j^{})$

$$\mathcal{H} = \sum_{i=1}^{L} \left[J + g(X_{i+1} - X_i) \right] \mathbf{S}_i \cdot \mathbf{S}_{i+1} + \frac{\omega}{4} \sum_{i=1}^{L} \left[P_i^2 + X_i^2 \right]$$

Optical phonons

OLD DMRG RESULTS FOR OPTICAL PHONONS

$$\mathcal{H} = \sum_{i=1}^{L} \left[J + \mathbf{g} (\mathbf{a}_{i+1}^{\dagger} + \mathbf{a}_{i+1} - \mathbf{a}_{i}^{\dagger} - \mathbf{a}_{i}) \right] \mathbf{S}_{i} \cdot \mathbf{S}_{i+1} + \mathbf{\omega} \sum_{i=1}^{L} \left(\mathbf{a}_{i}^{\dagger} \mathbf{a}_{i} + \frac{1}{2} \right)$$

- Peierls transition at finite spin-phonon couplings
- Good agreement with perturbative approaches ($J \ll \omega$)

$$egin{aligned} J_1 &pprox J + rac{g^2}{\omega} - rac{3g^2J}{2\omega^2}\ J_2 &pprox rac{g^2}{2\omega} + rac{3g^2J}{2\omega^2} \end{aligned}$$

- R.J. Bursill, R.H. McKenzie, and C.J. Hamer, Phys. Rev. Lett. 83, 408 (1999)
- G.S. Uhrig, Phys. Rev. B 57, 14004 (1998); A. Weisse, G. Wellein, and H. Fehske, Phys. Rev. B 60_6566 (1999).

Federico Becca

Spins and Phonons

OLD DMRG RESULTS FOR ACOUSTIC PHONONS

• Alternatively, acoustic phonons correspond to

$$\mathcal{H} = \sum_{i=1}^{L} \left[J + g(X_{i+1} - X_i) \right] \mathbf{S}_i \cdot \mathbf{S}_{i+1} + \frac{\omega}{4} \sum_{i=1}^{L} \left[P_i^2 + (X_{i+1} - X_i)^2 \right]$$

• Some evidence that the Peierls transition takes place at g = 0

W. Barford and R.J. Bursill, Phys. Rev. Lett. 95, 137207 (2005)

The variational wave functions

• The full wave function for the spin-phonon problem is defined as

 $|\Psi_0
angle = \mathcal{J}_{sp}|\Psi_s
angle \otimes |\Psi_p
angle$

- $|\Psi_s\rangle$ is the spin part (Gutzwiller projected fermions)
- $|\Psi_p\rangle$ is the phonon part (free phonons)
- \mathcal{J}_{sp} is a Jastrow spin-phonon term

Option 1: couple spins to the phonon numbers (bad) Option 2: couple spins to the phonon displacement (good)

- No truncation in the phonon Hilbert space
- "Backflow" could be implemented in the future...

イロン イロン イヨン イヨン

The spin part

• Start from an uncorrelated BCS Hamiltonian

$$\mathcal{H}_0 = \sum_{i,j,\sigma} t_{i,j} c_{i,\sigma}^{\dagger} c_{j,\sigma} + \sum_{i,j} \Delta_{i,j} c_{i,\uparrow}^{\dagger} c_{j,\downarrow}^{\dagger} + h.c.$$

 $\{t_{i,j}\}$ and $\{\Delta_{i,j}\}$ define the mean-field Ansatz

- \bullet Obtain the ground state $|\Phi_0\rangle$
- Apply the Gutzwiller projector \mathcal{P}_G and the spin-spin Jastrow factor \mathcal{J}_{ss}

$$\begin{split} \boxed{ |\Psi_s\rangle &= \mathcal{J}_{ss} \mathcal{P}_G |\Phi_0\rangle } \\ \mathcal{P}_G &= \prod_i (n_{i,\uparrow} - n_{i,\downarrow})^2 \\ \mathcal{J}_{ss} &= \exp\left[\frac{1}{2}\sum_{i,j} \mathsf{v}_{ss}(i,j) S_i^z S_j^z\right] \end{split}$$

• Take the coherent state for the phonon modes with momentum k

$$|\Psi_{
ho}
angle = \exp(za_k^\dagger)|0
angle_{
ho} = \prod_j \exp(ze^{ikR_j}a_j^\dagger)|0
angle_{
ho}$$

The real variable z is a fugacity variational parameter which determines

$$\langle n_j \rangle_{P} = rac{\langle \Psi_P | a_j^{\dagger} a_j | \Psi_P \rangle}{\langle \Psi_P | \Psi_P \rangle} = z^2$$

$$\langle X_j
angle_{
ho} = rac{\langle \Psi_{
ho} | (a_j^{\dagger} + a_j) | \Psi_{
ho}
angle}{\langle \Psi_{
ho} | \Psi_{
ho}
angle} = 2z \cos(kR_j)$$

 The momentum k modulates the direction of sites displacements (the Peierls instability corresponds to k = π)

• Spin-phonon coupling with densities

$$\mathcal{J}_{sp} = \mathcal{J}_n = \exp\left[\sum_{i,j} v_n(i,j) S_i^z S_j^z \mathbf{n}_j\right]$$

Monte Carlo sampling in the Fock space with given $\{n_i\}$

$$|\Psi_{p}\rangle = \sum_{n_{1},\ldots,n_{L}} \frac{z^{N_{p}} e^{ik\sum_{j} R_{j} n_{j}}}{\sqrt{n_{1}!\cdots n_{L}!}} |n_{1},\ldots,n_{L}\rangle$$

• Spin-phonon coupling with displacements

$$\mathcal{J}_{sp} = \mathcal{J}_{X} = \exp\left[\frac{1}{2}\sum_{i,j}v_{X}(i,j)S_{i}^{z}S_{j}^{z}(\boldsymbol{X}_{i} - \boldsymbol{X}_{j})\right]$$

Monte Carlo sampling in the real space with given $\{X_i\}$

$$|\Psi_{p}\rangle = \int dX_{1} \cdots dX_{L} \left[\prod_{j} e^{\phi_{j}(X_{j})}\right] |X_{1}, \dots, X_{L}\rangle$$

$$\phi_{j}(X_{j}) = iz \sin(kR_{j})X_{j} - \frac{1}{4} [X_{j} - 2z \cos(kR_{j})]^{2}$$

COMPARISON WITH EXACT RESULTS

- 8 sites with $n_{\rm max} = 5$
- Lanczos vs VMC

Jastrow term with

- i) occupation numbers
- ii) displacements

 $\delta E = |(E_{\text{variational}} - E_{\text{Lanczos}})/E_{\text{Lanczos}}|$ $\omega/J = 0.1$ $1.0 \cdot$ (%) 9E (%) 0.0 0.75 1.00 1.50 0.25 g/ω $\omega/J = 1$ 0.4 0.6 1.0 g/ω $\omega/J = 10$ 10 $\delta E~(\%)$

0.1

0.2 0.3 0.4 0.5

 g/ω

 $- - - \mathcal{J}_{sp} = \mathcal{J}_n$ $- - \mathcal{J}_{sp} = \mathcal{J}_X$

LATTICE DEFORMATIONS

• Average phonon displacement at $k = \pi$

$$\Delta X = \left|rac{1}{L}\sum_{j=1}^L e^{i\pi R_j} \langle X_j
angle_0
ight.$$

SPIN DIMERIZATION

• Dimer-dimer (z-component) at $k = \pi$

$$D^{2} = \frac{1}{L} \sum_{R=0}^{L-1} e^{i\pi R} \left(\frac{1}{L} \sum_{j=1}^{L} \langle S_{j}^{z} S_{j+1}^{z} S_{j+R}^{z} S_{j+R+1}^{z} \rangle_{0} \right)$$

Federico Becca

Spins and Phonons

(目) 目 つへで KITP 15/27

ENERGY GAIN AND PHONON DENSITY

Federico Becca

Spins and Phonons

KITP 16 / 27

3

The frustrated Heisenberg model in one dimension

• The simplest model with spin frustration in one dimension

$$\mathcal{H} = J_1 \sum_i \mathbf{S}_i \cdot \mathbf{S}_{i+1} + J_2 \sum_i \mathbf{S}_i \cdot \mathbf{S}_{i+2}$$

< □ > < □ > < □ > < □ > < □ >

- Gapless phase for $J_2/J_1 < 0.241167(5)$
- Gapped (dimerized) phase for $J_2/J_1 > 0.2411674(2)$
- Incommensurate spin-spin correlations for $J_2/J_1\gtrsim 0.5$

H. Bethe, Z. Phys. 71, 205 (1931)

- C.K. Majumdar and D.K. Ghosh, J. Math. Phys. 10, 1388 (1969)
- S. Eggert, Phys. Rev. B 54, 9612 (1996)
- A.W. Sandvik, AIP Conf. Proc. 1297, 135 (2010)

• In 1D, the transition is located by looking at the singlet-triplet crossing

K. Okamoto and K. Nomura, Phys. Lett. A 169, 443 (1992)

G. Castilla, S. Chakravarty, and V.J. Emery, Phys. Rev. Lett. 75, 1823 (1995)

- In the gapless region, the lowest-energy state is a triplet
- In the gapped region, the lowest-energy state is a singlet
- A the transition, the umklapp scattering vanishes and they are degenerate

The transition can be precisely located by exact calculations on small sizes ($L \approx 20$). Here, $\alpha = J_2/J_1$

FIG. 1. $\alpha_c(N)$ vs $1/N^2$. The linear fit gives the intercept $\alpha_c = 0.2412$.

A D F A A F F A F A F

• The best calculation gives $J_2/J_1 = 0.2411674(2)$

A.W. Sandvik, AIP Conf. Proc. 1297, 135 (2010)

Federico Becca

KITP 18/27

The one-dimensional $J_1 - J_2$ Heisenberg model

• The nearest-neighbor super-exchange is coupled to displacements

$$\mathcal{H} = \sum_{i=1}^{L} \left[J_1 + g(X_{i+1} - X_i) \right] \mathbf{S}_i \cdot \mathbf{S}_{i+1} + J_2 \sum_{i=1}^{L} \mathbf{S}_i \cdot \mathbf{S}_{i+2} + rac{\omega}{4} \sum_{i=1}^{L} \left[P_i^2 + X_i^2 \right]$$

• $\omega/J = 0.1$ and 200 sites

The $J_1 - J_2$ Heisenberg model on the square lattice

$$\mathcal{H} = J_1 \sum_{\langle i,j
angle} \mathbf{S}_i \cdot \mathbf{S}_j + J_2 \sum_{\langle \langle i,j
angle
angle} \mathbf{S}_i \cdot \mathbf{S}_j$$

イロト イボト イヨト イヨ

Infinitely many papers with partially contradictory results

W.-J. Hu, F. Becca, A. Parola, and S. Sorella, Phys. Rev. B 88, 060402 (2013)

- S.-S. Gong et al., Phys. Rev. Lett. 113, 027201 (2014)
- S. Morita, R. Kaneko, and M. Imada, J. Phys. Soc. Jpn. 84, 024720 (2015)
- L. Wang et al., Phys. Rev. B 94, 075143 (2016)
- D. Poilblanc and M. Mambrini, Phys. Rev. B 96, 014414 (2017)
- R. Haghshenas and D.N. Sheng, Phys. Rev. B 97, 174408 (2018)
- K. Choo, T. Neupert, and G. Carleo, Phys. Rev. B 100, 125124 (2019)

• Recently, there is an emerging consensus on the phases diagram

-		-
100	01100	L'ogge
T. EC	lerico	Decca

Low-energy singlets and triplets

• In 2D, recent DMRG calculations highlighted a couple of level crossings

(on a cylinder geometry $2L \times L$ with L = 6, 8, and 10. Here $g = J_2/J_1$)

L. Wang and A.W. Sandvik, Phys. Rev. Lett. 121, 107202 (2018)

- The singlet-quintuplet crossing corresponds to Néel to SL transition
- The singlet-triplet crossing corresponds to the SL to valence-bond solid

• • • • • • • • • • • •

Two-dimensional $J_1 - J_2$ model: level crossing

• On 6×6 for $J_2/J_1 = 0.5$:

Ground-state accuracy 0.5% ($E_{ex}/J_1 = -0.50381$ vs $E_{var}/J_1 = -0.50116$) Triplet-state accuracy 0.7% ($E_{ex}/J_1 = -0.49072$ vs $E_{var}/J_1 = -0.48706$) Singlet-state accuracy 1.4% ($E_{ex}/J_1 = -0.49054$ vs $E_{var}/J_1 = -0.48375$)

On larger clusters:

Federico Becca

Spins and Phonons

KITP 22/27

TOWARDS A FINAL PHASE DIAGRAM

[1] L. Wang and A.W. Sandvik, Phys. Rev. Lett. 121, 107202 (2018)

- [2] F. Ferrari, F. Becca, Phys. Rev. B 102, 014417 (2020)
- [3] Y. Nomura and M. Imada, arXiv:2005.14142
- [4] W.-Y. Liu, S.-S. Gong, Y.-B. Li, D. Poilblanc, W.-Q. Chen, Z.-C. Gu, arXiv:2009.01821

CORRELATION FUNCTIONS

- Power-law spin-spin correlations
- Power-law (?) dimer-dimer correlations
- Not much difference between $J_2/J_1 = 0.5$ and 0.58

Federico Becca

KITP 24 / 27

QUANTUM PHONONS IN TWO DIMENSIONS

- On each site there is two phonons (oscillations in the plane)
- The nearest-neighbor super-exchange is coupled to longitudinal displacements
- For the $J_1 J_2$ Heisenberg model the Hamiltonian is taken as:

$$\mathcal{H} = \sum_{i} \left\{ \left[J_1 + g(X_{i+x} - X_i) \right] \mathbf{S}_i \cdot \mathbf{S}_{i+x} + \left[J_1 + g(Y_{i+y} - Y_i) \right] \mathbf{S}_i \cdot \mathbf{S}_{i+y} \right\} \\ + J_2 \sum_{i} \left[\mathbf{S}_i \cdot \mathbf{S}_{i+x+y} + \mathbf{S}_i \cdot \mathbf{S}_{i+x-y} \right] + \frac{\omega}{4} \sum_{i} \left[P_{X,i}^2 + P_{Y,i}^2 + X_i^2 + Y_i^2 \right]$$

• The variational wave function generalizes the one-dimensional case:

$$|\Psi_{P}
angle = \prod_{j} \exp(z_{a}e^{ik_{a}R_{j}}a_{j}^{\dagger})\exp(z_{b}e^{ik_{b}R_{j}}b_{j}^{\dagger})|0
angle_{P}$$

Two fugacities z_a and z_b and two momenta k_a and k_b

Federico Becca

イロン イロン イヨン イヨン

Preliminary results for the $J_1 - J_2$ Heisenberg model coupled to phonons

• $\omega/J = 1$ and 16×16 sites

- A promising difference is seen...
- ...but a size scaling is needed

• • • • • • • • • • • •

- Qualitatively correct wave functions in the 1D Heisenberg model Calculations done for optical phonons What about acoustic phonons?
- Frustrated $J_1 J_2$ model in 1D: dimerization for $J_2/J_1 < 0.5$ What about $J_2/J_1 > 0.5$? Tetramerization?

F. Becca, F. Mila, and D. Poilblanc, Phys. Rev. B 91, 067202 (2003)

• Most interestingly: what happens in 2D?

Phonons as probes to spin liquids and valence-bond solids

Also important for magnetically ordered phases

- E.g., orthorhombic transition on the square lattice with $Q = (\pi, 0)$ magnetic order
- F. Becca and F. Mila, Phys. Rev. Lett. 89, 037204 (2002)

What about other lattices? E.g., the triangular one for 120° magnetic order?