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Significant spin-orbit coupling (SOC)
Importance of Hund’s coupling

Sr2RuO4

RuCl3 SOC > bandwidth (honeycomb); 
Kitaev & Gamma interaction from SOC & Hund’s

SOC < bandwidth; 4d4

4d5

SOC & Hund’s



• Sr2RuO4; spin-triplet vs. singlet?

• Even-parity spin-triplet pairing and SOC: 
Shadowed triplet

• Applying to Sr2RuO4

• Proposed experiment

Outline



Chapter 2. The strontium ruthenate family 15

Sr2RuO4 Sr3Ru2O7 SrRuO3

superconductor paramagnetic ferromagnetic metal
(Tc = 1.5 K) metal (Tc = 165 K)

n 1 2 ∞
space tetragonal orthorhombic orthorhombic
group I4/mmm Bbcb (# 68)

lattice a = 3.862 Å, a = b = 5.5006 Å, a = 5.56 Å, b = 5.53 Å
parameters c = 12.729 Å, c = 20.725 Å, c = 7.84 Å

θ = φ = 0◦ θ = 6.8◦,φ = 0◦ θ "= 0,φ "= 0

ρc/ρab ! 400 ∼ 300 ∼ 1.1

γ 38 mJ
Ru mol K2 110 mJ

Ru mol K2 29 mJ
Ru mol K2

m∗/m0 ∼ 4 — ∼ 3− 3.4

RW 1.7− 1.8 ! 10 —

µ — — 1.1µB/Ru
(in-plane)

Table 2.1: A collection of basic (normal state) properties of the strontium ruthenate
Ruddlesden-Popper series Srn+1RunO3n+1, where n is the number of RuO layers, ρc/ρab
characterizes the out-of-plane to in-plane resistive anisotropy, θ (φ) is the RuO6 octahedra
rotation angle about (from) the c axis, γ the specific heat coefficient, m∗/m describes
the effective mass enhancement, RW stands for the Wilson ratio, and µ for the magnetic
polarization. (The data for Sr2RuO4 are based on Refs. [56, 57, 58], for Sr3Ru2O7 on
Refs. [52, 59, 49] and for SrRuO3 on Refs. [60, 44].)

for Sr3Ru2O7 [63]. Finally, the Sr2RuO4 t2g bandwidths have been estimated to be of the

order (Wxy,Wyz/xz) ≈ (2.8, 1.5) eV [64] and (3.2, 1.6) eV [63], giving a bandwidth ratio

of R = Wyz/xz/Wxy ∼ 0.5. This ratio, however, rapidly increases with n due to increased

out-of-plane hopping via dyz and dxz orbitals, while the dxy bandwidth remains stagnant.

For Sr3Ru2O7 one therefore has R ∼ 0.7 [63].

2.3 Unconventional superconductivity in Sr2RuO4

While not much was known soon after the discovery of superconductivity in Sr2RuO4 ,

early proposals for the pairing symmetry suggested p-wave spin-triplet pairing due to

the similarity of the normal state properties to those of 3He and the overall trend to-

wards ferromagnetism in the strontium ruthenate compounds [4, 5]. The first strong

indication for unconventional superconductivity came from its sensitivity to disorder. In

Sr2RuO4

Rice and Sigrist, JPCM (1995): spin triplet with

~d(p) = ẑ(px + ipy)  - analog He3 A-phase



Spin Triplet
A theoretical description of the new phases of liquid 'He

Anthony J. Leggett
School of Mathematical and Physical Sciences, University of Sussex, Falmer Brighton, England.

This paper reviews the theory of anisotropic superfluid phases and its application
to the new A and 8 phases of hquid 'He. It is tutorial in nature and advanced
formal techniques are avoided; even the formalism of second quantization is not
required. After an initial discussion of the Fermi-liquid theory of Landau and its
application to the normal phase of liquid 'He, the idea of instability against
formation of Cooper pairs is introduced. The effective interaction in liquid 'He is
considered. , with emphasis on the spin-dependent interaction arising from virtual
spin polarization of the medium ("spin fluctuation exchange" ). Next, a
self-contained discussion of-the "weak-coupling" BCS theory as applied to
anisotropic superfluids is given, with special attention to the "Ginzburg —Landau"
region close to the transition temperature. Formulas are derived for the specific
heat, spin susceptibility, normal density tensor, and static spin-dependent
correlation properties of superAuids with both singlet and triplet pairing: In the
triplet case the ideas of "spin superAuid velocity" and "spin superfluid density"
are also introduced. After a preliminary comparison of the weak-coupling theory
with experiment, it is shown that feedback effects due to the modification, by
formation of Cooper pairs, of the effective interaction connected with spin
fluctuation exchange can produce results which are qualitatively different from
those of the weak-coupling theory. An attempt is made to reformulate recent
graph-theoretical treatments of this phenomenon in a more elementary language,
and considerations based on possible invariant forms of the free energy are also
introduced. The properties of the so-called Anderson —Brinkman —Morel and Balian-
Werthamer states, which are commonly identified with He-A and 8, respectively,
are studied in detail. Next, the effects which tend to orient the Cooper pair
wave function in a given experimental situation are discussed; in this context the
form of the free energy terms arising from spatial variation of the wave function is
explored. A semiphenomenological theory of the nuclear magnetic resonance
properties is developed and applied in particular to the case of unsaturated cw
resonance; the analogy with the Josephson effect is emphasized. The question of
relaxation and linewidths is also briefly discussed. A partial account is given of
the theory of finite-wavelength collective oscillations, with particular reference to
first, second, and fourth sound and spin waves. The splitting of the A-normal
transition in a magnetic field is considered, with special attention to the possibility
it offers of testing theories of the "spin fluctuation" type. Finally, a brief
assessment is made of the extent to which the current experimental data support
the conventional identification of 'He—A and 8 and the spin fluctuation theory,
and some outstanding problems and possibilities are outlined. Subjects not
discussed include "first-principles" theories of the effective interaction in He
collective excitations in the "collisionless" regime, and the problem of ultrasonic
absorption, "orbit waves, " and the theory of the kinetic coef5cients.
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I. INTRODUCTION
The discovery of the new phases of 'He described in the

accompanying paper by Wheatley (1975)' did not burst
into a theoretical vacuum. Very soon after Bardeen, Cooper,
and Schrieffer (1957) and Bogoliubov (1958) proposed
what is now the almost universally accepted microscopic
theory of superconductivity, it was realized that the phe-
nomenon of Cooper pairing which lay at its base might not
be restricted to electrons in metals but could well occur in
other highly degenerate systems of fermions —in particular,
in liquid 'He. It was quickly appreciated that whereas the
electrons in metals form pairs with relative angular mo-.
mentum zero, in 'He this would be prevented by the strong
hard-core repulsion, and that therefore Cooper pairing, if
it occurred, was likely to be in a state with finite angular
momentum. Such a state would have an anisotropic pair
wave function and hence presumably anisotropic properties.
Moreover, since the 'He atom is neutral, it could of course
not show anomalous electrical conduction properties like
the BCS state of electrons in a superconductor; but it w'ould
presumably show the corresponding anomalous mass Rom
properties, that is, superQuidi&y. Consequently, this pro-
posed low-temperature phase of liquid 3He, at that time
' This paper is throughout referred to simply as "Wheatley. "

completely hypothetical, became know'n as an "anisotropic
superQuid" state.

In the years between 1960 and 1972 the theory of aniso-
tropic superQuidity was developed in some depth, and many
specific predictions were made for the behavior of liquid
'He should it ever enter such a condensed phase. '. %Shen
therefore the new phases 'He—A and 8 were discovered in
1972, it was almost universally assumed from the very
beginning that they were indeed the long-predicted anis-
tropic superQuid phase, and almost all theoretical w'ork in
the last two years has been based on this assumption: that
is, that both the new' phases are essentially similar to the
"BCSstate" of electrons in a superconductor, but with the
Cooper pairs forming in a state of nonzero relative angular
momentum.

~ The present author must be one of a tiny minority in
still harboring any doubts at all of the correctness of this
identification (the reasons for such lingering doubts are
touched on briefly in the Conclusion). Nevertheless, the
theory based on it has in many ways proved extremely
successful in accounting for the properties of 'Hc—A and 8,
and no alternative theory has as yet got off the ground.
This review, then, will discuss the theory of anisotropic
superQuidity and its applications to the new phases.

This is very definitely a "tutorial" type of review, and in
writing it I have tried to bear in mind the needs of someone
(e.g. , a starting theoretical or experimental graduate stu-
dent) coming fresh into the topic without any great experi-
ence of theoretica, l w'ork in related areas of many-body
physics. I have therefore tried to use elementary methods
as much as possible, and have rigorously eschewed Green's
functions, diagrammatic perturbation theory, and super-
Quid kinetic equations; nor have I wandered away from the
real a,xis into the complex plane. I have even set myself the
task of deriving all results without explicit use of the second-
quantization formalism (though I do sometimes add alter-
native derivations which use it, for the benefit of those
readers already fluent in this language). This in itself has
the consequence of restricting somewhat the areas which can
be covered, and there are several important topics which
I have made a conscious decision to omit entirely. In par-
ticular no discussion at all is given of first-principles cal-
cu1ations of the effective pairing interaction, nor of the
problems concerned with ultrasonic attenuation: to do more
than graze the surface of these topics without using ad-
vanced formal techniques would, I believe, be pointless.
I have also omitted all discussion of "orbit waves" and
related topics, not so much because they require advanced
techniques but because it seems to me that there are a
number of rather fundamental conceptual difficulties in
this area which have not yet received any agreed resolution.
Finally I have had to leave out any discussion of the kinetic
coefficients, largely because of sheer shortage of time. (This,
in any case, is an area in w'hich the difficulties seem to be
primarily mathematical rather than conceptual. )
The plan of the paper is as follows. In Sec. II I discuss

the Landau theory of a normal Fermi liquid and its applica-
This account is deliberately ultra-brief and nonhistorical. A parallel

review paper by P. W. Anderson and W. F.Brinkman (to be published}
discusses the history of the subject in some detail. A partial bibliog-
raphy of early work, including some less well-known references, is to be
found in Galasiewicz, 1974.
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Introducing d-vector
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4' p(n) = +i g (a.;02) ed;(n)
i=1

(7.35)

In general we shall denote the transform of any matrix
Q generated by Eq. (7.31) simply by the vector Q—e.g. ,
we write F(r), I (n), etc. However, we shall reserve for the
transform of the normalized quantity 4'(n)—that is, f(n)
as defined in Kq. (7.28)—the notation d(n): then accord-
ing to Eqs. (7.28) and (7.32)

axes for the given n uniquely, but for a unitary state they
are clearly dered only up to a rotation around the axis of
d(n).
(2) In a nonunitary state the Cooper pairs at point n

have a net average spin, in the sense that the expectation
value of (S) with respect to the spin function (7.38) is
finite. In terms of d(n) it is given by

(S) = id(n) x d*(n) +'. (7.40)
and by definition we have

I (dn/4~) I d(n) I2 =—1. (7.36)

This notation is not universal: one often uses d(n) for the
transform of either A(n) or +(n). For unitary states (for
given n) all those quantities are strictly proportional, i.e.,
the vectors are parallel and diBer only by an overall factor;
for nonunitary states they may not be strictly parallel, but
the error involved in taking them to be so is at most of the
same order as that introduced by the mixing-in of / ~ lo
spherical harmonics. %e shall therefore always make this
approximation in what follows.

What is the physical significance of the vector d(n) 2
From Eq. (7.34) we have

—:Tr I +(n) I' = +' I d(n) I' (7.37)

+( i .:n) = +~~(n) I t T ) + +ii(n) I T l + l t' )
+ + i i(n) I l l ) (7.38)

so that the magnitude of d(n) is evidently a measure of the
total amplitude of condensation of the Cooper pairs at
point n on the Fermi surface, irrespective of spin. Secondly,
in the case of a ursitary state we may easily verify that d(n)
must be a real vector apart from an n-dependent phase
factor, so that we can. associate with it a unique direction
in spin space. To see the physical significance of this direc-
tion, we write out the spin wave function of the (triplet)
Cooper pair explicitly in the form

However, it should be emphasized that this does cot in
itself imply that the total spin polarization associated with
this point on the Fermi surface is finite: see subsection
VII.D.

(3) While the second-orcler term in the GI. free energy
(7.25) is proportional to

I
d(n) I' (and hence simply gives

N' when integrated over the Fermi surface), the fourth-
order term is given by

—:Tr
I +(n) I' = I I d(n) I' —(d(n) «*(n) )'I'I"

(7.41)

(where the second term is positive, since the cross product is
purely imaginary). Consequently, the quantity K, which
determines the overall magnitude of the fourth-order terms
LEq. (7.28) j is now written as

~ =—l («/4 ) Il d(n) I' —(d(n) && d*(n))'I. (742)

(i.e., d;(n) = e;). (7.43)

Evidently, the second term is zero for a unitary state.

(4) To the order of approximation we are working to
throughout, the components of d(n) must be composed of
spherical harmonics corresponding to the same / value.

(5) The BW state has, according to Kq. (7.30), the
simple description

and then verify explicitly that for real d(n) we have the
operator relation

(6) The quasiparticle energy matrix Eq can be written
in terms of A (n):

d(n) S+(~i02..n) —= 0, (7.39) &. =+I ~'+ I &(n) I'+'d (&(n)»*(n))l'"
where S =— di + d2 is the total spin operator for the pair.
This leads to the important conclusion that in a unitary
state the pairs at any given point on the Fermi surface are
condensed into a spin state which is an eigenstate of the
spin projection along some axis with eigenvalue zero, and
d(n) represents this axis. (For instance, in the case 4' ~ ~

=.
—+~~, 4 ~ ~

= 0, we have the pairs condensed into an
eigenstate of 5 and 5 such that 5 = 1, 5 = 0.)
A number of other properties of the vector d(n) follow

from the definition (7.35) /for further details see Mermin
and. Ambegaokar (1973)j.
(1) For an ESP state (in the "proper" axes) the vector

d(n) always lies in the xy plane for all n. More generally,
if for given n the "ESP axes" are chosen, then d(n) lies in
the xy plane. For a nonunitary state this defines the ESP

(7.44)

showing that, as expected, in a nonunitary state the BP
eigenstates correspond to quasiparticle spin along or against
the direction of the "pair average spin" (S).
(7) Finally, in the vector notation, the gap equation for

a Neitary state takes the simple form

X(n) = I (dD'/47r) V(n, n')e'(n'),
%'(n) —= + d(n) —= ~(n) ~ -', (de/de)

d.,(tanh-, PZ,/2@~), Z~ =—~i e~'+ I &(n) I

g'I'

(7.46)
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Extended Data Fig. 1 | RuO2 plane, with dxy−p hybridizing orbitals and 
experimental setup. a, Ru dxy and hybridizing O p orbitals at the Y point, 
which dominate the formation of the γ band. NMR shifts are measured 
at the O(1) and O(1′) sites. b, Compressive a-axis stress shifts the γ-band 
Fermi surface to the zone boundary at Y. vHs, van Hove singularity. c, 

Strain device. The enlarged view highlights the Sr2RuO4 single crystal 
mounted between the piezoelectric actuators, with B0 parallel to the b axis 
and the compressive stress along the a axis, εaa. The NMR coil covers the 
free part of ~1 mm length.

A. Pustogow et al, Nature (2019)
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Bc2 is the upper critical field), whereas for the widely proposed Eu state 
(Table 1), Ks = AMs(B0)/B0 (usually written as the product of a hyper-
fine coupling A and spin susceptibility χ, Ks = Aχ, this more general 
definition allows for a nonlinear response) remains unchanged from 
the normal-state value. Summarizing the findings, the onset of super-
conductivity leads to a substantial drop in Ms for all strains measured; 
the zero-strain results are therefore in disagreement with those reported 
previously5. We describe a series of tests that, we believe, account for 
this discrepancy. Whereas Ms remains non-zero for T → 0, quasipar-
ticle creation occurs for several possible reasons in applied fields of 
B0 ≠ 0. No evidence for a change in ground-state symmetry is observed 
as the strain is varied over the interval εaa = [0, εv].

The crystal structure of Sr2RuO4 is identical to that of the undoped 
parent compound of ‘214’ copper oxides, La2CuO4. Likewise, the states 
at EF are predominantly of d character; here they derive from hybrid-
ization of Ru t2g and O π orbitals. Extended Data Fig. 1a depicts the 
orbitals dominating the γ band, associated with the Ru, O(1) and O(1′) 
sites. The O(2) sites are in the apical positions, symmetrically above 
and below the Ru site. Throughout this report, the magnetic field B0 is 
parallel to b because out-of-plane field components suppress Bc2. On 
stressing the sample, the relevant response is the resulting asymmetric 
strain εaa − εbb; only εaa is noted here.

Because magnetic fields lead to quasiparticle spin polarization, the 
ideal experiment has an applied field of B0 ≪ Bc2. Nuclear-spin polar-
ization, on the other hand, favours the largest field possible. For guid-
ance in the choice of experimental parameters, we determined 
Bc2(εaa) (shown in Fig. 1; see Methods for procedure and uncertainties). 
Bc2 is maximized at εv, coincident with Tc

max, and its value (4.3 ± 0.05 T) 
is within a few per cent of that (4.5 T) reported in ref. 4. The reduction 
could be a result of a small misalignment (of the order of 1°) from the 
in-plane condition14,21. The minimum value is Bc2(εaa) = 1.32 ± 0.05 T, 
identified by extending the measurements to tensile strains εaa > 0.

The temperature dependence of the 17O central transition frequen-
cies for the three sites was measured at εaa = εv, where Bc2 is larg-
est, at B0 = 1.9980 T. The resulting spectra, shown in Fig. 2, reveal 
pronounced changes in the Knight shift, K, upon decreasing the 

temperature through Tc(B0). Because the orbital shifts are relatively 
small, the frequencies corresponding to K = 0 (vertical dashed lines) 
are attributed to quadrupolar effects19.

Because the normal-state Knight shifts are K1b < 0, K1′b > 0, the 
changes observed for T < Tc in Fig. 2b correspond to a drop of 20–30% 
in Ms, which is qualitatively different from the zero-strain results5. 
We note that the shifts K ∝ Ms/B0 remain non-zero for T → 0, where 
field-induced quasiparticles are probably relevant at the relatively high 
fields (B0/Bc2 ≈ 0.45) used in the measurement. In addition to the con-
tributions from vortex cores, two other sources of local fields should be 
considered in the context of gap nodes or deep gap minima: the Volovik 
effect22 and Zeeman coupling, both of which produce quasiparticles 
and the corresponding magnetic response.

The observed drop in Ms upon entering the superconducting state 
under strained conditions invites a comparison to previous zero-strain 
experiments, where the lack of reported decrease in Ms constituted a 
cornerstone of the case for a chiral p-wave order parameter. Therefore, 
we carried out measurements covering the entire interval εaa = [0, εv], 
and the results were found to depend on the details of NMR pulsing. 
With this important observation in mind, a re-examination of the shifts 
for εaa = 0 is presented first.
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Fig. 2 | Knight shift K versus temperature T, measured at the van Hove 
singularity (εaa = εv). a, NMR spectra measured at an applied field of 
B0 = 1.9980 T and a carrier frequency of f0 = 11.54 MHz. Shown are three 
peaks corresponding to the O(1), O(2) and O(1′) sites (from left to right). 
Vertical lines indicate normal-state (solid) and K = 0 (dashed) frequencies. 
a.u., arbitrary units. b, The associated Knight shifts K1b and K1′b show a 
pronounced reduction below Tc(B0) = 2.6 K (see lower inset and Methods), 
indicating a drop in the spin polarization Ms in the superconducting 
state. δρT denotes the change of the reflection coefficient. Upper inset, 
experiments with varied pulse energy reveal a similar decrease of Ms below 
Tc for ε = 0 (see Fig. 3 for details). Error bars correspond to 1/4 of the full-
width at half-maximum of the peaks in the NMR spectrum.
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Fig. 1 | Strain dependence of the upper critical field of Sr2RuO4. Upper 
critical field Bc2(T → 0, εaa), determined by a.c. susceptibility measurements 
on a uniaxially strained Sr2RuO4 single crystal at a base temperature of 
T = 20 mK. The increase of Bc2 with compressive strain peaks at εv, thus 
closely following the trend of the critical temperature Tc (ref. 4). Inset, strain 
gradients δεaa become more pronounced at higher strain, reaching about 
0.1εv at the van Hove singularity (details in Methods).
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As seen in Fig. 2, it was difficult to obtain a good shape of
the spectrum of the O(1)? site by the FID method. Thus, we
tried to record the NMR spectra with the conventional SE
measurement, but using long pulses with small voltages to
reduce the heat-up effect. In principle, the x time long !=2 RF
pulse makes the energy of the !=2-RF pulse reduced to 1=x,
since the !=2-RF pulse has a relation of !=2 ¼ "nH1tw /ffiffiffiffi
P

p
tw and E ¼ Ptw / 1=tw. Here "n is the nuclear gyromag-

netic ratio, H1 is the oscillating field with the resonance
frequency applied perpendicular to the external field, and tw
is the RF-pulse duration satisfying the !=2 condition. P and E
are the power of the RF pulse, and its energy related to the
Joule heating, respectively. We performed the heat-up test by
these pulses to examine how much reduction in power is
needed to assure a negligible effect in the NMR spectrum.
This test was followed by the idea shown in Fig. 4 in
Ref. 30, and examines the time resolved phase change of the
low-power phase-detection signal. The details of our test-
pulse sequence and the results of the test are shown in
Appendix B. Based on the results of the heat-up test, the SE
spectrum was recorded with two 30 µs-long weak pulses to
ensure negligible heating at the SE time position.

Figure 3 shows the temperature variation of the SE NMR
spectra of the (a) O(1)k and (b) O(2) and O(1)? sites,
respectively, where the spectra are recorded after two RF
pulses with the total power of 8 µJ. They are compared with
the SE spectra recorded with the total RF-pulse energy of
77 µJ at 78mK. The NMR spectra recorded with the 8 µJ
RF pulses show the systematic dependence on temperature,
whereas the peak frequencies for all sites recorded with the
total 77 µJ RF pulses at 78mK remains the same as those
above Tc. This comparison indicates that the electronic state
immediately changes into the normal state at the SE time
(# " 250 µs) after the irradiation of the high-power RF
pulses. We note that the sample is directly immersed in the
liquid 3He–4He mixture and the nuclear-spin temperature
remains at approximately 78mK, which we can deduce from
the magnitude of the NMR intensity varying inversely
proportional to the nuclear spin temperature approximately.
It is revealed that the previous results of the unchanged
Knight shift are ascribed to the instantaneous destruction
of the superconductivity by the RF pulses for the NMR
observation.

Figure 4 shows the temperature dependence of the Knight
shift at the O(1)k, O(1)?, and O(2) sites, normalized by the
values of the normal-state Knight shifts [KN at O(1)k, O(1)?,
and O(2) at Tc is −0.15, 0.45, and 0.08%, respectively]. Each
peak measured at various temperatures in Fig. 3 is fitted with
the Gaussian function, and the temperature variation of the
Knight shift is estimated. The temperature dependence of the
Knight shift was also measured with the total RF-pulse
energy of 17 µJ, and the result is almost same as that
measured with the total RF-pulse energy of 8 µJ. In this
figure, the temperature dependence of the Meissner screening
signal in the same field is also shown, which was measured
by the temperature variation of the tuning frequency of the
NMR tank circuit by the network analyzer. The magnitudes
of the Knight shifts of the three O sites decrease at around the
onset of the Meissner signal and decreases in the same
manner. Such behavior indicates that the SC diamagnetic
effect below Tc is negligibly small, since the signs of the

Knight shifts at the O(1)k and O(1)? sites are opposite with
each other, while the additional SC diamagnetic effect always
gives a negative shift. The negligibly small SC diamagnetic
effect is consistent with the suppression of the Meissner
screening signal when the magnetic field is exactly parallel to
the a axis as seen in Fig. 1(b). In addition, the orbital Knight
shifts at the three sites are also suggested to be small as in the
same discussion of the SC diamagnetic effect, where the sign
of the orbital Knight shift is positive in general. It is noted
that the Knight shift measured with the total RF pulse energy
of 77 µJ is nearly the same as the value for the normal state
due to the instantaneous heat-up.

Fig. 3. (Color online) The temperature variation of the SE NMR spectra of
the (a) O(1)k and (b) O(2) and O(1)? sites in H k a. These spectra are
recorded by SE pulse sequence with two RF pulses with the total energy of
8 µJ. The SE spectra at 78mK recorded by two high-energy RF pulses with
total power of which is 77 µJ, are also shown.

Fig. 4. (Color online) The temperature dependence of the Knight shift at
the O(1)k, O(1)?, and O(2) sites, normalized by the values of the normal-
state Knight shift (see text). The temperature variation of the Meissner signal,
measured by the variation of the tuning of the NMR tank circuit in the same
field, is also shown.
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ultrasound (detailed derivations can be found in the Supplementary 
Information section Strain-Order Parameter Coupling).

The allowed couplings between strains and superconducting 
order parameters become transparent when both are described 
in terms of irreducible representations (irreps) of the point-group 
symmetry. Sr2RuO4 crystallizes in the tetragonal space group 
I4/mmm, along with its associated point group D4h. In this crystal 
field environment, the five-component l = 2 d-representation breaks 
into three one-component irreps, dz2

I
 (A1g irrep), dxy (B2g) and dx2!y2

I
 

(B1g, the familiar d-wave of the cuprates), and one two-component 
irrep dxz; dyz

! "

I
 (Eg). The three-component p-representation breaks 

into the one-component irrep pz (A2u) and the two-component irrep 
fpx; pyg
I

 (Eu). It has been proposed that this latter representation 
orders into the chiral px + ipy superconducting state.

There are five unique strains (ϵΓ) in Sr2RuO4 (five irreps, Γ, of 
strain in D4h), namely two compressive strains that transform as the 
A1g irrep and three shear strains that transform as the B1g, B2g and 
Eg irreps (Fig. 1). Each strain has a corresponding elastic modu-
lus, cΓ ¼ ∂2F=∂ϵ2Γ

I
, where F

I
 is the thermodynamic free energy. A 

sixth modulus, c13, defines the coupling between the two A1g strains 
(ϵxx + ϵyy and ϵzz). Sound velocities can be computed from these 
moduli as vΓ ¼

ffiffiffiffiffiffiffiffiffi
cΓ=ρ

p

I
, where ρ is the density. When terms in the 

free energy are composed, direct (linear) coupling between strain 
and the superconducting order parameter, η, is forbidden because 
superconductivity breaks gauge symmetry. The next relevant 
coupling is linear in strain and quadratic in order parameter. For 
one-component superconducting order parameters, which include 
all s-wave states and the dx2!y2

I
 state, the only quadratic form is η2, 

which transforms as A1g, and therefore the only allowed coupling is 
ϵA1gη

2

I
. This coupling produces discontinuities in all of the A1g (com-

pressional) elastic moduli across Tc. By contrast, two-component 
order parameters ( η! ¼ fηx; ηyg

I
) have three independent quadratic 

forms, η2x þ η2y
I

, η2x ! η2y
I

 and ηxηy, which transform as A1g, B1g and 
B2g, respectively. Therefore, in addition to coupling to the A1g elas-
tic moduli, two-component order parameters couple to two of the 
shear moduli through ϵB1g η2x ! η2y

! "

I

 and ϵB2gηxηy
I

. This produces 

discontinuities in the associated shear elastic moduli ( c11 ! c12ð Þ=2
I

 
and c66, respectively); these discontinuities are allowed purely by 
symmetry, and are independent of the microscopic mechanism of 
superconductivity.

In contrast to traditional pulse-echo ultrasound experiments, in 
which a single elastic modulus is measured per experiment, we use 
resonant ultrasound spectroscopy (RUS) to measure all six elastic 
moduli of Sr2RuO4 across Tc in a single experiment, which greatly 
reduces the systematic uncertainty18. Analogous to how a stretched 
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Fig. 1 | Irreducible strains in Sr2RuO4 and their coupling to superconducting order parameters. The tetragonal crystal structure of Sr2RuO4 and unit cell 
deformations that illustrate the irreducible representations of strain. There is an elastic modulus that corresponds to each of these strains, and a sixth 
modulus, c13, arises from coupling between the two A1g strains. Green check marks denote the allowed linear-order couplings to strain for one-component 
and two-component order parameter bilinears, and red crosses denote that such coupling is forbidden. These couplings lead to discontinuities in the 
elastic moduli at Tc. A list of relevant possible order parameters in Sr2RuO4 is given in Table 1.

Table 1 | Some superconducting order parameters and their 
representations in D4h

Dimensionality Order parameter Irrep Moduli 
jumps

Ultrasound NMR

One-component s A1g A1g × ✓
dx2!y2

I
B1g A1g × ✓

dxy B2g A1g × ✓
Two-component px; py

! "
ẑ

I
Eu A1g, B1g, 

B2g

✓ ×

pz x̂; ŷf g
I

Eu A1g, B1g, 
B2g

✓ ×

dxz; dyz
! "

I
Eg A1g, B1g, 

B2g

✓ ✓

dx2!y2 ; gxyðx2!y2Þ

n o

I

B1g ⊕ 
A2g

A1g, B2g ✓ ✓

For the odd-parity spin-triplet order parameters, x̂, ŷ and ẑ represent the pair wave function in spin 
space in the d-vector notation. Two-component order parameters ηx; ηy

! "

I
 can order as ηx, ηy, 

ηx!±!ηy or ηx!±!iηy, depending on microscopic details. The last combination forms the time-reversal 
symmetry-breaking state (for example ðpx þ ipyÞẑ

I
 or dxz!+!idyz). The ‘Ultrasound’ column indicates 

whether an order parameter is consistent with a jump in c66 at Tc, and the ‘NMR’ column indicates 
whether it is consistent with the suppression of the Knight shift at Tc. Note that the B1g ⊕ A2g 
state does not belong to a single irrep of D4h, and therefore transition temperatures of the d and g 
components must be ‘fine-tuned’ if they are to coincide.
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discontinuities at Tc in the specific heat, ΔC, and the bulk modulus, 
ΔB, through

dTc

dP

! "2

¼ "
ΔB
B2

ΔC
T

! ""1

: ð2Þ

We measure ΔB/B ≈ 6.3 × 10−5 (see Supplementary Information sec-
tion Ehrenfest Relations for Compressional Strains). Combined with 
ΔC/T for this sample (see Extended Data Fig. 2), equation (2) yields 
a value for dTc/dP of 0.90 K GPa−1. This is a factor of three higher 
than what is reported for a direct measurement of Tc as a function 
of pressure20. This discrepancy may be evidence for a pair of transi-
tions that occur at or near the superconducting Tc, as discovered 
in recent μSR experiments21. The two transition temperatures split 
when stress is applied along the x direction: the onset of Meissner 
screening occurs at the higher transition temperature, Tc, whereas 
time-reversal symmetry is broken at the lower transition, TTRSB. To 
perform the correct Ehrenfest analysis, dTTRSB/dP is required, which 
is unknown at present. A similar Ehrenfest relation, derived for the 
jump in c66 rather than the jump in bulk modulus, requires that 
Tc shift linearly with B2g strain, specifically as Tc / ϵxy

!! !!
I

. Previous 
measurements of Tc as a function of ϵxy, however, have not found 
this linear dependence on strain22. In addition, most ordered states 
of two-component order parameters should exhibit two transition 
temperatures under finite strain, but this has not been found either 
by heat capacity or by local susceptibility measurements23,24, at least 

for B1g strain. We show that the current experimental resolution of 
these phenomena is still consistent with the size of the jump that we 
find in c66 (see Supplementary Information section Reconciling the 
c66 Discontinuity with Experiments under Finite Strain).

Discussion
A discontinuity in c66 at Tc can result only from a two-component 
superconducting order parameter (see Table 1). This is a critical 
piece of information because evidence for vertical line nodes in the 
superconducting gap (from ultrasonic attenuation15, heat capacity, 
thermal conductivity25 and quasiparticle interference26) are inter-
preted most straightforwardly in terms of a one-component, dx2!y2

I
, 

order parameter. With the discovery of a suppression of the Knight 
shift, which strongly suggests that the order parameter cannot be 
spin-triplet2, dx2!y2

I
 would seem a likely contender. The discontinu-

ity in c66, however, rules against any one-component order param-
eter, including dx2!y2

I
.

Our measurement is consistent with several two-component 
p-wave scenarios, including ðpx ± ipyÞẑ

I
 and pzðx̂ ± iŷÞ

I
. Taken at face 

value, however, the suppression of the Knight shift2 rules out all 
p-wave order parameters, and is consistent only with spin-singlet 
order parameters. The only ‘conventional’ spin-singlet order param-
eter that produces a jump in c66 at Tc is dxz; dyz

! "

I
. This state can 

order into the non-magnetic dxz, dyz or dxz ± dyz states, all of which 
break the C4 rotational symmetry of the lattice. It can also order 
into the chiral magnetic dxz ± idyz state. If an accidental degeneracy is 
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Fig. 3 | Resonant ultrasound spectroscopy across Tc in Sr2RuO4. a, Temperature evolution of five representative resonances measured through Tc, 
where f is the resonance frequency. Plots are shifted vertically for visual clarity. The dashed line shows Tc as determined by resistivity measurements. 
A step-like discontinuity, or ‘jump’, is observed at Tc. The different magnitudes of this jump signify the contributions of different elastic moduli in each 
resonance; 18 such resonances were tracked through Tc to determine the elastic moduli. b,c, Compressional (A1g) (b) and shear (B1g, Eg and B2g) (c) moduli 
of Sr2RuO4 across Tc, along with the experimental errors that arise from uncertainties in sample dimensions. The absolute values of these moduli at 4!K 
are determined to be (c11!+!c12)/2!=!190.8!GPa, c33!=!257.2!GPa, c13!=!85.0!GPa, (c11!−!c12)/2!=!53.1!GPa, c44!=!69.5!GPa and c66!=!65.5!GPa. d, Magnitudes of the 
elastic modulus jumps at Tc along with their experimental uncertainties (for details, see Supplementary Information section Uncertainty Analysis).
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discontinuities at Tc in the specific heat, ΔC, and the bulk modulus, 
ΔB, through

dTc

dP

! "2

¼ "
ΔB
B2

ΔC
T

! ""1

: ð2Þ

We measure ΔB/B ≈ 6.3 × 10−5 (see Supplementary Information sec-
tion Ehrenfest Relations for Compressional Strains). Combined with 
ΔC/T for this sample (see Extended Data Fig. 2), equation (2) yields 
a value for dTc/dP of 0.90 K GPa−1. This is a factor of three higher 
than what is reported for a direct measurement of Tc as a function 
of pressure20. This discrepancy may be evidence for a pair of transi-
tions that occur at or near the superconducting Tc, as discovered 
in recent μSR experiments21. The two transition temperatures split 
when stress is applied along the x direction: the onset of Meissner 
screening occurs at the higher transition temperature, Tc, whereas 
time-reversal symmetry is broken at the lower transition, TTRSB. To 
perform the correct Ehrenfest analysis, dTTRSB/dP is required, which 
is unknown at present. A similar Ehrenfest relation, derived for the 
jump in c66 rather than the jump in bulk modulus, requires that 
Tc shift linearly with B2g strain, specifically as Tc / ϵxy
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. Previous 
measurements of Tc as a function of ϵxy, however, have not found 
this linear dependence on strain22. In addition, most ordered states 
of two-component order parameters should exhibit two transition 
temperatures under finite strain, but this has not been found either 
by heat capacity or by local susceptibility measurements23,24, at least 

for B1g strain. We show that the current experimental resolution of 
these phenomena is still consistent with the size of the jump that we 
find in c66 (see Supplementary Information section Reconciling the 
c66 Discontinuity with Experiments under Finite Strain).

Discussion
A discontinuity in c66 at Tc can result only from a two-component 
superconducting order parameter (see Table 1). This is a critical 
piece of information because evidence for vertical line nodes in the 
superconducting gap (from ultrasonic attenuation15, heat capacity, 
thermal conductivity25 and quasiparticle interference26) are inter-
preted most straightforwardly in terms of a one-component, dx2!y2
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order parameter. With the discovery of a suppression of the Knight 
shift, which strongly suggests that the order parameter cannot be 
spin-triplet2, dx2!y2

I
 would seem a likely contender. The discontinu-

ity in c66, however, rules against any one-component order param-
eter, including dx2!y2
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.

Our measurement is consistent with several two-component 
p-wave scenarios, including ðpx ± ipyÞẑ

I
 and pzðx̂ ± iŷÞ
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. Taken at face 

value, however, the suppression of the Knight shift2 rules out all 
p-wave order parameters, and is consistent only with spin-singlet 
order parameters. The only ‘conventional’ spin-singlet order param-
eter that produces a jump in c66 at Tc is dxz; dyz
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order into the non-magnetic dxz, dyz or dxz ± dyz states, all of which 
break the C4 rotational symmetry of the lattice. It can also order 
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Fig. 3 | Resonant ultrasound spectroscopy across Tc in Sr2RuO4. a, Temperature evolution of five representative resonances measured through Tc, 
where f is the resonance frequency. Plots are shifted vertically for visual clarity. The dashed line shows Tc as determined by resistivity measurements. 
A step-like discontinuity, or ‘jump’, is observed at Tc. The different magnitudes of this jump signify the contributions of different elastic moduli in each 
resonance; 18 such resonances were tracked through Tc to determine the elastic moduli. b,c, Compressional (A1g) (b) and shear (B1g, Eg and B2g) (c) moduli 
of Sr2RuO4 across Tc, along with the experimental errors that arise from uncertainties in sample dimensions. The absolute values of these moduli at 4!K 
are determined to be (c11!+!c12)/2!=!190.8!GPa, c33!=!257.2!GPa, c13!=!85.0!GPa, (c11!−!c12)/2!=!53.1!GPa, c44!=!69.5!GPa and c66!=!65.5!GPa. d, Magnitudes of the 
elastic modulus jumps at Tc along with their experimental uncertainties (for details, see Supplementary Information section Uncertainty Analysis).
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FIG. 5: Stress-temperature phase diagram of Sr2RuO4 based on the data presented here. For conversion to

strain, the low-temperature Young’s modulus for compression along a È100Í direction is 160 GPa [30].

There is no known magnetic mechanism that could account for the µSR data. We have noted

that relaxation by weak ferromagnetic fluctuations is not consistent with the observed transition-

like onset of enhanced muon spin depolarization. A glassy magnetic state could reproduce the broad

distribution of fields implied by exponential relaxation, however even dilute spin glasses typically

give two orders of magnitude stronger relaxation [44]. Finally, we have observed magnetic order in

clean Sr2RuO4 at high stress, and its qualitative appearance in µSR data is completely di�erent.

We conclude, from the correlation between Tc and TTRSB in unstressed Sr2RuO4 and the ab-

sence of known magnetic mechanisms, that the enhanced muon spin relaxation is a property of the

superconductivity. The fact that TTRSB can split from Tc shows further that it is a transition of the

superconducting state. This provides strong support for the hypothesis, widely accepted but not

rigorously proved, that enhanced muon spin relaxation is a product of TRSB superconductivity.

The observed stress-induced splitting furthermore follows qualitative expectations for chiral super-

conductivity in Sr2RuO4. We note that recent ultrasound data [45] also indicate two-component

superconductivity.

A uniaxial stress of -0.28 GPa was observed to suppress TTRSB by ≥0.2 K. Beyond this stress,

TTRSB appears not to evolve strongly, an observation that superficially contrasts with the predic-

tion from Landau theory that uniaxial stress should suppress TTRSB. However approaching the
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FIG. 3: Left-hand panels: Zero-field µSR asymmetry A(t) at a high temperature and at the lowest tem-

perature reached. (a–c) Sample D at 0 GPa, -0.28 GPa and -0.43 GPa, (d) Sample E at -0.70 GPa, and

(e) Sample F at -0.79 GPa plus one data point at -0.86 GPa. (Negative values denote compression.) (f–j):

Temperature dependence of the muon spin relaxation rate ⁄, and in situ diamagnetic susceptibility data for

the samples and stresses of the left-hand panels. The applied field for the susceptibility measurements was

≥ 10 µT. Heat capacity and transverse-field µSR data show that the samples are fully superconducting, so

we identify the extrema of the susceptibility signal as 4fi‰ = 0 and ≠1. The fits to ⁄(T ) (red lines) are

explained in the text. Note that for panels (f–h), which are all on Sample D, to avoid biasing the fit the

fitting range is the same in each panel, which excludes the three open points in panel (h).

V. Grinenko et al, arXiv:2001.08152
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Figure 2.2: Sr2RuO4 Fermi surface from ARPES. The corresponding 3D Fermi surface
from de Haas-van Alphen oscillations can be found in Bergemann et al. [81]. (Reprinted
with permission from Damascelli et al. [82]. Copyright (2000) by the American Physical
Society.)

fuzzy, making insight into its impact on superconductivity in t2g-orbital systems even

more desirable (see Chap. 4).

2.4 Electronic nematic phase in Sr3Ru2O7

Distinct transport properties along equivalent lattice directions are a characteristic sig-

nature of a spontaneous electronic nematic state. Exactly this was observed in the

magnetoresistance of ultrapure Sr3Ru2O7 samples with residual resistivities of less than

0.5 µΩcm (corresponding to a mean free path of more than 3000 Å) [18]. Applying a

magnetic field parallel to the crystallographic c axis at low temperature, the in-plane

longitudinal resistivities ρaa and ρbb, parallel to the crystallographic a and b direction,

respectively, suddenly increase dramatically by almost a factor of two within a small

magnetic field window (H = 7.8 − 8.1 T) (see Fig. 2.3 (A)). However, tilting the field

slightly towards the a axis reveals the underlying electronic anisotropy (Fig. 2.3 (B)).

The longitudinal resistivity ρaa remains large throughout the anomalous region in con-

trast to ρbb, which is barely affected. Since the electronic nematic state is embedded

in a fourfold symmetric lattice, nematic ordering can have two orientations (i.e. the C4

lattice symmetry is reduced to C2 in the nematic state). The increase in ρaa and ρbb

for fields parallel to the c axis therefore has been interpreted to be due to the formation

of nematic domains and the scattering off domain walls [83]. However, introducing a

small symmetry breaking in-plane field component aligns the supposed domains, reveal-

ing the full effect of the anisotropic electronic state. Note that no orthorhombic lattice
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FIG. 1. (a) Fermi surface of Sr2RuO4. The data were acquired at 5 K on a CO passivated surface with a photon energy of 11 eV
and p-polarization for measurements along the �X symmetry line. The sample tilt around the �X axis used to measure the full
Fermi surface results in a mixed polarization for data away from this symmetry axis. The Brillouin zone of the reconstructed
surface layer is indicated by diagonal dashed lines. Surface states and final state umklapp processes are suppressed to near the
detection limit. A comparison with ARPES data from a pristine cleave is shown in appendix A. The data in (a) have been
mirror-symmetrized for clarity. Original measured data span slightly more than a quadrant of the Brillouin zone. (b) Constant
energy surfaces illustrating the progressive broadening of the quasiparticle states away from the Fermi level EF .

high-symmetry line our data reproduce the large di↵er-
ence in Fermi velocity v

�,�
F for the � and � sheet, which

is expected from the di↵erent cyclotron masses deduced
from quantum oscillations [12, 25, 26] and was reported
in earlier ARPES studies [33, 56]. Our systematic data,
however, reveal that this di↵erence gradually disappears
towards the Brillouin zone diagonal (✓ = 45�), where all
three bands disperse nearly parallel to one another. In
Sec. IV we will show that this equilibration of the Fermi
velocity can be attributed to the strong e↵ects of SOC
around the zone diagonal.

To quantify the angle dependence of v�,�F from exper-
iment, we determine the maxima k⌫

max
(!) of the mo-

mentum distribution curves (MDCs) over the range of
2-6meV below the Fermi level EF and fit these k-space
loci with a second-order polynomial. We then define the
Fermi velocity as the derivative of this polynomial at EF .
This procedure minimizes artifacts due to the finite en-
ergy resolution of the experiment. As shown in Fig. 2 (c),
the Fermi velocities v

�,�
F obtained in this way show an

opposite trend with azimuthal angle for the two Fermi
sheets. For the � band we observe a gentle decrease of vF
as we approach the �X direction, whereas for � the veloc-
ity increases by more than a factor of two over the same
range [57]. This provides a first indication for a strong
momentum dependence of the self-energies ⌃0

�,� , which
we will analyze quantitatively in Sec.V. Here, we limit
the discussion to the angle dependence of the mass en-
hancement vb/vF , which we calculate from the measured

quasiparticle Fermi velocities of Fig. 2 (c) and the cor-
responding bare velocities vb of a reference Hamiltonian
Ĥ

0 defined in Sec. IV. As shown in Fig. 2 (d), this con-
firms a substantial many-body e↵ect on the anisotropy of
the quasiparticle dispersion. Along �M, we find a strong
di↵erentiation with mass enhancements of ⇡ 5 for the �

sheet and ⇡ 3.2 for �, whereas vb/vF approaches a com-
mon value of ⇡ 4.4 for both sheets along the Brillouin
zone diagonal.
Before introducing the theoretical framework used to

quantify the anisotropy of the self-energy and the e↵ects
of SOC, we compare our data quantitatively to bulk sen-
sitive quantum oscillation measurements. Using the ex-
perimental Fermi wave vectors kF and velocities deter-
mined from our data on a dense grid along the entire
Fermi surface, we can compute the cyclotron masses mea-
sured by dHvA experiments, without relying on the ap-
proximation of circular Fermi surfaces and/or isotropic
Fermi velocities used in earlier studies [33, 49, 56, 58].
Expressing the cyclotron mass m⇤ as

m
⇤ =

~2
2⇡

@AFS

@✏
=

~2
2⇡

Z
2⇡

0

kF (✓)

@✏/@k(✓)
d✓ , (1)

where AFS is the Fermi surface volume, and using the
data shown in Fig. 2 (c), we obtain m

⇤
� = 17.3(2.0) me

and m
⇤
� = 6.1(1.0) me, in quantitative agreement with

the values of m
⇤
� = 16 me and m

⇤
� = 7 me found in

dHvA experiments [12, 25, 26]. We thus conclude that
the quasiparticle states probed by our experiments are
representative of the bulk of Sr2RuO4[59].

A. Tamai et al, PRX (2019) 
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pling are crucial. We also illustrate how pseudospin-
triplet interband pairing remains, dubbed a “shadowed
triplet” away from the FS. While this SC behaves like
a singlet in response to low energy excitations, its hid-
den identity shows up at finite magnetic fields, and can
be tested when the field strength reaches an appreciable
percentage of the superconducting gap size20.

The paper is organized as follows. We consider a simple
but general two-orbital model to show how even-parity
spin-triplet pairing arises in Sec. II. This includes the
stability conditions and how SOC transforms this pair-
ing into a pseudospin-singlet and -triplet in the Bloch
band basis. The SOC in the shadowed triplet not only
plays an essential role in enhancing the pairing, but also
determines the pairing symmetry. In Sec. III we investi-
gate microscopic routes to several k-SOC terms with d-
wave symmetry, which can lead to various d-wave pairing
symmetries on the FS. In Sec. IV, we apply the shadowed
triplet pairing scenario to the prominent unconventional
superconductor, Sr2RuO4

13–16, for which the SOC has
been shown to be important3,21–24, and discuss the lead-
ing instabilities within a realistic three orbital model.

II. GENERAL MICROSCOPIC HAMILTONIAN

We first discuss the generic Hamiltonian that we will
be considering throughout, which is of the form H =
H0 + HSOC + Hint. The kinetic term H0 consists of a
tight-binding (TB) model, for which we will discuss the
precise form in the subsequent sections. The SOC Hamil-
tonian will consist of the atomic SOC, which is written
in the basis of t2g orbitals in the Supplementary Mate-
rial (SM),25 as well as additional contributions discussed
later. We consider for Hint the Kanamori interactions,
given by

Hint =
U
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(1)
where U and U

0 are the intra- and inter-orbital Hub-
bard repulsions, JH is the Hund’s coupling and c

†
a,i� is an

electron operator creating an electron at site i in orbital
a with spin �. Decoupling these interaction terms into
even-parity zero-momentum spin-singlet and spin-triplet

order parameters3,7,19,20 gives,

Hint =
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(2)

where N is the number of sites and the spin-triplet and
-singlet order parameters are defined as

d̂a/b,k =
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(3)
and {a 6= b} represents a sum over the unique pairs of
orbital indices. An attractive inter-orbital spin-triplet
channel is present when JH > U

0, which will be our
focus. While this corresponds to a Hund’s coupling
larger than the typical value of approximately 0.17U for
Sr2RuO4

26,27, this type of pairing instability has also
been found in several studies beyond MF theory without
the requirement of JH > U

04–6. Furthermore, given that
the inter- and intra-orbital spin-singlet order parameters
are induced only through the SOC and have been shown
to be significantly smaller than the primary spin-triplet
order parameters in previous studies3,20, we neglect them
here as they will not a↵ect our conclusions.

III. TWO-ORBITAL MODEL

We now consider a mean-field (MF) Hamiltonian con-
sisting of a generic TB model with two orbitals, SOC and
a pairing term,

H =
X

k

 †
k

�
H0(k) +H

z
SOC

(k) +Hpair(k)
�
 k

H0(k) = ⇢3

�⇠+k
2
�0⌧0 +

⇠
�
k

2
�0⌧3 + tk�0⌧1
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H
z
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(k) = ��k⇢3�3⌧2
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z
a/b⇢2�3⌧2.

(4)
Here  †

k = ( †
k, T  T

k T �1), where T indicates time-

reversal and  †
k = (ca†k", c

b†
k", c

a†
k#, c

b†
k#) consists of electron

operators creating an electron in one of the two orbitals
a, b with spin � =", #. We have introduced the Pauli ma-
trices plus identity matrix, ⇢i,�i, ⌧i, (i = 0, ...3) in the
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FIG. 1. (Color online) Schematic depiction of the gap at the FS in the two-orbital model with the arrows indicating the
direction the contours move as the respective parameter is increased and the dashed lines corresponding to the underlying FS.
All parameters are given in units of 2t1, see the main text for other parameter details. (a) The SOC and orbital polarization
are set to zero while the strength of the orbital hybridization, tab in tk = �4tab sin kx sin ky, is increased from zero to 0.1. This
shows the pairing is decreased by the orbital hybridization tab. (b) tab fixed at 0.1 and the strength of the orbital polarization,
t� in ⇠�k = 2t�(cos kx � cos ky) is increased from zero to 0.13, resulting in zero gap everywhere. The orbital polarization t�

further weakens the pairing. (c) shows the revival of the gap for tab = 0.1, t� = 0.13, as the atomic SOC �0 is increased from
zero to 0.48 demonstrating that SOC drastically enhances the pairing. (d) shows the same as (c) but with the d-wave SOC
parameter �d in �k = �d(cos kx � cos ky), instead of �0, increased from zero to 0.48. SOC not only enhances the pairing, but
also determines the momentum dependence.
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While the orbital MF is s-wave and contains no ex-
plicit momentum-dependence, transforming to the band
basis generates potentially complex momentum depen-
dence from SOC and orbital hybridization. The orbital
MF spin-triplet character carries over to the interband
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pling are crucial. We also illustrate how pseudospin-
triplet interband pairing remains, dubbed a “shadowed
triplet” away from the FS. While this SC behaves like
a singlet in response to low energy excitations, its hid-
den identity shows up at finite magnetic fields, and can
be tested when the field strength reaches an appreciable
percentage of the superconducting gap size20.

The paper is organized as follows. We consider a simple
but general two-orbital model to show how even-parity
spin-triplet pairing arises in Sec. II. This includes the
stability conditions and how SOC transforms this pair-
ing into a pseudospin-singlet and -triplet in the Bloch
band basis. The SOC in the shadowed triplet not only
plays an essential role in enhancing the pairing, but also
determines the pairing symmetry. In Sec. III we investi-
gate microscopic routes to several k-SOC terms with d-
wave symmetry, which can lead to various d-wave pairing
symmetries on the FS. In Sec. IV, we apply the shadowed
triplet pairing scenario to the prominent unconventional
superconductor, Sr2RuO4

13–16, for which the SOC has
been shown to be important3,21–24, and discuss the lead-
ing instabilities within a realistic three orbital model.

II. GENERAL MICROSCOPIC HAMILTONIAN

We first discuss the generic Hamiltonian that we will
be considering throughout, which is of the form H =
H0 + HSOC + Hint. The kinetic term H0 consists of a
tight-binding (TB) model, for which we will discuss the
precise form in the subsequent sections. The SOC Hamil-
tonian will consist of the atomic SOC, which is written
in the basis of t2g orbitals in the Supplementary Mate-
rial (SM),25 as well as additional contributions discussed
later. We consider for Hint the Kanamori interactions,
given by
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where U and U

0 are the intra- and inter-orbital Hub-
bard repulsions, JH is the Hund’s coupling and c
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electron operator creating an electron at site i in orbital
a with spin �. Decoupling these interaction terms into
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and {a 6= b} represents a sum over the unique pairs of
orbital indices. An attractive inter-orbital spin-triplet
channel is present when JH > U

0, which will be our
focus. While this corresponds to a Hund’s coupling
larger than the typical value of approximately 0.17U for
Sr2RuO4

26,27, this type of pairing instability has also
been found in several studies beyond MF theory without
the requirement of JH > U

04–6. Furthermore, given that
the inter- and intra-orbital spin-singlet order parameters
are induced only through the SOC and have been shown
to be significantly smaller than the primary spin-triplet
order parameters in previous studies3,20, we neglect them
here as they will not a↵ect our conclusions.

III. TWO-ORBITAL MODEL

We now consider a mean-field (MF) Hamiltonian con-
sisting of a generic TB model with two orbitals, SOC and
a pairing term,
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operators creating an electron in one of the two orbitals
a, b with spin � =", #. We have introduced the Pauli ma-
trices plus identity matrix, ⇢i,�i, ⌧i, (i = 0, ...3) in the
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many possibilities for k-SOC, yet its interplay with even-
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except for several recent studies, mostly related to the
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13–16, in which
such k-SOC has been introduced only from a symmetry
perspective with no microscopic derivation17–19. Here we
consider this by including in our model a term denoted
by H

z
SOC , which we take to be of the form LzSz, but

with general momentum-dependence �k to illustrate the
e↵ects of the SOC. Later, we derive several possible
k-SOC from a microscopic perspective, which can di↵er
from the LzSz form included here, in Sec. III. This
model, incorporating a general kinetic Hamiltonian,
SOC and even-parity spin-triplet pairing allows for a
systematic study of the microscopic components relevant
to such pairing in multi-orbital systems and is easily
generalized to systems with three-orbitals.

To begin, we aim to understand the stability of the SC
state within our model. Let us consider the relationship
between the various components and how this a↵ects the
quasi-particle (QP) dispersion. With zero orbital polar-
ization and hybridization, i.e., ⇠�k , tk = 0, and without
SOC, the orbitals are completely degenerate, providing
maximal inter-orbital pairing. As either of ⇠
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come non-zero, the degeneracy of the orbitals is reduced,
leading to a reduction of the phase space for pairing at
the FS and thus reducing the gap formed. These pair-
breaking e↵ects are revealed by the commuting behavior
with the pairing term28–30. Conversely, the SOC term
anti-commutes with the pairing term and generally en-
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The general equation of the FS is ⇠
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k), from which it can be seen that if �k, tk = 0 and
the orbitals are degenerate, i.e., ⇠�k = 0, we recover the
conventional BCS result for the gap energy on the FS:
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From this, it is clear that increasing ⇠
�
k and tk decreases

the overall gap energy. The detrimental e↵ects on the
gap energy, signified by the commuting nature of both tk

and ⇠
�
k with the pairing Hamiltonian, are a result of shift-

ing apart in energy the bands being paired, resulting in
the gap moving away from the FS. However, turning on
the SOC significantly enhances the gap energy3, and as
the SOC strength becomes comparable to the dispersion
terms, the gap energy can be restored to the order of dza/b.
This enhancement of the SC state is accomplished by
providing a non-zero intraband pseudospin-singlet pair-
ing on the FS, even for significant orbital polarization, as
we show below.
With the aim to further understand the stability of

the SC state and the nature of the pairing at the FS,
we diagonalize the kinetic Hamiltonian with a unitary
transformation and study how the pairing transforms to
the Bloch band basis, labeled by band indices ↵,� and
pseudospin s = (+,�). The transformation is given by
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The above equation shows the sign change in the intra-
band pairing between the two bands, as displayed in Fig.
1 (c) and (d). This relative sign between the bands is sim-
ilar to the s+� gap structure discussed in Ref. 7, although
it should be noted that here for simplicity we have ig-
nored the SOC-induced intraorbital singlets3,7,20,28 that
would add to the gap on each band, since for small
(3JH � U) they are small compared to d

z
a/b and they do

not a↵ect the conclusions of this section. The band MFs
that appear are given directly from the transformation
in terms of the orbital MF d

z
a/b, as well as momentum-

dependent factors from the unitary transformation,
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While the orbital MF is s-wave and contains no ex-
plicit momentum-dependence, transforming to the band
basis generates potentially complex momentum depen-
dence from SOC and orbital hybridization. The orbital
MF spin-triplet character carries over to the interband
pseudospin-triplet which, in the limit of zero SOC, be-
comes equal to d

z
a/b, with both the intraband and inter-

band pseudospin singlets vanishing. However, an impor-
tant feature for �k 6= 0 is the presence of the intraband
pseudospin-singlet pairing which acquires the same sign
dependence as a function of momentum as �k. While the
interband pseudospin triplet is a signature of the funda-
mental inter-orbital spin-triplet MF, it is the intraband
pseudospin singlet forming on the FS that leads to a
weak-coupling instability in realistic systems, since the
interband pairing will generally be negligible on the FS
such that the gap is purely given by |�s|. Considering
the QP dispersion in terms of the band pairings,
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and evaluating this on either the ↵ or � FS, for only �s

intraband pairing, we obtain the gap energy ±|�s| as
expected. For either only �s

↵� or dz↵� interband pairing,

a gap of ±�s
↵� or ±d

z
↵� forms at ⇠

↵
k where ⇠

↵
k = �⇠

�
k .

This corresponds to an energy gap on the FS only where
⇠
↵
k = ⇠

�
k = 0, which is not a generic feature but rather

requires fine-tuning to achieve.

To illustrate this, we now study the inter-orbital pair-
ing on the FS in a systematic way within our two-
orbital model by taking orbital dispersions resembling
the dyz, dxz orbitals, ⇠

a
k = �2t1 cos ky � 2t2 cos kx � µ

and for ⇠
b
k we take x $ y. The orbitals are coupled

through the SOC, for which we take two cases: the
atomic SOC denoted by �0 and a d-wave SOC given
by �k = �d(cos kx � cos ky), as well as the orbital hy-
bridization, which we take as tk = �4tab sin kx sin ky.
With these dispersions, the orbital polarization is given
by ⇠

�
k = 2t�(cos kx � cos ky), where t

� = t1 � t2 and all
parameters are given in units of 2t1 = 1. The results are
summarized in Fig. 1, for which the gap over the FS is
shown for four cases: (a) zero SOC and zero orbital po-
larization as tab is increased from zero to 0.1, (b) keeping
zero SOC with tab = 0.1 as ⇠�k is increased by tuning t

�

from zero to 0.13, (c) both tab and t
� are kept the same

as �0 is increased from zero to 0.48 and (d) the same as
(c) but with the d-wave SOC, instead of �0, increased by
tuning �d from zero to 0.48.

Beginning with zero SOC and the orbital dispersions
completely degenerate, i.e., t1 = t2, we see that the gap
is non-zero everywhere over the two identical bands, as
shown by the middle contour in Fig. 1 (a). As the
strength of the hybridization is increased from zero, the
energy separation of the two orbital dispersions increases
wherever tk 6= 0 and the gap arising from interband pair-
ing disappears at the FS, except where tk vanishes along
the kx/y = 0 lines, where the two-orbital dispersions re-
main degenerate. Starting from there with zero interband
pairing over most of the FS, Fig. 1 (b) demonstrates the
e↵ect of the orbital polarization in further reducing the
interband pairing to zero everywhere on the FS, due to
the absence of phase space for zero-momentum pairing.
From this, Fig. 1 (c) reveals how turning on the SOC re-
vives the SC state by allowing for an intraband pairing on
the FS. As the SOC is increased from zero, the intraband
gap becomes non-zero over the entire FS, even where the
orbital polarization is large. Additionally, the sign of the
gap function is opposite on the two-bands, matching the
�s(k)⌧̃3 dependence in Eq. (7) and Eq. (8), but uniform
on each band due to the lack of momentum dependence
of the atomic SOC. In contrast to this, Fig. 1 (d) displays
the d-wave dependence of the gap arising from the d-wave
SOC. Thus with the introduction of the orbital hybridiza-
tion/polarization and subsequently the SOC, the pairing
at the FS is transformed from an interband spin triplet
to a purely intraband pseudospin singlet with the same
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at the FS is transformed from an interband spin triplet
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From this, it is clear that increasing ⇠
�
k and tk decreases

the overall gap energy. The detrimental e↵ects on the
gap energy, signified by the commuting nature of both tk

and ⇠
�
k with the pairing Hamiltonian, are a result of shift-

ing apart in energy the bands being paired, resulting in
the gap moving away from the FS. However, turning on
the SOC significantly enhances the gap energy3, and as
the SOC strength becomes comparable to the dispersion
terms, the gap energy can be restored to the order of dza/b.
This enhancement of the SC state is accomplished by
providing a non-zero intraband pseudospin-singlet pair-
ing on the FS, even for significant orbital polarization, as
we show below.

With the aim to further understand the stability of
the SC state and the nature of the pairing at the FS,
we diagonalize the kinetic Hamiltonian with a unitary
transformation and study how the pairing transforms to
the Bloch band basis, labeled by band indices ↵,� and
pseudospin s = (+,�). The transformation is given by
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↵�(k) denote pseudospin-singlet intra-

band and interband pairings respectively and d
z
↵�(k) is a

pseudospin-triplet interband pairing. The intraband and
interband nature of these pairings becomes more appar-
ent from the operator form,
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clusions of this section. The pairings in the band basis
have the following form,

�s(k) = �2dza/bIm(fk)gk = �

2dza/b�k
q

⇠
�2

k + 4(t2k + �
2

k)

�s
↵/�(k) = �d

z
a/bIm(f2

k) = �2dza/b|fk|
2

tk�k

t
2

k + �
2

k

d
z
↵/�(k) = d

z
a/b(g

2

k +Re(f2

k)) = d
z
a/b

�
g
2

k + |fk|
2
t
2

k � �
2

k

t
2

k + �
2

k

�
.

(12)
While the orbital order parameter is s-wave and con-
tains no explicit momentum-dependence, transforming to
the band basis generates potentially complex momentum
dependence from SOC and orbital hybridization. The
orbital spin-triplet order parameter carries over to the
inter-band pseudospin-triplet which, in the limit of zero
SOC, becomes equal to d

z
a/b, while both the intra-band

and inter-band pseudospin-singlets vanish. The inter-
band pseudospin-singlet pairing also vanishes for tk = 0.
However, an important feature for �k 6= 0 is the pres-
ence of the intra-band pseudospin-singlet pairing, �s(k),
which acquires the same symmetry dependence as a func-
tion of momentum as �k, as shown in Fig. 1(d). While
the inter-band pseudospin-triplet is a signature of the
fundamental inter-orbital spin-triplet order parameter, it
is the intra-band pseudospin-singlet forming on the FS
that leads to a weak-coupling instability, since the inter-
band pairing will generally be negligible on the FS such
that the gap is purely given by |�s

|. Considering the QP
dispersion in terms of the band pairings,
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and evaluating this on either the ↵ or � FS, for only �s

intra-band pairing, we obtain the gap energy ±|�s
| as

expected. For either only �s
↵/� or dz↵/� inter-band pair-

ing, a gap of ±�s
↵/� or ±d

z
↵/� forms where ⇠

↵
k = ±⇠

�
k .

This corresponds to an energy gap on the FS only where
⇠
↵
k = ⇠

�
k = 0, which is not a generic feature but rather

requires fine-tuning to achieve. However when orbital de-
generacy occurs at an energy away from the Fermi energy,
inter-band pairing becomes finite.

While the model introduced in this section is simple,
its generality gives insight into the role of the orbital
degeneracy, hybridization and SOC for multi-orbital sys-
tems in dictating the stability of the even-parity spin-
triplet SC state. It is straightforward to extend to three-
orbital descriptions. Furthermore, we have seen that in
the band basis, the intra-band pairing on the FS takes
on the momentum-dependence of the SOC, allowing for a
rich collection of pairing symmetries unexpected from the

original s-wave order parameter and in contrast to other
forms of momentum-dependent SC that arise from non-
local interactions. However, the possible pairing sym-
metries will depend on the forms of k-SOC that can be
obtained from microscopic considerations. Therefore, we
now turn to a study of how various forms of k-SOC can
arise microscopically.

IV. MICROSCOPIC ROUTE TO
MOMENTUM-DEPENDENT SOC

Here, we take as a specific microscopic example the
layered perovskite Sr2RuO4, which has the tetragonal
space group I4/mmm and point group D4h, for which
the Ru 4d t2g orbitals are the relevant low-energy de-
grees of freedom. With this, we study how the various
forms of k-SOC with di↵erent d-wave form factors such
as a) an in-plane dxy SOC in the B2g representation, b)
in-plane dx2�y2 SOC in the B1g representation and c)
interlayer {dxz, dyz} SOC in the Eg representation can
arise microscopically, going beyond a purely symmetry
based analysis.

A. in-plane B2g

We begin by discussing the in-plane k-SOC in the
B2g representation, which contains (sin kx sin ky) momen-
tum dependence. This SOC is important since, based
on symmetry, there will already be a finite H

B2g

SOC in
the presence of the orbital hybridization and atomic
SOC. Since the orbital hybridization for the system con-
sidered here will appear between the dxz and dyz or-

bitals asHab = �4tab
X

k�

sin kx sin ky
�
c
†
yz,k�cxz,k�+h.c.

�
,

and transforms under the B2g representation, there is
a cubic coupling term in the free energy between the
atomic SOC (�), transforming as A1g, orbital hybridiza-
tion and B2g SOC. This symmetry allowed coupling ⇠

hH
B2g

SOCihH
A1g

SOCihHabi, where H
A1g

SOC denotes the atomic
SOC, ensures the presence of a non-zero B2g SOC in the
presence of both orbital hybridization and atomic SOC.

Furthermore, the in-plane k-SOC in the B2g represen-
tation arises through several hopping channels, all uti-
lizing intermediate p-orbitals, but di↵erent oxygen sites
denoted by 1-5 in Fig. 2, including only nearby oxygen
sites. As most of these channels occur in a single layer
of Ru-O octahedra, this SOC should be expected to be
the leading contribution beyond the atomic SOC, since
we will see that the other two k-SOC always require hop-
ping to additional layers. Such an in-plane k-SOC can
be obtained through perturbation theory by consider-
ing hopping between next-nearest neighbour Ru atoms
through the various channels, via the oxygen sites as in-
termediate states, and including the oxygen p-orbitals’
atomic SOC. This hopping process results in an electron
hopping from the dxy orbital with spin � to either a dxz
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U ~ 2 - 3 eV 
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Crystal field: eg-t2g ~ 3.4 - 3.5eV

SOC ~ 0.05 - 0.16 eV

crystal field: dxy - dxz/yz ~  0.08 eV
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e.g, orbital hybridization ~ 0.01 - 0.1 eV 



Chapter 3. Tight-binding band structures 23

3.1 Sr2RuO4 band structure

The large transport anisotropy between in-plane and out-of-plane directions suggests

that the coupling between the RuO2 layers is weak and a 2D model is sufficient. The

tight-binding band structure for a t2g orbital system on a simple square lattice then can

be obtained straightforwardly. Due to the different symmetry properties of the dyz, dxz

(both of which have quasi-1D character), and dxy orbitals with respect to reflection about

the x-y plane only mixing between the quasi-1D orbitals can occur. On the other hand,

atomic SO interaction HSO = λ
∑

i Li · Si, where λ is the SO coupling strength, Li and

Si are angular momentum and spin operators at Ru site i, respectively, couples all five

d orbitals (i.e. tg and eg) as demonstrated in App. A.1. Projected onto the t2g manifold

the Sr2RuO4 tight-binding model therefore takes the form

H214
0 =

∑

k,σ

C†
kσAkσCkσ, (3.1)

where

Akσ =







εyzk ε1Dk + iσλ/2 −σλ/2
ε1Dk − iσλ/2 εxzk iλ/2

−σλ/2 −iλ/2 εxyk







(3.2)

and C†
kσ =

(

cyz†kσ , c
xz†
kσ , cxy†k−σ

)

consists of fermionic operators each of which creates an

electron with spin projection σ =↑, ↓ in one of three t2g derived orbitals α = yz, xz, xy

[90]. The dispersions for the orbitals are given by (see Fig. 3.1)

εyzk = −2t1cosky − 2t2coskx − µ1D, (3.3)

εxzk = −2t1coskx − 2t2cosky − µ1D, (3.4)

εxyk = −2t3
(

coskx + cosky
)

− 4t4 coskx cosky (3.5)

−2t5
(

cos(2kx) + cos(2ky)
)

− µxy,

while the hybridization between the quasi-1D orbitals is

ε1Dk = −4t6 sinkx sinky. (3.6)
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3.1 Sr2RuO4 band structure

The large transport anisotropy between in-plane and out-of-plane directions suggests
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H214
0 =

∑

k,σ

C†
kσAkσCkσ, (3.1)

where

Akσ =







εyzk ε1Dk + iσλ/2 −σλ/2
ε1Dk − iσλ/2 εxzk iλ/2

−σλ/2 −iλ/2 εxyk







(3.2)

and C†
kσ =

(

cyz†kσ , c
xz†
kσ , cxy†k−σ

)

consists of fermionic operators each of which creates an
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Figure 3.1: In-plane Ru-Ru hopping integrals.

Here, t1 (t2) is the (sub)dominant nearest neighbor hopping integral between the identical

quasi-1D orbitals, while t3, t4, and t5 denote first, second, and third neighbor dxy hopping

amplitudes, respectively, and t6 stands for diagonal dyz-dxz inter-orbital hopping (see Fig.

3.1). The atomic potentials are given by µ1D and µxy.

For the Sr2RuO4 band structure we choose t1 = 0.5, t2 = 0.05, t3 = 0.4, t4 = 0.15,

t5 = 0.0, t6 = 0.025, µ1D = 0.55, and µxy = 0.65. Setting λ = 0.3, the resulting Fermi

surface (FS), density of state (DOS), and band dispersions are displayed in Fig. 3.2,

which is in good agreement with first principles calculations [62] and the experimentally

measured FS of Sr2RuO4 [80, 82]. The figure shows that three bands, dubbed α, β, and

γ, cross the Fermi level. Obviously, the α and β bands have mostly quasi-1D character,

while the γ band is predominantly made out of the dxy orbital. Note, however, that

due to SO interaction and a near-degeneracy of all orbitals a strong mixing occurs along

the diagonal directions. Since SO interaction also mixes opposite spins, i.e. up spins of

quasi-1D orbitals with down spins of the dxy orbital and vice versa (see Eq. 3.1 or App.

A.1), the spin quantum number is replaced by a pseudospin in the Bloch band basis.

This tight-binding model is the basis for the study of the multi-orbital pairing instability

in Chap. 4.

In addition to the Sr2RuO4model with λ = 0.3, Fig. 3.3 shows the effect of SO

coupling on the band structure. Setting SO coupling to zero, the α and β bands are

completely decoupled from the γ bands (Fig. 3.3 (a)). On the other hand choosing

a large SO interaction strength, the orbitals mix strongly, resulting in an open γ FS

sheet (Fig. 3.3 (b)). Note that the α and γ FS sheets nearly touch along the diagonals,

which is a consequence of the degeneracy of the dyz and dxz orbital dispersions along the

diagonals.
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perovskite structure has the form

Hkin+HSO =
∑

k,σ

C†
kσ







εyzk ε1dk + iλ −λ
ε1dk − iλ εxzk iλ

−λ −iλ εxyk






Ckσ, (4.14)

where C†
kσ = (cyz†kσ , c

xz†
kσ , c

xy†
kσ ) and the dispersions are εyz/xzk = −2t1cosky/x−2t2coskx/y−µ1,

εxyk = −2t3
(

coskx + cosky
)

− 4t4coskxcosky − µ2, and ε1dk = −4t5sinkxsinky. For the

MF calculation below we have chosen the parameters t1 = 0.5, t2 = 0.05, t3 = 0.5,

t4 = 0.2, t5 = 0.05, µ1 = 0.55, and µ2 = 0.65 (all energies here and in the following are

expressed in units of 2t1). The underlying FS obtained from diagonalizing Hkin with SO

coupling λ = 0.15 is shown in Fig. 4.2 along with momentum-resolved orbital pairing

amplitudes (i.e. −(4N)−1〈cakσ[iσ̂
y]σσ′ [λ̂ν ]abcb−kσ′〉, and (4N)−1〈cakσ[iσ̂

yσ̂l]σσ′ [ε̂ν′ ]abcb−kσ′〉,
see Eqs. (4.9) and (4.10)). The FS mimics the one from first principles calculations

[62] and the experimentally measured FS of Sr2RuO4 [80, 82], consisting of three bands

labelled α, β, and γ (see also Sec. 2.3 and 3.1). The exact details, however, are not of

concern here, since they do not affect the results qualitatively.

The momentum-resolved inter-orbital pairing is inhomogeneous in k space and strongest

near parallel FS sections and near the Brillouin zone diagonals as shown in Fig. 4.2. Panel

(a) shows the leading inter-orbital spin-triplet pairing amplitudes Dx
X , D

y
Y , D

z
Z in relation

to the three FS sheets. Panel (b) reveals the induced intra-orbital spin-singlet pairing

components, which follows the orbital character of the FS sheets as expected, while panel

(c) represents the inter-orbital spin-triplet pairing in other directions (Dy
X , D

x
Y ) than the

leading ones and an induced inter-orbital spin-singlet pairing component (ϕZ). Note that

the k summation over the Brillouin zone of the pairing components shown in (c) yields

zero. Experimental tools that are sensitive to pairing within or between Bloch bands,

however, will probe a k-dependent superposition of all the pairing amplitudes shown in

Fig. 4.2.

To study the Bloch band pairing more explicitly, let us consider the two orbital

problem. Diagonalizing a pair of hybridized orbitals, such as yz and xz, the kinetic term

in the Bloch basis takes the form

H0 =
∑

k,s

(

ε̃α
kξ

α†
ksξ

α
ks + ε̃

β
kξ

β†
ksξ

β
ks

)

, (4.15)

tk = �4tab sin kx sin ky
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Figure 3.3: FS and band dispersions along Γ → X → M → Γ for (a) zero and (b) strong
(λ = 0.6) SO coupling. All other parameters are the same as in Fig. 3.2. As before, EF

denotes the Fermi level.

lattice distortion, further below. We also assume that the coupling between bilayers along

the c axis is negligible, similar to the single layer case.

To construct the basic tight-binding model for Sr3Ru2O7we include the effect of the

rotated RuO6 octahedra for simplicity via a staggered lattice potential

Hḡ = ḡ
∑

i,σ

∑

α=yz, xz, xy

(−1)(ix+iy)cα†
iσ c

α
iσ, (3.7)

where i = (ix, iy). Altogether the basic bilayer tight-binding Hamiltonian then takes the

form

H327
0 =

∑

k∈RBZ,σ

(

C†
kσ C†

k+Qσ

)
(

Akσ G

G Ak+Qσ

)(

Ckσ

Ck+Qσ

)

, (3.8)

where Akσ and C†
qσ are defined as in Sec. 3.1, G = ḡ13×3, and Q = (π, π). We note that

the momentum summation is now limited to the reduced Brillouin zone (RBZ) due to

the enlarged
√
2×

√
2 unit cell. A fit of the tight-binding parameters to ARPES results

[84] gives t1 = 0.5, t2 = 0.05, t3 = 0.5, t4 = 0.1, t5 = −0.03, t6 = 0.05, µ1D = µxy = 0.575,

ḡ = 0.1, and λ = 0.28. The resulting FS is shown in Fig. 3.4, together with the DOS

and the band dispersions along selected directions. This model reproduces all ARPES
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Figure 3.2: Tight-binding band structure based on Eq. (3.1) for Sr2RuO4 with λ = 0.3.
All other band structure parameters are stated in the main text. (a) FS comprising α,
β, and γ sheets. (b) Total DOS near the Fermi level EF showing the van Hove peaks due
to the saddle points located at the X point in the β and γ bands. (c) Band dispersions
along Γ → X → M → Γ as marked in (a).

3.2 Sr3Ru2O7 band structure

3.2.1 Basic model

The basic tight-binding model for the bilayer compound can be easily obtained from the

single layer model by accounting for the additional features of the bilayer crystal struc-

ture. Structurally, the two main differences between Sr3Ru2O7 and Sr2RuO4 are (1) the

rotation of the RuO6 octahedra about the c axis by 6.8◦ entailing unit cell doubling and

(2) the intra-bilayer hopping facilitated by shared apical oxygen ions. In the following,

however, we shall take into account only the rotated RuO6 octahedra, but will discuss

bilayer effects together with the effect of staggered hoppings, which originate from the
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FIG. 9. DFT band structure along the high-symmetry
path �MX�Z compared to the eigenstates of our maximally-
localized Wannier Hamiltonian Ĥ

DFT for the three t2g bands.
Top: DFT (GGA-PBE) and eigenstates of ĤDFT. Bottom:
DFT+SOC (GGA-PBE) and eigenstates of Ĥ

DFT+Ĥ
SOC

�DFT

with a local SOC term (Eq. 8) and a coupling strength of
�DFT = 100meV.

Appendix B: Computational details

1. DFT and model Hamiltonian

These orbitals are centered on the Ru atoms and have
t2g symmetry, but are indeed linear combinations of Ru-d
and O-p states. We do not add Wannier functions cen-
tered on the oxygen atoms, because the resulting three
orbital Wannier model already accurately reproduces the
three bands crossing the Fermi energy, as demonstrated
in Fig. 9. Also note that the Wannier function construc-
tion allows to disentangle the � band from the bands with
dominantly O-p character below �2 eV.

We generate our theoretical model Hamiltonian Ĥ
DFT

with a maximally-localized Wannier function [60, 61] con-
struction of t2g-like orbitals for the three bands cross-
ing the Fermi surface. These Wannier orbitals are ob-
tained on a 10 ⇥ 10 ⇥ 10 k grid based on a non-SOC
DFT calculation using WIEN2k [91] with the GGA-PBE
functional [92], wien2wannier [93] and Wannier90 [94].
The DFT calculation is performed with lattice parame-
ters from Ref. [95] (measured at 100K) and converged
with twice as many k-points in each dimension.

The eigenenergies of the resulting Wannier Hamilto-
nian, ĤDFT, accurately reproduce the DFT band struc-
ture (Fig. 9 top). Note that in the absence of SOC,

FIG. 10. Orbital character of the DFT FS without SOC at
kz = 0.4 ⇡/c (left). The orbital character of the DFT+�DFT+
�� eigenstates at the same kz is reproduced on the right from
Fig. 3.

λ = 0 meV λ = 100 meV

λ = 200 meVλ = 300 meV

 ΔεCF = - 80 meV 
 ΔεCF = - 40 meV 
 ΔεCF = 0 meV 
 ΔεCF = 40 meV 
 ΔεCF = 80 meV 
 ARPES

M X

FIG. 11. Fermi surface of Sr2RuO4 for � = 0meV (top left),
� = 100meV (top right), � = 200meV (bottom right) and
� = 300meV (bottom left) compared to ARPES (dashed
black line). � = 100meV corresponds to a DFT+SOC cal-
culation and � = 200meV to an e↵ective SOC enhanced by
electronic correlations (see main text). The di↵erent shades
of red indicate additional crystal-field splittings �✏cf added
to ✏cf = 85meV of ĤDFT.

the eigenstates retain pure orbital character, as shown
in Fig. 10. To take SOC into account, we add the local
single-particle term Ĥ

SOC

� , as given in Eq. 8, with cou-
pling constant �. In the bottom panel of Fig. 9 we show
that the eigenenergies of ĤDFT+Ĥ

SOC

� are in nearly per-
fect agreement with the DFT+SOC band structure at a
value of �DFT = 100meV.

Our model Hamiltonian provides the reference point
to which we define a self-energy, but it is also a per-

A. Tamai et al, PRX (2019) 
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pling are crucial. We also illustrate how pseudospin-
triplet interband pairing remains, dubbed a “shadowed
triplet” away from the FS. While this SC behaves like
a singlet in response to low energy excitations, its hid-
den identity shows up at finite magnetic fields, and can
be tested when the field strength reaches an appreciable
percentage of the superconducting gap size20.

The paper is organized as follows. We consider a simple
but general two-orbital model to show how even-parity
spin-triplet pairing arises in Sec. II. This includes the
stability conditions and how SOC transforms this pair-
ing into a pseudospin-singlet and -triplet in the Bloch
band basis. The SOC in the shadowed triplet not only
plays an essential role in enhancing the pairing, but also
determines the pairing symmetry. In Sec. III we investi-
gate microscopic routes to several k-SOC terms with d-
wave symmetry, which can lead to various d-wave pairing
symmetries on the FS. In Sec. IV, we apply the shadowed
triplet pairing scenario to the prominent unconventional
superconductor, Sr2RuO4

13–16, for which the SOC has
been shown to be important3,21–24, and discuss the lead-
ing instabilities within a realistic three orbital model.

II. GENERAL MICROSCOPIC HAMILTONIAN

We first discuss the generic Hamiltonian that we will
be considering throughout, which is of the form H =
H0 + HSOC + Hint. The kinetic term H0 consists of a
tight-binding (TB) model, for which we will discuss the
precise form in the subsequent sections. The SOC Hamil-
tonian will consist of the atomic SOC, which is written
in the basis of t2g orbitals in the Supplementary Mate-
rial (SM),25 as well as additional contributions discussed
later. We consider for Hint the Kanamori interactions,
given by

Hint =
U

2

X

i,a,� 6=�0

na,i�na,i�0 +
U

0

2

X

i,a 6=b,��0

na,i�nb,i�0

+
JH

2

X

i,a 6=b,��0

c
†
a,i�c

†
b,i�0ca,i�0cb,i�

+
JH

2

X

i,a 6=b,� 6=�0

c
†
a,i�c

†
a,i�0cb,i�0cb,i�,

(1)
where U and U

0 are the intra- and inter-orbital Hub-
bard repulsions, JH is the Hund’s coupling and c

†
a,i� is an

electron operator creating an electron at site i in orbital
a with spin �. Decoupling these interaction terms into
even-parity zero-momentum spin-singlet and spin-triplet

order parameters3,7,19,20 gives,

Hint =
4U

N

X

a,kk0

�̂s†
a,k�̂

s
a,k0

+
2(U 0 � JH)

N

X

{a 6=b},kk0

d̂†
a/b,k · d̂a/b,k0

+
4JH
N

X

a 6=b,kk0

�̂s†
a,k�̂

s
b,k0

+
2(U 0 + JH)

N

X

a 6=b,kk0

�̂s†
a/b,k�̂

s
a/b,k0 ,

(2)

where N is the number of sites and the spin-triplet and
-singlet order parameters are defined as

d̂a/b,k =
1

4

X

��0

[i�y�]��0
�
ca,k�cb,�k�0 � cb,k�ca,�k�0

�

�̂s
a/b,k =

1

4

X

��0

[i�y]��0
�
ca,k�cb,�k�0 + cb,k�ca,�k�0

�

�̂s
a,k =

1

4

X

��0

[i�y]��0ca,k�ca,�k�0 ,

(3)
and {a 6= b} represents a sum over the unique pairs of
orbital indices. An attractive inter-orbital spin-triplet
channel is present when JH > U

0, which will be our
focus. While this corresponds to a Hund’s coupling
larger than the typical value of approximately 0.17U for
Sr2RuO4

26,27, this type of pairing instability has also
been found in several studies beyond MF theory without
the requirement of JH > U

04–6. Furthermore, given that
the inter- and intra-orbital spin-singlet order parameters
are induced only through the SOC and have been shown
to be significantly smaller than the primary spin-triplet
order parameters in previous studies3,20, we neglect them
here as they will not a↵ect our conclusions.

III. TWO-ORBITAL MODEL

We now consider a mean-field (MF) Hamiltonian con-
sisting of a generic TB model with two orbitals, SOC and
a pairing term,

H =
X

k

 †
k

�
H0(k) +H

z
SOC

(k) +Hpair(k)
�
 k

H0(k) = ⇢3

�⇠+k
2
�0⌧0 +

⇠
�
k

2
�0⌧3 + tk�0⌧1

�

H
z
SOC

(k) = ��k⇢3�3⌧2
Hpair = �d

z
a/b⇢2�3⌧2.

(4)
Here  †

k = ( †
k, T  T

k T �1), where T indicates time-

reversal and  †
k = (ca†k", c

b†
k", c

a†
k#, c

b†
k#) consists of electron

operators creating an electron in one of the two orbitals
a, b with spin � =", #. We have introduced the Pauli ma-
trices plus identity matrix, ⇢i,�i, ⌧i, (i = 0, ...3) in the
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been found in several studies beyond MF theory without
the requirement of JH > U

04–6. Furthermore, given that
the inter- and intra-orbital spin-singlet order parameters
are induced only through the SOC and have been shown
to be significantly smaller than the primary spin-triplet
order parameters in previous studies3,20, we neglect them
here as they will not a↵ect our conclusions.

III. TWO-ORBITAL MODEL

We now consider a mean-field (MF) Hamiltonian con-
sisting of a generic TB model with two orbitals, SOC and
a pairing term,

H =
X

k

 †
k

�
H0(k) +H

z
SOC

(k) +Hpair(k)
�
 k

H0(k) = ⇢3

�⇠+k
2
�0⌧0 +

⇠
�
k

2
�0⌧3 + tk�0⌧1

�

H
z
SOC

(k) = ��k⇢3�3⌧2
Hpair = �d

z
a/b⇢2�3⌧2.

(4)
Here  †

k = ( †
k, T  T

k T �1), where T indicates time-

reversal and  †
k = (ca†k", c

b†
k", c

a†
k#, c

b†
k#) consists of electron

operators creating an electron in one of the two orbitals
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trices plus identity matrix, ⇢i,�i, ⌧i, (i = 0, ...3) in the
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pling are crucial. We also illustrate how pseudospin-
triplet interband pairing remains, dubbed a “shadowed
triplet” away from the FS. While this SC behaves like
a singlet in response to low energy excitations, its hid-
den identity shows up at finite magnetic fields, and can
be tested when the field strength reaches an appreciable
percentage of the superconducting gap size20.

The paper is organized as follows. We consider a simple
but general two-orbital model to show how even-parity
spin-triplet pairing arises in Sec. II. This includes the
stability conditions and how SOC transforms this pair-
ing into a pseudospin-singlet and -triplet in the Bloch
band basis. The SOC in the shadowed triplet not only
plays an essential role in enhancing the pairing, but also
determines the pairing symmetry. In Sec. III we investi-
gate microscopic routes to several k-SOC terms with d-
wave symmetry, which can lead to various d-wave pairing
symmetries on the FS. In Sec. IV, we apply the shadowed
triplet pairing scenario to the prominent unconventional
superconductor, Sr2RuO4

13–16, for which the SOC has
been shown to be important3,21–24, and discuss the lead-
ing instabilities within a realistic three orbital model.

II. GENERAL MICROSCOPIC HAMILTONIAN

We first discuss the generic Hamiltonian that we will
be considering throughout, which is of the form H =
H0 + HSOC + Hint. The kinetic term H0 consists of a
tight-binding (TB) model, for which we will discuss the
precise form in the subsequent sections. The SOC Hamil-
tonian will consist of the atomic SOC, which is written
in the basis of t2g orbitals in the Supplementary Mate-
rial (SM),25 as well as additional contributions discussed
later. We consider for Hint the Kanamori interactions,
given by
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where U and U

0 are the intra- and inter-orbital Hub-
bard repulsions, JH is the Hund’s coupling and c

†
a,i� is an

electron operator creating an electron at site i in orbital
a with spin �. Decoupling these interaction terms into
even-parity zero-momentum spin-singlet and spin-triplet
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meters, defined in an orbital and spin basis, to inter- and
intra-band pairing in the Bloch band basis. Pairing in the
Bloch bands has a strong momentum dependence and
the magnitude and direction of the d-vectors depend on
the orbital composition at each k-point. In the fourth
section, we present the complete self-consistent mean-
field (MF) results involving 9 complex order parameters
using band structure parameters that reproduce the Fermi
surface (FS) reported on Sr2RuO4. In addition, the result-
ing anisotropic quasiparticle (QP) dispersion, the mag-
netic response and the critical pairing strengths in the
presence of SO coupling are considered. We summarize our
findings and discuss the relevance for SO-coupled d-orbital
superconductors such as Sr2RuO4 in the last section.

Pairing in SO coupled t2g systems via Hund’s
interaction. – For multi-orbital 3d-subshell systems such
as the Fe-pnictides, it was recognized that Hund’s coupling
(interaction strength denoted by J) is as important as
on-site Coulomb repulsion (U) [7,8], while SO coupling
(2λ) is relatively weak [9]. In contrast, recent X-ray
measurements on 5d transition metal compounds such as
Ir-based oxide materials found that the SO interaction
of 0.6 eV is roughly comparable to the on-site Coulomb
energy [10], suggesting that SO interaction is larger than
Hund’s exchange (since J <U). Given that the effective
pairing interaction in the spin-triplet channel arising
from Hund’s coupling and inter-orbital Hubbard repulsion
(V =U − 2J) scales as V −J =U − 3J (see below), we
therefore expect that for 4d-subshell materials such as
Sr2RuO4 both SO and spin-triplet pairing interactions are
intermediate in strength and of similar magnitude [11–17].
Since neither interaction is negligible nor dominant, we
treat both on an equal footing in the present study.
While on-site Hund’s and further neighbor exchange

interactions have been recognized to be important for
spin-triplet pairing [7,18–21], the combined effect of SO
and Hund’s couplings on inter-orbital spin-triplet pair-
ing has not been investigated in t2g-orbital systems. To
understand superconductivity in SO coupled t2g-orbital
systems, we consider a generic Hamiltonian H =Hkin+
HSO+Hint consisting of kinetic, SO, and local Kanamori
interaction terms. In this section we leave the kinetic
Hamiltonian Hkin unspecified and focus on the pairing
properties arising from the interplay of the atomic SO
coupling HSO = 2λ

∑
i Li ·Si and the local interaction,

which, projected on the t2g-orbitals, are given by

HSO = iλ
∑

i

∑

abl

εablc
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b
iσ′ σ̂

l
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Fig. 1: (Color online) The orbital-singlet spin-triplet d-vectors
form a triad whose orientation is pinned along x̂, ŷ, and ẑ, (or
−x̂, −ŷ, and −ẑ), in the presence of SO coupling. See main
text for details.

Here and in the following, summation over repeated
spin indices σ,σ′ =↑, ↓ is implied while the indices a, b∈
{yz, xz, xy} belong to an ordered set of t2g-orbitals.
Furthermore, σ̂l stands for Pauli matrices, ca†iσ creates an
electron on site i in orbital a with spin σ, and εabl denotes
the totally antisymmetric rank-3 tensor. For transparency
we have also introduced separate interaction strengths
for Hund’s coupling (J) and pair hopping (J ′), although
J = J ′ at the atomic level.
Let us apply a MF approach to study the particle-

particle instabilities of the microscopic interaction Hint
using the following zero momentum pairing channels:

∆̂sa/b =
1

4N

∑

k

[iσ̂y]σσ′(c
a
kσc

b
−kσ′ + c

b
kσc

a
−kσ′), (3)

d̂la/b =
1

4N

∑

k

[iσ̂yσ̂l]σσ′(c
a
kσc

b
−kσ′ − cbkσca−kσ′), (4)

where N is the number of k points. Here, ∆sa/b = 〈∆̂sa/b〉
(=∆sb/a) stands for intra- (a= b) and inter-orbital (a '= b)
spin-singlet pairing, which is even under the exchange
of orbital quantum numbers (i.e. they form “orbital
triplets”). The vector order parameter da/b = (〈d̂xa/b〉,
〈d̂ya/b〉, 〈d̂

z
a/b〉) (=−db/a) on the other hand parametrizes

inter-orbital (a '= b) spin-triplet pairing consistent with the
usual d-vector notation where i(d · σ̂)σ̂y describes the spin-
triplet pairing gap [2,22]. Note that da/b is odd under
orbital exchange, which is characteristic of an “orbital
singlet” (while da/a = 0). Note also that the above order
parameters are all even under a parity transformation as
they are locally defined; this feature differs in particular
from conventional odd-parity spin-triplet pairing where
orbital degrees of freedom are absent.
Using the above pairing channels the interaction Hamil-

tonian takes the form

Hint→UN
∑

a

∆̂s†a/a∆̂
s
a/a+(V −J)N

∑

a,b,l

d̂l†a/bd̂
l
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s
b/b+(V +J)N

∑

a!=b
∆̂s†a/b∆̂

s
a/b, (5)

where it is clear that only Hund’s coupling can give rise
to an instability in a spin-triplet channel [7,19]. We thus
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Fig. 2: (Color online) Momentum-resolved pairing amplitudes
in the Bloch band basis for 3J −U = 0.9 and λ= 0.15. Panels
(a) and (b) represent inter- and intra-band pairing, respec-
tively. The grey lines indicate the β, γ, and α FS sheets (from
inside to outside). Note that pairing from Hund’s coupling
preferentially involves electronic states near the FS sheets and
that the intra-band pairing amplitudes are about one order of
magnitude larger than inter-band pairing amplitudes.

t2g-orbitals in a single layer perovskite structure has the
form

Hkin+HSO =
∑

k,σ

C†kσ





εyzk ε1dk + iλ −λ
ε1dk − iλ εxzk iλ

−λ −iλ εxyk



Ckσ,

(10)

where C†kσ = (c
yz†
kσ , c

xz†
kσ , c

xy†
k−σ) and the dispersions are

ε
yz/xz
k =−2t1cosky/x−2t2coskx/y−µ1, εxyk =−2t3(coskx+
cosky)− 4t4coskxcosky −µ2, and ε1dk =−4t5sinkxsinky.
For the MF calculation below we have chosen the para-
meters t1 = 0.5, t2 = 0.05, t3 = 0.5, t4 = 0.2, t5 = 0.05,
µ1 = 0.55, and µ2 = 0.65 (all energies here and in the
following are expressed in units of 2t1 = 1.0). The under-
lying FS obtained from diagonalizing Hkin with SO
coupling strength λ= 0.15 is shown in fig. 2 along with
momentum-dependent band pairing amplitudes. The
FS agrees well with first-principles calculations [14] and
the experimentally measured FS of Sr2RuO4 [17,25,26],
consisting of three bands labelled α, β, and γ.
In the presence of SO coupling the bands are

mixtures of all three orbitals and different spins, e.g.
ξηk+ = f̃

η
kc
xz
k↑+ g̃

η
kc
yz
k↑+ h̃

η
kc
xy
k↓ (η= α,β, γ). Hence consid-

ering inter- and intra-band pairing amplitudes in the
band basis, it is clear that the x and y components of the
inter-band pseudospin-triplets such as 〈ξηk±ξ

ρ
−k±〉 vanish,

since 〈dxzk↑d
yz
−k↑〉, 〈dxzk↑d

xy
−k↓〉, and 〈d

yz
k↑d

xy
−k↓〉 amplitudes are

zero (similarly for ↑↔↓ ). Thus only finite z -components
of the three inter-band pseudospin-triplet d-vectors and
inter-band pseudospin-singlet order parameters (such as
〈ξηk+ξ

ρ
−k−± ξ

ρ
k+ξ

η
−k−〉) can appear. Figure 2 reveals that

intra-band pairing is strongest and sharply peaked around
the FS due to the mixing of all orbitals via SO interaction
and inter-orbital hopping, and the ideal conditions for
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Fig. 3: (Color online) MF solutions for different SO coupling
strengths for the Sr2RuO4 based band structure. Orbital-
singlet spin-triplet pairing dxz/xy, dyz/xy, and dyz/xz (purely
real) induces finite intra-orbital spin-singlet pairing ∆syz/yz,
∆sxz/xz, and ∆

s
xy/xy (purely imaginary). We also checked for

induced inter-orbital spin-singlet pairing amplitudes, which,
however, vanish.

zero-momentum pairing. Inter-band pairing in contrast is
about an order of magnitude weaker and, in particular
for 〈ξγk+ξ

β
−k−〉, more spread out in momentum space,

marking Bloch band states that are energetically still
close enough to the FS to participate significantly in
pairing.
This analysis demonstrates that inter-orbital pairing

arising from Hund’s interaction leads to k-dependent
inter- and intra-band pairing in pseudospin-singlet
and and pseudospin-triplet (z-component only) channels.
Furthermore, the pairing instability occurs simultaneously
within and between all bands rather than in a single active
band with superconductivity leaking into passive bands
through, e.g., pair hopping. The role of intra-band spin-
triplet pairing between α and β bands in multi-orbital
superconductors like Sr2RuO4 has also been the focus
of recent studies, where the inter-band order parameter,
however, breaks TRS [27] and an intrinsic anomalous Hall
effect can contribute significantly to a large TRS breaking
signal in Kerr rotation experiments [28,29].

Pairing transition, QP dispersion, and magnetic
response. – For concreteness we study the effect of SO
coupling on spin-triplet pairing originating from Hund’s
interaction, including the QP dispersion and the magnetic
response. As discussed in the previous sections the qual-
itative results are generic for SO coupled t2g bands (or
p-orbital systems) and can be applied to specific mate-
rials such as the single layer ruthenate [5,6] and the Fe-
pnictides [7,30] using the appropriate band structure.
Using the kinetic Hamiltonian of eq. (10) with a para-

meter choice mimicking the single layer ruthenate band
structure, the MF solutions for various λ are displayed
in fig. 3. As one can see, in the absence of SO interaction
an orbital-singlet spin-triplet pairing instability develops
at a large coupling strength 3J −U ! 1.0 for dxz/xy and
dyz/xy. Although numerically difficult to resolve, we
expect that dyz/xz and the intra-orbital spin-singlet order
parameters simultaneously become finite through quartic
or higher order couplings in the Landau free energy
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Abstract – We investigate the combined effect of Hund’s and spin-orbit (SO) coupling on
superconductivity in multi-orbital systems. Hund’s interaction leads to orbital-singlet spin-triplet
superconductivity, where the Cooper pair wave function is antisymmetric under the exchange of
two orbitals. We identify three d-vectors describing even-parity orbital-singlet spin-triplet pairings
among t2g-orbitals, and find that the three d-vectors are mutually orthogonal to each other. SO
coupling further assists pair formation, pins the orientation of the d-vector triad, and induces
spin-singlet pairings with a relative phase difference of π/2. In the band basis the pseudospin
d-vectors are aligned along the z-axis and correspond to momentum-dependent inter- and intra-
band pairings. We discuss quasiparticle dispersion, magnetic response, collective modes, and
experimental consequences in light of the superconductor Sr2RuO4.

editor’s  choice Copyright c© EPLA, 2012

Introduction. – Since its inception, standard
Bardeen-Cooper-Schriefer (BCS) theory has been consid-
ered a classic example for a collective phase emerging
from quantum many body effects. However, the discovery
of unconventional superconducting phases near antiferro-
magnetic order in heavy fermion compounds [1,2], organic
materials [3], and, most recently, Fe-pnictides [4] have
exposed the limits of a single-band BCS formulation.
The origin and nature of superconductivity in complex
materials where multiple bands cross the Fermi level
therefore remains a field of active research, harbouring
intriguing challenges and mysteries.
In particular, when the electronic structure near the

Fermi energy is composed of different orbitals and spins
mixed via spin-orbit (SO) coupling, a pairing symmetry
analysis could be non-trivial. For example, a local micro-
scopic interaction such as Hund’s coupling may naturally
favour inter-orbital spin-triplet pairing between electrons.
However, when orbital and spin fluctuations are signif-
icant due to inter-orbital hopping and SO interaction,
pairing in definite orbital and spin channels (e.g., spin-
singlet or -triplet pairing between electron in orbitals a
and b) is not well defined. Equivalently, from a Bloch band

(a)E-mail: hykee@physics.utoronto.ca

perspective, where the kinetic Hamiltonian including SO
effects is diagonal, the decoupling of the microscopic inter-
action effectively leads to intra- and inter-band pairing
with pseudospin-singlet and/or -triplet character.
Below we present a systematic study of how SO and

Hund’s couplings jointly give rise to superconductivity
in t2 g (i.e., dyz, dxz, and dxy) orbital systems. Our find-
ings may apply to a number of multi-orbital d-subshell
superconductors. To be specific we base our quantitative
considerations on the proposed chiral spin-triplet super-
conductor Sr2RuO4. Here, despite intense investigation
for more than a decade, a clear picture for the pairing
symmetry, the pairing mechanism and the relevant
bands involved that is consistent with all experimental
observations has not yet emerged [5,6].
The paper is organized as follows. In the second section

we discuss Cooper pairing in multi-orbital systems. We
find that superconductivity from local Hund’s exchange
can naturally be characterized by three mutually orthog-
onal d-vectors each describing inter-orbital even-parity
spin-triplet pairing. We then show how SO coupling pins
the orientation of the d-vector triad and induces and
enhances pairing via coupling to spin-singlet pairing order
parameters with a fixed relative phase difference of π/2. In
the third section, we map these local pairing order para-

27010-p1

EPL 98, 27010 (2012) arXiv:1101.4656.

 SOC enhances inter-orbital (orbital-singlet) even-parity spin-triplet    
          & pins d-vector direction (varies in momentum space)

atomic SOC: anisotropic S-wave



2
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b)

Figure S1. (a) Bogoliubov quasiparticle dispersion, featuring bands of mixed particle and hole character, obtained by finding the
energy eigenvalues of the Hamiltonian listed in the main text solved in the mean field approximation with � and D values obtained
by self-consistent mean field theory for 3J � U = 0.5 along the path shown on the inset Fermi surface. The gap parameters are
increased by a factor of 20⇥ to make the gaps more visible. (b) Magnification of (a) to show the pairing occurring away from the
Fermi energy due to the interorbital nature of the triplet parameters, labelled with red circles. Two of the red circles are labelled
with the parameter that is primarily responsible for the pairing at that location, while a third is left unlabelled, where there will
be mixed contribution due to the mixed orbital character of the bands around this location. Green circles show three locations of
the intraband pseudospin-singlet pairing (represented by D̃i with i = ↵,�, �) at the Fermi energy due to the OSST being projected
onto the bands via the atomic SOC. A tiny induced spin-singlet, �a, also contributes to the intraband pairing D̃. The dispersion is
shown in the unstrained case, and therefore the ⇡

2 rotational symmetry means that the pairings due to DY
y along � to Y is identical

to DX
x along � to Y.

QUASIPARTICLE DISPERSION

Given that the interorbital pairing occurs among t2g orbitals, which form di↵erent bands with di↵erent Fermi momenta,
the pairing gap is finite not only near the FS, but also below the Fermi level. For example, by finding the energy eigenvalues
of the mean field Hamiltonian using the tight binding parameters listed above, as well as self consistent solutions for the
various gap parameters, the quasiparticle dispersion is plotted in Fig. S1. When a particle �-band intersects a hole �-band
at a finite energy above or below the FS, a finite gap of |D⌫ | is clearly present, as shown by the red circles in Fig. S1(b).
When a particle band crosses its own hole band at the FS, a gap will form due to intraband pseudospin-singlet pairing D̃i

with i = ↵,�, �, such as those labelled by the green circles in Fig. S1(b). The gap on the FS is finite at every momentum,
even though it is strongly anisotropic because of di↵erent orbital composition in each band. This is due to the projection
of the OSST pairing onto the band-basis [1]. The gap at the FS ranges from approximately 0.1|D0| to 0.5|D0| and is
smallest in the ↵ near the Brillouin zone boundary. This depends on the size of the SOC, and decreasing the value of the
SOC will decrease the size of the gap. Additionally, a momentum dependent SOC can lead to gap nodes [2]. While only
the s-wave gap is considered in the present study, there may be significant contributions from higher-angular momentum
pairing such as d-wave, originating from further neighbour interactions, which could also contribute to the formation of a
node in the gap. One may wonder if a finite momentum pairing, i.e., FFLO state occurs. We found that zero-momentum
pairing between di↵erent bands has lower energy than an FFLO state for all parameters that we have considered.

QP dispersion
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the intraband pseudospin-singlet pairing (represented by D̃i with i = ↵,�, �) at the Fermi energy due to the OSST being projected
onto the bands via the atomic SOC. A tiny induced spin-singlet, �a, also contributes to the intraband pairing D̃. The dispersion is
shown in the unstrained case, and therefore the ⇡

2 rotational symmetry means that the pairings due to DY
y along � to Y is identical

to DX
x along � to Y.

QUASIPARTICLE DISPERSION

Given that the interorbital pairing occurs among t2g orbitals, which form di↵erent bands with di↵erent Fermi momenta,
the pairing gap is finite not only near the FS, but also below the Fermi level. For example, by finding the energy eigenvalues
of the mean field Hamiltonian using the tight binding parameters listed above, as well as self consistent solutions for the
various gap parameters, the quasiparticle dispersion is plotted in Fig. S1. When a particle �-band intersects a hole �-band
at a finite energy above or below the FS, a finite gap of |D⌫ | is clearly present, as shown by the red circles in Fig. S1(b).
When a particle band crosses its own hole band at the FS, a gap will form due to intraband pseudospin-singlet pairing D̃i

with i = ↵,�, �, such as those labelled by the green circles in Fig. S1(b). The gap on the FS is finite at every momentum,
even though it is strongly anisotropic because of di↵erent orbital composition in each band. This is due to the projection
of the OSST pairing onto the band-basis [1]. The gap at the FS ranges from approximately 0.1|D0| to 0.5|D0| and is
smallest in the ↵ near the Brillouin zone boundary. This depends on the size of the SOC, and decreasing the value of the
SOC will decrease the size of the gap. Additionally, a momentum dependent SOC can lead to gap nodes [2]. While only
the s-wave gap is considered in the present study, there may be significant contributions from higher-angular momentum
pairing such as d-wave, originating from further neighbour interactions, which could also contribute to the formation of a
node in the gap. One may wonder if a finite momentum pairing, i.e., FFLO state occurs. We found that zero-momentum
pairing between di↵erent bands has lower energy than an FFLO state for all parameters that we have considered.

pseudospin triplet singlet
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Fig. 4: (Color online) QP bands for 3J −U = 0.9 and λ= 0.15.
Panel (a) is a magnification of panel (c) about the Fermi level,
revealing the gaps opening up on the FS sheets. Panel (b) shows
the DOS and the QP gap near the Fermi level.
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Fig. 5: (Color online) Magnetization parallel to the applied
magnetic field B for λ= 0.075 (top) and 0.15 (bottom) and two
field orientations at 3J −U = 0.9. The solid lines represent total
magnetization, dashed lines stand for orbital contribution,
and dash-dotted lines for spin magnetization. For the sake
of comparison the magnetic response both in the presence
(orange) and in the absence (grey) of superconductivity is
displayed. (B is expressed in units of 2t1 = 1.)

expansion. While the magnitudes of the order parameters
depend on the details of the band structure, a robust
feature is that finite SO coupling drastically reduces
the critical pairing strength. This reduction is mostly
facilitated by the additional hybridization provided by
HSO, which helps to overcome the momentum mismatch
between orbitals/bands near the Fermi level. On the other
hand the same mechanism can have a slightly detrimental
effect at larger 3J −U , where the ideal inter-orbital
pairing conditions along the diagonals are weakened by
the additional hybridization. One may also wonder if the
Bogoliubov QP dispersions have anisotropic gaps. The
resulting QP bands are shown in fig. 4 and are fully
gapped with a fourfold symmetric gap modulation in k
space, even though the gap minima are tiny.
Note that the present superconducting state does not

break TRS. The magnetic response is a combination of
paramagnetic (spin-triplet) and spin-singlet behaviours,
with a slightly larger out-of-plane than in-plane total
magnetic susceptibility as shown in fig. 5, where M=
〈Li〉+2〈Si〉 is the total magnetization including orbital

and spin contributions and HB =B ·
∑
i(Li+2Si) couples

the orbital and spin degrees of freedom to the external
field B. Both orbital and spin expectation values are finite
with roughly equal contribution to the total magnetiza-
tion. For comparison, the normal state magnetizations are
also shown in fig. 5 and are larger than in the supercon-
ducting state, as expected for a combination of spin-singlet
and triplet pairing in the presence of SO interaction. In
particular, note that the spin magnetization changes dras-
tically in the superconducting state with increasing λ.
In general, the magnitude of the d-vectors, and thus the
magnetic response, can be modified by changing the size of
the FS sheets. For instance a larger overlap between yz and
xy dominated portions of the FS would enhance dyz/xy
compared to dyz/xz and dxz/xy. The spin susceptibility
then would be mostly dominated by dyz/xy, a situation
which may be facilitated by applying uniaxial pressure.

Discussion and summary. – Given that we based
our MF study on the Sr2RuO4 compound to illustrate the
effect of SO interaction on pairing, let us comment on the
compatibility and the limitations of our results with what
is known about the superconducting state in Sr2RuO4
[5,6]. Based on the QP gap variation along the FS sheets,
one expects that this modulation may also be reflected
in orientation sensitive specific heat measurements. Such
magnetic field dependent specific heat measurements on
Sr2RuO4 have indeed been carried out [31,32], but the
interpretation of the experimental results is controversial,
making a link to our QP dispersion difficult. However, due
to the nature of inter-band pairing, the superconducting
state presented here is sensitive to any kind of impurities
associated with inter-band scattering, which is consistent
with the phenomena observed in Sr2RuO4.
Our result on the magnetization indicates that the spin-

susceptibility is finite and different for in-plane and out-
of-plane magnetic field orientations in both the normal
and the superconducting state, as reported on Sr2RuO4.
Yet below Tc the in-plane and out-of-plane susceptibilities
decrease, which is in contrast to NMR Knight shift
measurements [33,34], which revealed that a change in the
spin-response across Tc is absent for any field orientation.
This behaviour differs also from the response expected of a
chiral p+ ip superconductor, where the spin susceptibility
decreases for field directions perpendicular to the a-b
plane but remains constant for parallel orientations. While
the amount of change in the present model depends
sensitively on the SO interaction strength, as shown in
fig. 5, the question also arises as to how orbital and
spin contributions were separated to obtain the Knight
shift data when SO interaction is significant. Besides this,
we note that the magnetic field effect on vortices will
be highly non-trivial as well, as it involves competition
between various types of vortices including half-quantum
vortices [35,36] in the presence of moderate SO coupling.
Finally, the lack of TRS breaking is compatible with the

absence of chiral supercurrents as observed in scanning
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FIG. 2. (Color online) Hopping channels generating the in-
plane B2g d-wave k-SOC for the dxz and dxy orbitals, which
consists of an e↵ective spin-flip hopping between next-nearest
neighbour sites. The alternative process involving the dyz or-
bital is related by a C4 rotation and only the interlayer pro-
cess is shown in detail for clarity. a) The intermediate oxygen
sites for the contributing hopping channels are indicated by
the numbering, with the relevant p orbitals and intermediate
hopping amplitudes shown by dashed lines only for the fifth
channel, however the same orbitals are involved in all other
channels. The top layer of the unit-cell is also removed for
clarity. b) Schematic top view of the hopping process, where
the bottom lobe of the pz orbital is shown.

on symmetry, there will already be a finite H
B2g

SOC in
the presence of the orbital hybridization and atomic
SOC. Since the orbital hybridization for the system con-
sidered here will appear between the dxz and dyz or-

bitals asHab = �4tab
X

k�

sin kx sin ky
�
c
†
yz,k�cxz,k�+h.c.

�
,

and transforms under the B2g representation, there is
a cubic coupling term in the free energy between the
atomic SOC, transforming as A1g, orbital hybridiza-
tion and B2g SOC. This symmetry allowed coupling ⇠

hH
B2g

SOCihH
A1g

SOCihHabi, where H
A1g

SOC denotes the atomic
SOC, ensures the presence of a non-zero B2g SOC in the
presence of both orbital hybridization and atomic SOC.
However, it is also further enhanced due to various hop-
ping channels utilizing the oxygen SOC, which we con-
sider next.

The in-plane k-SOC in the B2g representation arises
through several hopping channels, all utilizing the same
intermediate p-orbitals, but di↵erent oxygen sites. As
most of these channels occur in a single layer of Ru-O
octahedra, this SOC should be expected to be the lead-
ing contribution beyond the atomic SOC, since we will
see that the other two k-SOC require additional layers.
Such an in-plane k-SOC can be obtained through per-
turbation theory by considering hopping between next-
nearest neighbour Ru atoms through the various chan-
nels, all utilizing the oxygen sites as intermediate states,
and including the oxygen p-orbitals’ atomic SOC. This
hopping process results in an electron hopping from the

dxy orbital with spin � to either a dxz or dyz orbital with
spin ��, where the former case is shown in Fig. 2 by
the black solid line. The contributing channels are indi-
cated by the numbering of the intermediate oxygen sites
used for each channel, where only the hopping through
the p-orbitals for the fifth channel utilizing an additional
layer is shown explicitly for clarity. We can construct the
e↵ective Hamiltonian, involving only the Ru sites, with

H
B2g

SOC =
X

p±

H
0
|p±ihp±|H

0

Ed � Ep±

, (13)

where H
0 denotes the hopping Hamiltonian involving

both d and p orbitals. The sum runs over the intermedi-
ate oxygen states for all channels, which are eigenstates
of the oxygen SOC |j,mj , ri, with r the position of the
oxygen site, and we consider up to the 2nd order of the
perturbation theory for this process. For instance, con-
sidering a hopping process between a dxy state with spin-
" and a spin-# dxz state utilizing the apical oxygen site
in another layer, we have |p+i = �

1p
6
(|px, #i+ i|py, #i)+

p
2p
3
|pz, "i and |p�i = �

1p
3
(|px, #i + i|py, #i) �

1p
3
|pz, "i.

The energy denominator is given for |p+i and |p�i by

Epd + �p

2
and Epd � �p respectively, where Epd is the

di↵erence in the on-site atomic potentials and �p is the
oxygen SOC constant. To obtain a spin-flip hopping at
2nd order, we are restricted to considering hopping pro-
cesses involving the pz orbital and either of the px or py
orbitals. The spin flip then arises from the mixing of the
pz orbital with the opposite spin state of the px or py

orbital due to the SOC. The intermediate hopping am-
plitudes for the dxy/dxz process are shown schematically
in the top view of Fig. 2 (b) (black lines), where the
lobe of the pz orbital closest to the plane of hopping is
shown. For the same apical oxygen site, the overlap be-
tween dxy/px and dxz/pz is also included. Beyond this
example, there are four additional channels indicated in
the figure, which utilize the same oxygen p-orbitals and
which we include below.
Considering the hopping amplitude between the dxy

orbital with spin � at site R denoted by |xy,�, Ri and
the opposite spin state of the dxz orbital at site R

0,
|xz,��, R

0
i we obtain,

hxz,��, R
0
|H

B2g

SOC |xy,�, Ri =

⌘�
�p

(Epd +
�p

2
)(Epd � �p)

X

i

t
ai
pd,it

bi
pd,i,

(14)

where the sum is over the contributing channels utilizing
the oxygen sites indicated in Fig. 2 and ai, bi refer to the
orbitals involved in the intermediate hopping amplitudes.
All of these channels involve the hopping amplitudes be-
tween either the dxy/px and dxz/pz, or dxy/pz and dxz/px

orbitals to give rise to the sin kx sin ky dependence. For
example, from Fig. 2 it can be seen that the overall sign
dependence of the hopping channel will match that of the
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FIG. 2. (Color online) Hopping processes generating the

in-plane B2g d-wave k-SOC, with hopping amplitudes �
B2g
1

(black solid line) and �
B2g
2 (green solid line). a) The relevant p

and d orbitals are shown in one layer of the three-dimensional
(3D) crystal structure where the top layer is removed for clar-
ity and the dashed lines indicate the intermediate hopping
processes for both channels. The process involving the dxz
orbital is shown as an example, since the alternative process
involving dyz is related by a C4 rotation. b) Schematic top
view of the hopping process, where the bottom lobes of the pz
orbitals are shown and the dashed lines within the dxz orbitals
represent the px orbitals.

metry, there will already be a finite H
B2g

SOC in the pres-
ence of the orbital hybridization and atomic SOC. Since
the orbital hybridization for the system considered here
will appear between the dxz and dyz orbitals as Hab =

�4tab
X

k�

sin kx sin ky
�
c
yz†
k� c

xz
k�+h.c.

�
, and transforms un-

der the B2g representation, there is a cubic coupling term
in the free energy between the atomic SOC, transforming
as A1g, orbital hybridization and B2g SOC. This sym-

metry allowed coupling ⇠ hHB2g

SOCihH
A1g

SOCihHabi, where
H

A1g

SOC denotes the atomic SOC, ensures the presence of
a non-zero B2g SOC in the presence of both orbital hy-
bridization and atomic SOC. However, it is also further
enhanced due to a process utilizing the oxygen SOC,
which we consider next.

This in-plane k-SOC in the B2g representation does
not require any hopping processes involving a di↵erent
layer of Ru-O octahedra and should therefore be expected
to be the leading contribution beyond the atomic SOC.
Such an in-plane k-SOC can be obtained by considering
hopping between next-nearest neighbour Ru atoms in a
given plane, utilizing the top and bottom apical oxygens
of the octahedra as intermediate sites and including the
oxygen p-orbitals’ atomic SOC. This hopping process re-
sults in an electron hopping from the dxy orbital with
spin � to either a dxz or dyz orbital with spin ��, where
the former case is shown in Fig. 2. We can construct the
e↵ective Hamiltonian, involving only the Ru sites, with

H
B2g

SOC =
X

p±

H
0|p±ihp±|H0

Ed � Ep±

, (13)

where H
0 denotes the hopping Hamiltonian involving

both d and p orbitals, the sum runs over the interme-
diate oxygen states for an oxygen site r, which are eigen-
states of the oxygen SOC |j,mj , ri, and we consider up
to the 2nd order of the perturbation theory for this pro-
cess. For instance, considering a hopping process be-
tween a dxy state with spin-" and a spin-# dxz state
utlizing the apical oxygens directly above the Ru site,

we have |p+i = � 1p
6
(|px, #i + i|py, #i) +

p
2p
3
|pz, "i and

|p�i = � 1p
3
(|px, #i + i|py, #i) � 1p

3
|pz, "i. The energy

denominator is given for |p+i and |p�i by Epd +
�p

2
and

Epd � �p respectively, where Epd is the di↵erence in the
on-site atomic potentials and �p is the oxygen SOC con-
stant. Since only the px(py) orbital has finite overlap
with dxz(dyz) in the ẑ direction, to obtain a spin-flip hop-
ping at 2nd order, we are restricted to considering hop-
ping between the dxy and pz orbitals. The spin flip then
arises from the mixing of the pz orbital with the opposite
spin state of the px or py orbital due to the SOC. The
intermediate hopping amplitudes for the dxy/dxz process
are shown schematically in the top view of Fig. 2 (b)
(black lines), where the lobe of the pz orbital closest to
the plane of hopping is shown. There is also an additional
hopping channel for the process discussed above, utiliz-
ing the apical oxygens on the top of the nearest neigh-
bour Ru site instead, shown by the green lines in Fig. 2.
This process involves intermediate hopping amplitudes
between the dxy and px orbitals, as well as between the
dyz and pz orbitals.

Considering the hopping amplitude between the dxy

orbital with spin � at site R denoted by |xy,�, Ri and
the opposite spin state of the dxz orbital at site R

0,
|xz,��, R

0i we obtain,

hxz,��, R
0|HB2g

SOC |xy,�, Ri =

⌘�

X

r

sgn(txy,zpd )sgn(txz,xpd )�
B2g

1

� ⌘�

X

r

sgn(txy,xpd )sgn(txz,zpd )�
B2g

2

. (14)

We have defined �
B2g

1
=

�p|txy,zpd ||txz,xpd |
(Epd +

�p

2
)(Epd � �p)

, and

�
B2g

2
=

�p|txy,xpd ||txz,zpd |
(Epd +

�p

2
)(Epd � �p)

, with the sum over r run-

ning over the top and bottom apical oxygen sites which
leads to a factor of two due to the reflection symmetry
about the xy plane. From this hopping amplitude and
Fig. 2, it is also clear that the momentum-dependence
will appear with a dxy form factor since, while the sign
of txz,xpd doesn’t change throughout the xy plane, the sign
of txy,zpd matches the sign of the dxy orbital. For the sec-
ond channel, the momentum-dependence appears in the
same way. Therefore, summing over the Ru site and spin
indices and performing the Fourier transform, we obtain

SOC determines pairing; 

B2g

dxy
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FIG. 2. (Color online) Hopping channels generating the in-
plane B2g d-wave k-SOC for the dxz and dxy orbitals (green
and red), which consists of an e↵ective spin-flip hopping be-
tween next-nearest neighbour sites. The alternative process
involving the dyz orbital is related by a C4 rotation and only
the interlayer process is shown in detail for clarity. a) The
intermediate oxygen sites for the contributing hopping chan-
nels are indicated by the numbering (1-5), with the relevant
p orbitals (yellow and blue) and the intermediate hopping
amplitudes shown by dashed lines only for the fifth channel.
The other channels involve the same p-orbitals at sites 1-4.
The top layer of the unit-cell is also removed for clarity. b)
Schematic top view of the hopping process, where the bottom
lobe of the pz orbital is shown.

or dyz orbital with spin ��, where the former case is
shown in Fig. 2 by the black solid line. The contributing
channels are indicated by the numbering of the interme-
diate oxygen sites and only path 5 is shown explicitly
for clarity. The e↵ective SOC Hamiltonian involving the
next-nearest neighbour Ru sites is obtained by

H
B2g

SOC =
X

p±

H
0
|p±ihp±|H

0

Ed � Ep±

, (14)

where H
0 denotes the hopping Hamiltonian involving

both d and p orbitals. The sum runs over the intermedi-
ate oxygen states for all channels, which are eigenstates
of the oxygen SOC |j,mj , ri, with r the position of the
oxygen site, and we consider up to the 2nd order of the
perturbation theory for this process.

For instance, considering a hopping process between a
dxy state with spin-" and a spin-# dxz state via the api-
cal oxygen site, we have |p+i = �

1p
6
(|px, #i+ i|py, #i) +

p
2p
3
|pz, "i and |p�i = �

1p
3
(|px, #i + i|py, #i) �

1p
3
|pz, "i.

The energy denominator is given for |p+i and |p�i by

Epd+
�p

2
and Epd��p respectively, where Epd is the dif-

ference in the on-site atomic potentials and �p is the oxy-
gen SOC constant. Considering the hopping amplitude
between the dxy orbital with spin � at site R denoted by
|xy,�,Ri and the opposite spin state of the dxz orbital

at site R0, |xz,��,R0
i we obtain,

hxz,��,R0
|H

B2g

SOC |xy,�,Ri =

⌘�
�p

(Epd +
�p

2
)(Epd � �p)

X

i

t
ai
pd,it

bi
pd,i,

(15)

where the sum is over the contributing channels involv-
ing the di↵erent oxygen sites indicated in Fig. 2 and ai, bi

refer to the orbitals in the intermediate hopping ampli-
tudes. All of these channels contain the hopping ampli-
tudes between either the dxy/px and dxz/pz, or dxy/pz

and dxz/px orbitals. From Fig. 2 it can be seen that
the overall sign dependence of the hopping channel will
match that of the dxy orbital, since px and dxz change
sign identically under the yz and xz mirror planes, while
pz is even under them, leading to the sin kx sin ky depen-
dence. Furthermore, the presence of ⌘� in Eq. (15) gives
rise to �

y spin-dependence.
Taking into account the equivalent process between the

dxy and dyz orbitals, which is related by a C4 rotation,
we obtain

H
B2g

SOC = �4i�B2g
X

k��0

sin kx sin ky�
y
��0c

†
xz,k�cxy,k�0

+ 4i�B2g
X

k��0

sin kx sin ky�
x
��0c

†
yz,k�cxy,k�0 + h.c.,

(16)

where �B2g =
�p

(Epd +
�p

2
)(Epd � �p)

X

i

t
ai
pd,it

bi
pd,i and i =

1, .., 5 indicates the di↵erent p-orbital sites involved in
Fig. 2.
Quantifying the value of �B2g in Sr2RuO4 will require

further studies to accurately include the additional e↵ects
of the coupling between other microscopic parameters
such as the Ru on-site SOC and orbital hybridization, as
discussed above. Correlation e↵ects have also been shown
to be crucial for the size of SOC, which is enhanced from
the local-density approximation SOC values27. The cur-
rent work is to show a microscopic route to generating
k-SOC within a perturbation theory approach, beyond
a purely symmetry based perspective. These considera-
tions also apply to the other k-SOC processes, which we
now turn to.

B. in-plane B1g

We now consider a microscopic route to obtaining an
in-plane k-SOC in the B1g representation, which has a
dx2�y2 form factor. This requires a di↵erent layer of Ru-
O octahedra, but the same procedure. An example of
this process is shown in Fig. 3(a), for which the hopping
between the dxy orbital with spin � state and the op-
posite spin state of the dyz orbital is indicated, where
the overlap of the dxy orbital with both the px and py

orbitals is shown. The hopping amplitudes are repre-
sented schematically in Fig. 3(b) for both the +x̂ or +ŷ

�s(k) / da/b ⇥ �(k)

�(k)
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Shadowed Triplet Pairings in Hund’s Metals with Spin-Orbit Coupling

Jonathan Clepkens,1 Austin W. Lindquist,1 and Hae-Young Kee1, 2, ⇤

1
Department of Physics and Center for Quantum Materials,

University of Toronto, 60 St. George St., Toronto, Ontario, M5S 1A7, Canada
2
Canadian Institute for Advanced Research, Toronto, Ontario, M5G 1Z8, Canada

I. KINETIC HAMILTONIAN

As discussed in the main text, our microscopic model
consists of a three orbital tight-binding (TB) model with
a pairing Hamiltonian generated from the Kanamori in-
teractions. The TB model is given by H0 +HSOC where
H0 is,

H0 =
X

k,�,a

✏kc
†
a,k�ca,k� +

X

k�

tkc
†
yz,k�cxz,k� + h.c., (S1)

with a the orbital index and orbital dispersions, ✏yz/xzk =
�2t1 cos ky/x � 2t2 cos kx/y � µ1d, ✏

xy

k = �2t3(cos kx +
cos ky) � µxy and tk = �4tab sin kx sin ky. The TB pa-
rameters, introduced in Ref. 1, are listed in the main text
and reproduced here in Table S1, where all parameters
are in units of 2t3.

TABLE S1. TB parameters used in H0 here and in the main
text.
t1 t2 t3 t4 tab µ1d µxy

0.45 0.05 0.5 0.2 0.025 0.54 0.64

The SOC Hamiltonian discussed in the main text is

HSOC = H
A1g

SOC
+H

B2g

SOC
+H

Eg

SOC
(S2)

where the atomic SOC in the basis of t2g orbitals is

H
A1g

SOC
= i�

P
k,abc "abcc

†
a,k�cb,k�0�

c

��0 . The SOC pa-

rameters we use are � = 0.05, �
B2g
soc = 0.0385 and

�
Eg
soc = 0.005. The resulting Fermi surface (FS) is shown

in Fig. 1.

�⇡ 0 ⇡
�⇡

0

⇡

FIG. 1. FS obtained from H0 +HSOC with the parameters
listed in Table S1 and SOC parameters listed in the text.

⇤ hykee@physics.utoronto.ca 1 A. W. Lindquist and H.-Y. Kee, Phys. Rev. Research 2,
032055 (2020).

JH � U 0 = 0.7 � = 0.05 �B2g = 0.038

s / dxxz/yz�, d
y
yz/xy�, d

z
xz/yz�

dxy / dx(y)yz(xz)/xy(sin kx sin ky) �
B2g

�Eg = 0.005
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FIG. 5. (Color online) Gap at the FS for a represen-
tative s + idxy solution with � = 0.05, �Eg = 0.005 and
�B2g = 0.0385, for which the maximum gap over the FS is
2.0 ⇥ 10�4 and the minimum gap is 7.3 ⇥ 10�6, where all
energies are in units of 2t3 (see main text for details). The di-
rection of the arrows indicates the in-plane component of the
inter-orbital spin triplet d-vector associated with the shad-
owed triplet state, which transforms to intraband pseudospin-
singlet pairing on the FS. The length of the arrow indicates
the magnitude of the in-plane component; the shorter the ar-
row, the bigger the c-axis component. The inset displays the
magnitude of the gap over the FS throughout the full BZ, with
the sign of the dxy component of the gap function shown.

H = H0 + HSOC + Hpair. The kinetic term, H0, con-
sists of a TB model capable of reproducing the experi-
mental FS of Sr2RuO4

26,47–49, and is given explicitly in
Ref. 25. The pairing term, Hpair, consists of the attrac-
tive channel from the interacting part of the Hamiltonian,
expressed in terms of the inter-orbital spin triplet order
parameters in Eq. (2). The SOC part of the Hamiltonian
includes the atomic SOC, as well as the B2g and Eg SOC
terms introduced in Sec. III25.

We use a self-consistent MF theory to calculate the
MFs at zero-temperature, with the attractive interac-
tion JH � U

0 = 0.7 and the atomic SOC fixed to
� = 0.05. With �

B2g = 0, we obtain a purely s-wave
solution with d

x
xz/xy = d

y
yz/xy > d

z
yz/xz, as shown in

Ref. 3. As �
B2g reaches an appreciable percentage of

�, the dxy component becomes non-zero, with orbital
MFs d

y
xz/xy = �d

x
yz/xy. Also, there is a relative phase

of ⇡
2
compared to the MFs composing the s-component

of pairing. This solution is of the form s+ idxy at the FS
and corresponds to an underlying triplet character with a
predominantly in-plane d-vector involving pairing mostly
between the dxz and dxy as well as dyz and dxy orbitals.

For �B2g ⇡ 0.0385, the dxy and s components are approx-
imately equal in magnitude, however we find the s+ idxy

pairing state for a range of � and �B2g values around

this. We note that while we have derived H
B2g

SOC through
a perturbative process and �B2g is therefore expected to
be small, there should be an additional enhancement of
the B2g SOC through the coupling to the atomic SOC
and orbital hybridization. Treating �B2g as an e↵ective
parameter taking this into account, the value of �B2g for
which we’ve displayed a representative s + idxy solution
corresponds to a value from the oxygen SOC process of
approximately 0.01 (in units of 2t3). Furthermore, by
decreasing the atomic SOC �, this pairing state can be
stabilized for smaller values of �B2g .
By comparing the ground state energies, we find that

the dxz+idyz solution becomes favourable over the purely
s-wave solution when �

Eg ⇡ 0.015 and �
B2g = 0. How-

ever, including the B2g SOC by fixing �
B2g = 0.0385, the

critical value at which the dxz + idyz state is stabilized is
increased to �

Eg ⇡ 0.02. Given that the Eg SOC involves
the two-dimensional dxy and px/py orbitals in di↵erent
layers, it is reasonable that �

B2g is significantly larger
than �

Eg .
Therefore, we take a representative set of parameters

where �
B2g is larger than �

Eg , for which the s+ idxy so-
lution is stabilized. We show the gap at the FS in Fig. 5,
along with arrows indicating the nature of the shadowed
triplet at select k points on the FS. The SC gap is small-
est on the ↵ band along the BZ boundaries, on the order
of 1% of the maximum gap or ⇡ 1µeV, which is already
small compared to the bandwidth and the calculated gap
will generally be overestimated within MF theory. Fur-
thermore, these deep minima in the gap are robust to
changes in the SOC parameters within the region where
the s + idxy solution is stabilized. The direction of the
arrows indicates the in-plane direction of the d-vector,
with the length indicating the magnitude of the in-plane
component; the shorter the arrow, the bigger the c-axis
component. Due to the dxy component vanishing along
the a and b directions, the pairing solution is composed
of d

x
xz/xy along the a-axis and d

y
yz/xy along the b-axis,

leading to a d-vector that is parallel to the respective
axis. The vanishing of the dxy component of the pairing
along the a/b directions is illustrated in the inset of Fig.
5.

VI. SUMMARY AND DISCUSSION

In summary, we have studied the microscopic mecha-
nisms of k-SOC and its importance for even-parity spin-
triplet pairing in Hund’s metals. By taking a simple
two-orbital model, we show how a purely inter-orbital
s-wave triplet pairing in the orbital basis becomes an in-
traband pseudospin-singlet pairing with non-trivial mo-
mentum dependence near the FS. Within the two-orbital
model, we have illustrated how the relevant energy scales
for this form of pairing are the orbital polarization and

s+ idxy

Shadowed Triplet Pairing
pseudo-spin singlet

pseudo-spin triplet pairing finite away from the Fermi energy

~d↵/�

~d↵/�

�max = 2⇥ 10�4

�min ⇠ 10�6
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FIG. 1. The red arrows at representative momenta show the
d vector of inter-orbital spin triplet pairing for (a) unstrained
and (b) uniaxial-strain along a axis. This transforms to intraband
pseudospin-singlet pairing on the FS and inter-band pairings (see
the main text for details). The d vector rotation occurs the most
in the diagonal direction of the Brillouin zone. The length of each
arrow represents the in-plane component; the shorter the arrow, the
bigger the c-axis component. Note that the arrows with an inverted
tail correspond to a vector primarily along the c axis. The blue color
on the FS denotes the size of gap. The red arrow at the bottom corner
of each panel represents the averaged d vector direction projected
onto the ab-plane denoted by θ ; θ = 45◦ and 63◦ in (a) and (b),
respectively.

interorbital-singlet spin singlet, (iii) odd-parity intraorbital
(or interorbital-triplet) spin triplet (d̂a), and (iv) even-parity
OSST (D̂ν), where ν represents interorbital, and a, intraorbital
pairings among t2g [13].

A generic Hamiltonian H = Hkin + HSOC + Hint consisting
of a tight binding model, SOC, and Kanamori interaction is
considered. The tight binding and SOC terms are used to
reproduce the Fermi surface (FS) reported in Ref. [14], and
are listed in Ref. [15]. The underlying FS of three bands, α,
β, and γ is reported earlier [16–18], and was further refined
in Ref. [14] shown as the solid lines in Fig. 1. The interaction
term is given by

Hint = U
2

∑

i,a

ca†
iσ ca†

iσ ′ca
iσ ′ca

iσ + V
2

∑

i,a #=b

ca†
iσ cb†
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iσ

+ JH

2

∑
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ca†
iσ cb†

iσ ′ca
iσ ′cb

iσ + JH

2

∑

i,a #=b

ca†
iσ ca†

iσ ′cb
iσ ′cb

iσ , (1)

with Hubbard interaction, U , and Hund’s coupling, JH , where
V = U − 2JH , and where a and b represent the t2g orbitals
(yz, xz, xy). This can be expressed in terms of pairing order
parameters, including the OSST parameters, which appear as

Heff

2N
= (V − JH )

∑

ν

D̂†
ν (q) · D̂ν (q), (2)

where D̂l†
ν is given by

D̂l†
ν (q) = 1

4N

∑

k

ca†
kσ [iσ̂ yσ̂ l ]σσ ′[λ̂ν]abcb†

−k+qσ ′ , (3)

with l = x, y, z. λ̂ν are 3 × 3 antisymmetric matrices in the
orbital basis under the exchange of the t2g orbitals for three

×

FIG. 2. Magnitude of the finite components of Dν and φa as a
function of strain δ showing roughly quadratic behavior of the gap
size in δ with a maximum at the vHS as expected. Note that Dx

X /Dy
Y

and φxz/φyz show the expected asymmetry with respect to ±δ.

different interorbital matrices denoted with ν = X (between
xz and xy orbitals), Y (yz and xy), and Z (xz and yz). Their
expressions are given in Ref. [15]. The full form of the inter-
action written in terms of pairing order parameters, including
induced intra orbital spin singlets φa, and interorbital-triplet
spin singlets, both of which appear with repulsive interactions,
are also given in Ref. [15]. The OSST channel has an attractive
interaction for 3JH > U , and while this is larger than most
values of Hund’s coupling in 4d transition metals, where JH is
about 20%–30% of U [19], recent studies going beyond mean-
field theory support OSST pairing originating from Hund’s
coupling without the strict condition of 3JH > U [20–23].
The direction of the d vector is determined by the SOC
[13,24], with order parameters belonging to the A1g represen-
tation for atomic SOC [25–27]. The importance of the SOC
in Sr2RuO4 was addressed earlier [13,28–31], and recently
re-emphasized [14].

Pairing gap under strain. Since the OSST pairing corre-
sponds to pairing between orbitals with different energies at
k and −k, we consider the possibility of finite momentum
pairing, i.e., FFLO state. Using a self-consistent mean-field
theory, we find the zero-momentum q = 0 state is always
the lowest state despite the pairing between different orbitals.
However, the pairing amplitude appears to be extremely small
as shown in Fig. 2 with the magnitudes of the Dν and induced
intraband spin singlets, φa. They are thousands of times
smaller than the t2g bandwidth, even though the attractive
interaction is reasonably large. We set 3JH − U = 0.5 for the
current results, and the mean-field theory in general overesti-
mates the gap size. The interorbital pairing would appear to
require a finite q value to produce a gap on the FS without
orbital hybridization or SOC. However, when the atomic SOC
is finite the OSST pairing projected onto the band basis
transforms into intraband pseudospin-singlet pairing on the
FS, denoted by D̃i where i = α, β, and γ in the quasiparticle
dispersion shown in Fig. S1. The quasiparticle dispersion rep-
resents strongly anisotropic gaps, which are very small in size,
both at and below the FS. This suggests that when the band-
width is renormalized by electronic correlations, and becomes
narrower, the OSST is further favoured. A recent dynamical
mean-field theory reported a strong mass renormalization of
the bands [32], which would also enhance the OSST pairing.

To study the uniaxial strain effects, we change the ratio
of the hopping integrals along the a and b axes such that
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Extended Data Fig. 1 | RuO2 plane, with dxy−p hybridizing orbitals and 
experimental setup. a, Ru dxy and hybridizing O p orbitals at the Y point, 
which dominate the formation of the γ band. NMR shifts are measured 
at the O(1) and O(1′) sites. b, Compressive a-axis stress shifts the γ-band 
Fermi surface to the zone boundary at Y. vHs, van Hove singularity. c, 

Strain device. The enlarged view highlights the Sr2RuO4 single crystal 
mounted between the piezoelectric actuators, with B0 parallel to the b axis 
and the compressive stress along the a axis, εaa. The NMR coil covers the 
free part of ~1 mm length.
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FIG. 1. The red arrows at representative momenta show the
d vector of inter-orbital spin triplet pairing for (a) unstrained
and (b) uniaxial-strain along a axis. This transforms to intraband
pseudospin-singlet pairing on the FS and inter-band pairings (see
the main text for details). The d vector rotation occurs the most
in the diagonal direction of the Brillouin zone. The length of each
arrow represents the in-plane component; the shorter the arrow, the
bigger the c-axis component. Note that the arrows with an inverted
tail correspond to a vector primarily along the c axis. The blue color
on the FS denotes the size of gap. The red arrow at the bottom corner
of each panel represents the averaged d vector direction projected
onto the ab-plane denoted by θ ; θ = 45◦ and 63◦ in (a) and (b),
respectively.

interorbital-singlet spin singlet, (iii) odd-parity intraorbital
(or interorbital-triplet) spin triplet (d̂a), and (iv) even-parity
OSST (D̂ν), where ν represents interorbital, and a, intraorbital
pairings among t2g [13].

A generic Hamiltonian H = Hkin + HSOC + Hint consisting
of a tight binding model, SOC, and Kanamori interaction is
considered. The tight binding and SOC terms are used to
reproduce the Fermi surface (FS) reported in Ref. [14], and
are listed in Ref. [15]. The underlying FS of three bands, α,
β, and γ is reported earlier [16–18], and was further refined
in Ref. [14] shown as the solid lines in Fig. 1. The interaction
term is given by

Hint = U
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with Hubbard interaction, U , and Hund’s coupling, JH , where
V = U − 2JH , and where a and b represent the t2g orbitals
(yz, xz, xy). This can be expressed in terms of pairing order
parameters, including the OSST parameters, which appear as

Heff

2N
= (V − JH )

∑

ν

D̂†
ν (q) · D̂ν (q), (2)

where D̂l†
ν is given by
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ν (q) = 1
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with l = x, y, z. λ̂ν are 3 × 3 antisymmetric matrices in the
orbital basis under the exchange of the t2g orbitals for three
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FIG. 2. Magnitude of the finite components of Dν and φa as a
function of strain δ showing roughly quadratic behavior of the gap
size in δ with a maximum at the vHS as expected. Note that Dx

X /Dy
Y

and φxz/φyz show the expected asymmetry with respect to ±δ.

different interorbital matrices denoted with ν = X (between
xz and xy orbitals), Y (yz and xy), and Z (xz and yz). Their
expressions are given in Ref. [15]. The full form of the inter-
action written in terms of pairing order parameters, including
induced intra orbital spin singlets φa, and interorbital-triplet
spin singlets, both of which appear with repulsive interactions,
are also given in Ref. [15]. The OSST channel has an attractive
interaction for 3JH > U , and while this is larger than most
values of Hund’s coupling in 4d transition metals, where JH is
about 20%–30% of U [19], recent studies going beyond mean-
field theory support OSST pairing originating from Hund’s
coupling without the strict condition of 3JH > U [20–23].
The direction of the d vector is determined by the SOC
[13,24], with order parameters belonging to the A1g represen-
tation for atomic SOC [25–27]. The importance of the SOC
in Sr2RuO4 was addressed earlier [13,28–31], and recently
re-emphasized [14].

Pairing gap under strain. Since the OSST pairing corre-
sponds to pairing between orbitals with different energies at
k and −k, we consider the possibility of finite momentum
pairing, i.e., FFLO state. Using a self-consistent mean-field
theory, we find the zero-momentum q = 0 state is always
the lowest state despite the pairing between different orbitals.
However, the pairing amplitude appears to be extremely small
as shown in Fig. 2 with the magnitudes of the Dν and induced
intraband spin singlets, φa. They are thousands of times
smaller than the t2g bandwidth, even though the attractive
interaction is reasonably large. We set 3JH − U = 0.5 for the
current results, and the mean-field theory in general overesti-
mates the gap size. The interorbital pairing would appear to
require a finite q value to produce a gap on the FS without
orbital hybridization or SOC. However, when the atomic SOC
is finite the OSST pairing projected onto the band basis
transforms into intraband pseudospin-singlet pairing on the
FS, denoted by D̃i where i = α, β, and γ in the quasiparticle
dispersion shown in Fig. S1. The quasiparticle dispersion rep-
resents strongly anisotropic gaps, which are very small in size,
both at and below the FS. This suggests that when the band-
width is renormalized by electronic correlations, and becomes
narrower, the OSST is further favoured. A recent dynamical
mean-field theory reported a strong mass renormalization of
the bands [32], which would also enhance the OSST pairing.

To study the uniaxial strain effects, we change the ratio
of the hopping integrals along the a and b axes such that
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t jx = (1 − δ)t j and t jy = (1 + δ)t j for j = 1, 2, 3. Uniaxial
strain along the a axis corresponds to δ < 0. The change of
different order parameters as a function of δ is shown in Fig. 2.
The pairing gap is roughly quadratic in δ as expected from
the even parity pairing. While Dx

X and Dy
Y exhibit opposite

behavior under strain, these A1g solutions do not exhibit a
split transition under strain [25]. When the γ band touches
the vHS around δ = ±0.07, the pairing amplitude is peaked.
Since mean-field theory causes the gap to be proportional to
the transition temperature, Tc is also peaked as reported in
Refs. [33,34]. The overall gap size is minuscule in comparison
to the energy scale of the kinetic and potential terms as
discussed above.

Rotation of the d vector under uniaxial strain. For spin-
triplet pairing, the d vector represents the direction along
which the spin projection of the condensed pair has eigenvalue
zero [3]. When SOC is finite, the mean-field solutions find
the pinning of the d vector depending on the interorbital
composition via SOC. For the pairing between xz and xy
orbitals, the d vector points along the x direction (represented
by Dx

X ), yz and xy along the y direction (Dy
Y ), and xz and yz

along the z axis (Dz
Z ). The x, y, and z axes are the same as the

crystallographic axes of a, b, and c, as Sr2RuO4 is a tetragonal
lattice. The d vector changes in momentum space as shown in
Fig. 1(a), as the orbital composition changes along the FS.
The red arrows represent the d vector directions. The shorter
the length of arrow, the bigger the c-axis component of the d
vector. There is a finite d vector at every momentum point, and
on average it is finite in all directions leading to a reduction of
the spin polarization in all directions.

In the absence of strain, due to the tetragonal symmetry,
there is a π

2 rotational symmetry between D̂x and D̂y. This
leads to the same reduction of the spin polarization along the
a and b axes (and any other directions related to the symmetry
of the tetragonal lattice). However, when the uniaxial strain
is applied, the orbital composition changes mainly around X
and Y regions of the Brillouin Zone (BZ) as shown by the
underlying FS in Fig. 1(b). Most importantly, the yz orbital
contribution to all bands increases, causing the d vector at
every momentum to rotate towards the b-axis, with the most
change occurring around the diagonal direction of the BZ.
This will then affect the magnitude of the spin polarization
in the superconducting state, and generates a directional
dependence, which we show below.

Spin polarization under strain. The magnetic susceptibility
χ j j measured by the NMR Knight shift is given by ∂Mj/∂Bj
where M is the magnetization, B is an external magnetic
field, and j = x, y, z. Using a Zeeman coupling HZeeman =∑

i(Li + gSi ) · B, we compute the contribution from the spin
polarization at a site i, in the j direction, 〈Si〉 j , assuming the
orbital contribution, which has been suggested to be small
[35], can be separated. We also compute the contribution
from the orbital magnetization 〈Li〉, and there is a slight
drop in the superconducting state as shown in Fig. S2 in
Ref. [15]. The results are shown in Fig. 3, which shows the
spin magnetization along the x and y directions as the strain
changes. Here we plot the ratio between the strained values,
and the normal state unstrained cases.

A conventional spin triplet will feature a Knight shift which
appears the same as a singlet for the field parallel to the d

(a) (b)

FIG. 3. The spin magnetization S in the normal (n) and supercon-
ducting (s) states, normalized to the zero-strain normal state value,
for (a) a small field where S is linear in B with B < 1% of |D0| where
|D0| is |D| at δ = 0, and (b) a field comparable to the gap minimum,
where S is no longer linear, B ≈ 0.2 × |D0|.

vector and shows no change from the normal state for the
field perpendicular to the d vector. On the other hand, OSST
pairing leads to intraband pseudospin-singlet pairing occuring
near the FS, and interband spin triplet away from the FS. Thus,
the low field response behavior is due primarily to the intra-
band pairing [36], which causes a large drop in the approxi-
mately isotropic Knight shift as shown in Fig. 3(a). However,
by increasing the field such that it is a significant fraction
of the gap size (B ∼ 0.2|D0|), the interband pairing with d
vector rotation is observable, and such rotation results in an
anisotropic Knight shift under strain as shown in Fig. 3(b).
Thus, for OSST, the Knight shift is more affected by intraband
pseudospin-singlet pairing at low fields, and interband pairing
at higher fields. As expected from the d vector rotation under
the a-axis strain, we find a greater drop in the magnetization
from the normal to superconducting state in the y direction
compared with the x direction, with a difference of about 20%
for the larger field value. The magnetization in the x direction
also drops under strain due to the strain bringing the sample
deeper into the superconducting state. The value of the drop
from the normal to superconducting state depends on the value
of the SOC, and by decreasing the SOC, the Knight shift drop
and the anisotropy under strain enhance further.

Extending to three-dimensional bands. Sr2RuO4 has a
layered structure, and one expects to see more kz dispersion
of the bands originating from xz and yz orbitals due to their
shape, and less dispersion from the xy orbital. The momentum
dependent t2g-orbital projection of the wave function for the
α, β and γ bands on the three-dimensional FS was reported
[31], which is consistent with the three dimensional (3D) tight
binding model constructed in Ref. [37]. The β and γ bands
still have significant overlap of xy and one dimensional (1D)
orbitals, even though detailed composition depends on kz as
shown in Ref. [31], while the α band is mainly made of 1D
orbitals. Thus the above analysis done in the two-dimensional
(2D) system can be generalized to a layered three-dimensional
system. The qualitative uniaxial strain effect, i.e., the relative
directional dependence of the spin polarization under a uni-
axial strain, is independent of the details of c-axis hopping
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t jx = (1 − δ)t j and t jy = (1 + δ)t j for j = 1, 2, 3. Uniaxial
strain along the a axis corresponds to δ < 0. The change of
different order parameters as a function of δ is shown in Fig. 2.
The pairing gap is roughly quadratic in δ as expected from
the even parity pairing. While Dx

X and Dy
Y exhibit opposite

behavior under strain, these A1g solutions do not exhibit a
split transition under strain [25]. When the γ band touches
the vHS around δ = ±0.07, the pairing amplitude is peaked.
Since mean-field theory causes the gap to be proportional to
the transition temperature, Tc is also peaked as reported in
Refs. [33,34]. The overall gap size is minuscule in comparison
to the energy scale of the kinetic and potential terms as
discussed above.

Rotation of the d vector under uniaxial strain. For spin-
triplet pairing, the d vector represents the direction along
which the spin projection of the condensed pair has eigenvalue
zero [3]. When SOC is finite, the mean-field solutions find
the pinning of the d vector depending on the interorbital
composition via SOC. For the pairing between xz and xy
orbitals, the d vector points along the x direction (represented
by Dx

X ), yz and xy along the y direction (Dy
Y ), and xz and yz

along the z axis (Dz
Z ). The x, y, and z axes are the same as the

crystallographic axes of a, b, and c, as Sr2RuO4 is a tetragonal
lattice. The d vector changes in momentum space as shown in
Fig. 1(a), as the orbital composition changes along the FS.
The red arrows represent the d vector directions. The shorter
the length of arrow, the bigger the c-axis component of the d
vector. There is a finite d vector at every momentum point, and
on average it is finite in all directions leading to a reduction of
the spin polarization in all directions.

In the absence of strain, due to the tetragonal symmetry,
there is a π

2 rotational symmetry between D̂x and D̂y. This
leads to the same reduction of the spin polarization along the
a and b axes (and any other directions related to the symmetry
of the tetragonal lattice). However, when the uniaxial strain
is applied, the orbital composition changes mainly around X
and Y regions of the Brillouin Zone (BZ) as shown by the
underlying FS in Fig. 1(b). Most importantly, the yz orbital
contribution to all bands increases, causing the d vector at
every momentum to rotate towards the b-axis, with the most
change occurring around the diagonal direction of the BZ.
This will then affect the magnitude of the spin polarization
in the superconducting state, and generates a directional
dependence, which we show below.

Spin polarization under strain. The magnetic susceptibility
χ j j measured by the NMR Knight shift is given by ∂Mj/∂Bj
where M is the magnetization, B is an external magnetic
field, and j = x, y, z. Using a Zeeman coupling HZeeman =∑

i(Li + gSi ) · B, we compute the contribution from the spin
polarization at a site i, in the j direction, 〈Si〉 j , assuming the
orbital contribution, which has been suggested to be small
[35], can be separated. We also compute the contribution
from the orbital magnetization 〈Li〉, and there is a slight
drop in the superconducting state as shown in Fig. S2 in
Ref. [15]. The results are shown in Fig. 3, which shows the
spin magnetization along the x and y directions as the strain
changes. Here we plot the ratio between the strained values,
and the normal state unstrained cases.

A conventional spin triplet will feature a Knight shift which
appears the same as a singlet for the field parallel to the d
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FIG. 3. The spin magnetization S in the normal (n) and supercon-
ducting (s) states, normalized to the zero-strain normal state value,
for (a) a small field where S is linear in B with B < 1% of |D0| where
|D0| is |D| at δ = 0, and (b) a field comparable to the gap minimum,
where S is no longer linear, B ≈ 0.2 × |D0|.

vector and shows no change from the normal state for the
field perpendicular to the d vector. On the other hand, OSST
pairing leads to intraband pseudospin-singlet pairing occuring
near the FS, and interband spin triplet away from the FS. Thus,
the low field response behavior is due primarily to the intra-
band pairing [36], which causes a large drop in the approxi-
mately isotropic Knight shift as shown in Fig. 3(a). However,
by increasing the field such that it is a significant fraction
of the gap size (B ∼ 0.2|D0|), the interband pairing with d
vector rotation is observable, and such rotation results in an
anisotropic Knight shift under strain as shown in Fig. 3(b).
Thus, for OSST, the Knight shift is more affected by intraband
pseudospin-singlet pairing at low fields, and interband pairing
at higher fields. As expected from the d vector rotation under
the a-axis strain, we find a greater drop in the magnetization
from the normal to superconducting state in the y direction
compared with the x direction, with a difference of about 20%
for the larger field value. The magnetization in the x direction
also drops under strain due to the strain bringing the sample
deeper into the superconducting state. The value of the drop
from the normal to superconducting state depends on the value
of the SOC, and by decreasing the SOC, the Knight shift drop
and the anisotropy under strain enhance further.

Extending to three-dimensional bands. Sr2RuO4 has a
layered structure, and one expects to see more kz dispersion
of the bands originating from xz and yz orbitals due to their
shape, and less dispersion from the xy orbital. The momentum
dependent t2g-orbital projection of the wave function for the
α, β and γ bands on the three-dimensional FS was reported
[31], which is consistent with the three dimensional (3D) tight
binding model constructed in Ref. [37]. The β and γ bands
still have significant overlap of xy and one dimensional (1D)
orbitals, even though detailed composition depends on kz as
shown in Ref. [31], while the α band is mainly made of 1D
orbitals. Thus the above analysis done in the two-dimensional
(2D) system can be generalized to a layered three-dimensional
system. The qualitative uniaxial strain effect, i.e., the relative
directional dependence of the spin polarization under a uni-
axial strain, is independent of the details of c-axis hopping
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NMR deduction is more 
when the field is perpendicular to
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Beyond MF

The dominant nesting vectors of the dxy orbital corresponds
to the plateau near qAFM. Although the nesting condition
seems poor, it is the leading wave vector for fluctuations
because it connects the FS states around vHSs. Hence, a
gap function with large superconducting gap value at the
FS patches around vHSs would have a much lower energy
than the normal state, making a gap function with d-wave
cos kx − cos ky symmetry a prime candidate. In the LDA
calculation, the nFM peak promotes degenerate gap func-
tions with p-wave sin kx or sin ky symmetries. To satisfy
Pauli’s principle, these spin-singlet intra-orbital odd-parity
states are odd in frequency and therefore have a vanishing
equal-time order parameter [51,75,76]. It was shown that
odd-frequency states are thermodynamically stable and
exhibit ordinary Meissner effect [76–78]. Comparing to
cos kx − cos ky symmetry, the latter should be subleading
gap symmetries due to nearby vHS. They become even less
likely in LDAþ DMFT because the nFM peak is sup-
pressed by interaction.
The dxz (dyz) q1D orbitals have dominant nesting vectors

at q1D, which is compatible with a singlet gap of the form
cos kx (cos ky) with nodes on the FS near kx ¼ #π=2
(ky ¼ #π=2). If the two orbitals are out of phase, then the
resulting gap function has d-wave cos kx − cos ky sym-
metry, while an in-phase gap function would rather have an
s# symmetry [51].
Coupling all the orbitals together, the most probable

singlet gap symmetry has cos kx − cos ky d-wave symmetry.
In the triplet channel, the pairing interaction has both

attractive and repulsive components, involving particle
and hole momenta (K↑; K0↓) (for the Sz ¼ 0 case).
The attractive (repulsive) parts are maximum when the
transferred momentum k0 − k (k0 þ k) is equal to a nesting
vector and ω0

m ¼ ωm (−ωm) [51]. For the dxy orbital, both

attractive and repulsive components pair the same states
because for k ¼ ðπ; 0Þ and k0 ¼ ð0; πÞ both k0 # k cor-
respond to qAFM, which is where dxy’s intra-orbital sus-
ceptibility peaks (see Fig. 2). For an even-frequency gap,
these components therefore compete with each other
leading to an overall suppression of Cooper pairing.
This also can be seen differently. In the even-frequency
triplet channel, the intra-orbital gap function has odd
parity, i.e., Δð−kÞ ¼ −ΔðkÞ. It is maximum at the momen-
tum position of the vHSs. However, as can be seen from
Fig. 1, the vHSs momenta are almost time-reversal
invariant momenta (TRIM). A TRIM satisfies kTRIM¼
−kTRIMþb with b a reciprocal lattice vector, which
implies Δð−kTRIMÞ ¼ ΔðkTRIMÞ [79]. This contradicts
the odd-parity relation. Hence, electrons on the dxy orbital
would not condense in an odd-parity pairing channel.
Another possibility is an intra-orbital odd-frequency state,
for which attractive and repulsive components of the
interaction cooperate, leading to an enhancement of
Cooper pairing. Benefiting from vHSs, a gap function
with s-wave symmetry Δ0 þ Δ1ðcos kx þ cos kyÞ is pre-
ferred as suggested for q1D systems [80].
For ðdxz; dyzÞ orbitals, attractive and repulsive parts of

the interaction pair different states. For example, for dxz
(red curves in Fig. 1 with numbers labeling encircled
states), the attractive part pairs states 1 and 2 on two FS
branches. On the figures, these states are connected with
q1D. On the other hand, the dominant repulsive part pairs
states 2 and 3 on the same FS branch. The resulting even-
frequency gap function has two nodes on each FS branch
and the two FS branches are out of phase. Furthermore, if
gap functions for dxz and dyz orbitals are out of phase by
π=2 then the resulting gap symmetry is what is predicted by
Ref. [81]. If the gap is odd in frequency, the requirement of
odd-parity is lifted and theΔ0 þ Δ1 cos kx (Δ0 þ Δ1 cos ky)
symmetry for the dyz (dxz) orbital is preferred. The gap
function is maximum at ky ¼ ð0;#πÞ (kx ¼ ð0;#πÞÞwhere
there are more states.
With all orbitals included, the most probable gap

symmetry in the triplet channel has an odd-frequency
Δ0 þ Δ1ðcos kx þ cos kyÞ extended s-wave symmetry.
All intra-orbital pairing described so far are nonlocal.

Considering the interorbital pairing, a local pairing mecha-
nism becomes possible. Even in the presence of electronic
repulsion, such pairing arises from Hund’s coupling and
promotes spin-triplet interorbital states that are odd under
exchange of orbitals with an almost uniform momentum
dependence (see Supplemental Material for a detailed
analysis of the pairing interaction components promoting
interorbital Cooper pairing). Such states have been dis-
cussed in the context of SRO [82].
To tell apart all these possibilities, we performed an

unbiased calculation by searching the leading eigenvalues
and corresponding gap functions of the linearized normal-
state Eliashberg equation for different combinations of Js

FIG. 4. Phase diagram of the leading superconducting insta-
bilities. A lower Js=Us implies more charge fluctuations, while
the magnetic Stoner factor Sm quantifies the proximity to a
magnetic instability.

PHYSICAL REVIEW LETTERS 123, 217005 (2019)

217005-4

LDA+ DMFT: O. Gingras et al, PRL 123, 217005 (2019)

O. Vafek,  A. V. Chubukov, PRL (2017); Hund’s + SOC on 2-orbitals

Application to Pnictides



Conclusion
Within a MF of Kanamori + t2g + SOC: 
 applicable Hund’s metal with SOC

beyond on-site interaction? Tc? HQV?

• SOC determines the gap size and k-dependence of 
pairing

• pseudospin singlet + pseudospin triplet + i induced singlet

• d-vector changes in k-space

• For Sr2RuO4: s+ i d (TRSB SC) & pseudospin triplet & induced singlet


