

KITP Correlated Systems with Multicomponent Local Hilbert Spaces, 2020 November 10

Austin Lindquist

Jonathan Clepkens

Christoph Puetter

References

arXiv:2009.08597

Shadowed Triplet Pairings in Hund's Metals with Spin-Orbit Coupling

J. Clepkens, A. Lindquist, HYK

arXiv:1912.02215

Distinct reduction of Knight shift in superconducting state of Sr2RuO4 under uniaxial strain, PRR 2, 320 (2020).

A. Lindquist, HYK

arXiv:1101.4656

Identifying spin-triplet pairing in spin-orbit coupled multi-band superconductors, EPL 98, 27010 (2012).

C. Puetter, HYK

C. M. Puetter, PhD Thesis, Univ. of Toronto (2012).

Significant spin-orbit coupling (SOC) Importance of Hund's coupling

1																		2
H																		He
3	4												5	6	7	8	9	10
Li	Be												В	С	N	0	F	Ne
11	12												13	14	15	16	17	18
Na	Mg												AI	Si	Р	S	CL	Ar
19	20		21	22	23	- 24	25	- 26	27	28	29	30	31	32	33	34	35	36
ĸ	Са		Sc	Ti	V	Cr	Mn	Fe	Co	NI	Сц	Zn	Ga	Ge	As	Se	Br	Kr
37	38		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr		Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe
55	56		71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	*	Lu	HT	Ţa	W	Re	0s	Ir	Pt	AU	Hg	TI	Pb	Bi	Po	At	Rn
87	88	×	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	*	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub	Uut	Uuq	Uup	Uuh	Uus	Uuo
			57	58	59	60	61	62	63	64	65	66	67	68	69	70		
		*	La	Ce	Pr	Nd	Dm	Sm	Eu	Gd	Th	Dv	Ho	Fr	Tm	Yh		

	57	58	59	60	61	62	63	64	65	66	67	68	69	70
~	La	Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	68 Er	Tm	Yb
*	89	90	91	92	93	94	95	96	97	98	99	100	101	102
*	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	100 Fm	Md	No

SOC < bandwidth; $4d^4$

SOC & Hund's

SOC > bandwidth (honeycomb); $4d^5$ Kitaev & Gamma interaction from SOC & Hund's

Outline

- Sr2RuO4; spin-triplet vs. singlet?
- Even-parity spin-triplet pairing and SOC: Shadowed triplet
- Applying to Sr2RuO4
- Proposed experiment

Sr2RuO4

	$\mathrm{Sr}_2\mathrm{RuO}_4$	$\mathrm{Sr}_3\mathrm{Ru}_2\mathrm{O}_7$	$SrRuO_3$
	superconductor $(T_{\rm c} = 1.5 \text{ K})$	paramagnetic metal	ferromagnetic metal $(T_{\rm c} = 165 \text{ K})$
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1	2	
n		Z	$\infty$
space	tetragonal	orthorhombic	orthorhombic
group	I4/mmm	Bbcb ( $\#$ 68)	
lattice	a = 3.862  Å,	a = b = 5.5006  Å,	a = 5.56 Å, $b = 5.53$ Å
parameters	c = 12.729  Å,	c = 20.725  Å,	$c=7.84~{ m \AA}$
-	$\theta = \phi = 0^{\circ}$	$\theta = 6.8^{\circ}, \phi = 0^{\circ}$	$\theta \neq 0, \phi \neq 0$
$ ho_c/ ho_{ab}$	$\gtrsim 400$	$\sim 300$	$\sim 1.1$
$\gamma$	$38 \frac{\mathrm{mJ}}{\mathrm{Ru \ mol \ K^2}}$	110 $\frac{\text{mJ}}{\text{Ru mol }\text{K}^2}$	$29 \frac{\text{mJ}}{\text{Ru mol K}^2}$
$m^{*}/m_{0}$	$\sim 4$		$\sim 3 - 3.4$
$R_{ m W}$	1.7 - 1.8	$\gtrsim 10$	
$\mu$			$1.1\mu_{\rm B}/{\rm Ru}$ (in-plane)

Rice and Sigrist, JPCM (1995): spin triplet with

 $ec{d}(\mathbf{p}) = \hat{z}(p_x + ip_y)$  - analog He3 A-phase

# **Spin Triplet**

#### A theoretical description of the new phases of liquid ³He

Anthony J. Leggett Rev. Mod. Phys., Vol. 47, No. 2, April 1975

Cooper pair explicitly in the form

$$\Psi(\sigma_{1}\sigma_{2}:\mathbf{n}) = \Psi_{\uparrow\uparrow}(\mathbf{n}) |\uparrow\uparrow\rangle + \Psi_{\uparrow\downarrow}(\mathbf{n}) |\uparrow\downarrow\downarrow\uparrow\rangle + \downarrow\uparrow\rangle + \Psi_{\uparrow\downarrow}(\mathbf{n}) |\uparrow\downarrow\downarrow\uparrow\rangle$$

$$+ \Psi_{\downarrow\downarrow}(\mathbf{n}) |\downarrow\downarrow\downarrow\rangle$$
(7.38)

and then verify explicitly that for real d(n) we have the *operator* relation

$$\mathbf{d}(\mathbf{n}) \cdot \hat{\mathbf{S}} \Psi(\sigma_1 \sigma_2; \mathbf{n}) \equiv 0, \qquad (7.39)$$

Introducing d-vector

pairs are condensed in the eigenstates of S=I and S_z =0  $\hat{d}$ Knight shift
H/plane
Tc



Discovery of SC, Y. Maeno et al, Nature (1994)

Rice and Sigrist, JPCM (1995): spin triplet with

$$d(\mathbf{p}) = \hat{z}(p_x + i p_y)$$
 - analog He3 A-phase



Summer Seminars for Correlated Electrons and Frustrated Magnets

Zoom Link

https://sites.google.com/umn.edu/cm-weekly-seminar/home

update on Sr2RuO4: A. Mackenzie



A. Pustogow et al, Nature (2019)

K. Ishida et al, JPSJ 89, 034712 (2020)



{

#### muSR under strain



## reality vs. beauty of simplicity





topology = ball = trivial



## **Reality of multi-orbital systems**

#### Fermi Surface



A. Tamai et al, PRX (2019)

A. Mackenzie et al, PRL 76, 3786 (1996);C. Bergemann et al, PRL 84, 2662 (2000);A. Damascelli et al, PRL 85, 5194 (2000);

#### **Orbitals are mixed**

SOC: spin direction changes along k-space

#### **Antisymmetric wave-function condition**

$$\vec{d}(\mathbf{k}) = -\vec{d}(-\mathbf{k})$$

Single band/orbitals odd-parity pairing; example p-wave, sin(kx) or sin(ky)

Multi-orbital/bands even-parity triplet pairing is allowed; orbital (a,b) antisymmetric

$$\vec{d}(\mathbf{k}) = \vec{d}(-\mathbf{k})$$
eg:  $\langle c^{\dagger}_{\mathbf{k},\sigma,a} \vec{c}^{\dagger}_{-\mathbf{k},\sigma,b} - c^{\dagger}_{\mathbf{k},\sigma,b} c^{\dagger}_{-\mathbf{k},\sigma,a} \rangle$ 

## **Multi-orbital Interaction**

$$\begin{split} H_{int} = & \frac{U}{2} \sum_{i,a,\sigma \neq \sigma'} n_{a,i\sigma} n_{a,i\sigma'} + \frac{U'}{2} \sum_{i,a \neq b,\sigma\sigma'} n_{a,i\sigma} n_{b,i\sigma'} & H_{int} = \frac{4U}{N} \sum_{a,\mathbf{k}\mathbf{k}'} \hat{\Delta}_{a,\mathbf{k}}^{s\dagger} \hat{\Delta}_{a,\mathbf{k}'}^{s} \\ &+ \frac{J_H}{2} \sum_{i,a \neq b,\sigma\sigma'} c_{a,i\sigma}^{\dagger} c_{b,i\sigma'}^{\dagger} c_{a,i\sigma'} c_{b,i\sigma}, \\ &+ \frac{J_H}{2} \sum_{i,a \neq b,\sigma \neq \sigma'} c_{a,i\sigma}^{\dagger} c_{a,i\sigma'}^{\dagger} c_{b,i\sigma'} c_{b,i\sigma'} c_{b,i\sigma'}, \\ &+ \frac{4J_H}{2} \sum_{i,a \neq b,\sigma \neq \sigma'} c_{a,i\sigma}^{\dagger} c_{a,i\sigma'}^{\dagger} c_{b,i\sigma'} c_{b,$$

C. Puetter, HYK, EPL 98, 27010 (2012) ; arXiv:1101.4656

**Pairing is local:**  $U' < J_H$ 





Hund's rule coupling as the microscopic origin of the spin-triple tpairing in a correlated and degenerate band system, A. Klejnberg, J. Spalek, JPCMP 11, 6553 (1999); X. Dai et al, PRL (2008) on Pnictides

## SOC!

C. Puetter, HYK, EPL 98, 27010 (2012); O.Vafek, A.V. Chubukov, PRL (2017); .....

## Effects of SOC: 2-orbital model

#### change to band basis

$$\begin{pmatrix} c_{\mathbf{k}\sigma}^{a} \\ c_{\mathbf{k}\sigma}^{b} \end{pmatrix} = \begin{pmatrix} \frac{\eta_{\sigma}+1}{2}f_{\mathbf{k}} - \frac{\eta_{\sigma}-1}{2}f_{\mathbf{k}}^{*} & -g_{\mathbf{k}} \\ g_{\mathbf{k}} & \frac{\eta_{\sigma}+1}{2}f_{\mathbf{k}}^{*} - \frac{\eta_{\sigma}-1}{2}f_{\mathbf{k}} \end{pmatrix} \begin{pmatrix} \alpha_{\mathbf{k},s} \\ \beta_{\mathbf{k},s} \end{pmatrix}$$

## In the band basis

two bands  $\ lpha,eta$ 

pseudo-spin singlet (intra-band)

$$\begin{split} \tilde{H}_{\text{pair}}(\mathbf{k}) = & i\Delta^{s}(\mathbf{k}) \left[ (\alpha^{\dagger}_{\mathbf{k},+} \alpha^{\dagger}_{-\mathbf{k},-} - \alpha^{\dagger}_{\mathbf{k},-} \alpha^{\dagger}_{-\mathbf{k},+}) - \beta^{\dagger}_{\mathbf{k},+} \beta^{\dagger}_{-\mathbf{k},-} - \beta^{\dagger}_{\mathbf{k},-} \beta^{\dagger}_{-\mathbf{k},+}) \right] \\ &+ i\Delta^{s}_{\alpha\beta}(\mathbf{k}) \left[ (\alpha^{\dagger}_{\mathbf{k},+} \beta^{\dagger}_{-\mathbf{k},-} - \alpha^{\dagger}_{\mathbf{k},-} \beta^{\dagger}_{-\mathbf{k},+}) + (\beta^{\dagger}_{\mathbf{k},+} \alpha^{\dagger}_{-\mathbf{k},-} - \beta^{\dagger}_{\mathbf{k},-} \alpha^{\dagger}_{-\mathbf{k},+}) \right] \\ &+ d^{z}_{\alpha\beta}(\mathbf{k}) \left[ (\alpha^{\dagger}_{\mathbf{k},+} \beta^{\dagger}_{-\mathbf{k},-} + \alpha^{\dagger}_{\mathbf{k},-} \beta^{\dagger}_{-\mathbf{k},+}) - (\beta^{\dagger}_{\mathbf{k},+} \alpha^{\dagger}_{-\mathbf{k},-} + \beta^{\dagger}_{\mathbf{k},-} \alpha^{\dagger}_{-\mathbf{k},+}) \right]. \end{split}$$

pseudo-spin triplet (inter-band)

$$\Delta^{s}(\mathbf{k}) = -2d_{a/b}^{z} \operatorname{Im}(f_{\mathbf{k}})g_{\mathbf{k}} = \frac{-2d_{a/b}^{z}\lambda_{\mathbf{k}}}{\sqrt{\xi_{\mathbf{k}}^{-2} + 4(t_{\mathbf{k}}^{2} + \lambda_{\mathbf{k}}^{2})}} \text{ spin-triplet}$$

$$\Delta^{s}_{\alpha\beta}(\mathbf{k}) = -d_{a/b}^{z} \operatorname{Im}(f_{\mathbf{k}}^{2}) = -2d_{a/b}^{z}|f_{\mathbf{k}}|^{2}\frac{t_{\mathbf{k}}\lambda_{\mathbf{k}}}{t_{\mathbf{k}}^{2} + \lambda_{\mathbf{k}}^{2}}$$

$$d_{\alpha\beta}^{z}(\mathbf{k}) = d_{a/b}^{z}(g_{\mathbf{k}}^{2} + \operatorname{Re}(f_{\mathbf{k}}^{2})) = d_{a/b}^{z}(g_{\mathbf{k}}^{2} + |f_{\mathbf{k}}|^{2}\frac{t_{\mathbf{k}}^{2} - \lambda_{\mathbf{k}}^{2}}{t_{\mathbf{k}}^{2} + \lambda_{\mathbf{k}}^{2}}).$$



Figure from arXiv:2009.08597, J. Clepkens, A. Lindquist, HYK

## Back to Sr2RuO4: t2g orbitals



orbital degeneracy breaking terms, e.g, orbital hybridization ~ 0.01 - 0.1 eV

SOC ~ 0.05 - 0.16 eV

crystal field: dxy - dxz/yz ~ 0.08 eV

#### $H = H_{int} + H_{kin} + H_{soc}$

$$H_{\rm kin} + H_{\rm SO} = \sum_{\mathbf{k},\sigma} C_{\mathbf{k}\sigma}^{\dagger} \begin{pmatrix} \varepsilon_{\mathbf{k}}^{yz} & \varepsilon_{\mathbf{k}}^{1d} + i\lambda & -\lambda \\ \varepsilon_{\mathbf{k}}^{1d} - i\lambda & \varepsilon_{\mathbf{k}}^{xz} & i\lambda \\ -\lambda & -i\lambda & \varepsilon_{\mathbf{k}}^{xy} \end{pmatrix} C_{\mathbf{k}\sigma}, \quad C_{\mathbf{k}\sigma}^{\dagger} = \begin{pmatrix} c_{\mathbf{k}\sigma}^{yz\dagger}, c_{\mathbf{k}\sigma}^{xz\dagger}, c_{\mathbf{k}\sigma}^{xy\dagger}, c_{\mathbf{k}\sigma}^{xy\dagger} \end{pmatrix}$$



$$\varepsilon_{\mathbf{k}}^{yz} = -2t_1 \cos k_y - 2t_2 \cos k_x - \mu_{1D},$$
  

$$\varepsilon_{\mathbf{k}}^{xz} = -2t_1 \cos k_x - 2t_2 \cos k_y - \mu_{1D},$$
  

$$\varepsilon_{\mathbf{k}}^{xy} = -2t_3 \left( \cos k_x + \cos k_y \right) - 4t_4 \cos k_x \cos k_y$$
  

$$-2t_5 \left( \cos(2k_x) + \cos(2k_y) \right) - \mu_{xy},$$
  

$$t_{\mathbf{k}} = -4t_{ab} \sin k_x \sin k_y$$

#### $\lambda$ atomic spin-orbit coupling (SOC)

 $\mu_{1D} \\ \mu_{xy}$  atomic potential

## **Spin-Orbit Coupling**



## **Multi-orbital Interaction**

$$\begin{split} H_{int} = & \frac{U}{2} \sum_{i,a,\sigma \neq \sigma'} n_{a,i\sigma} n_{a,i\sigma'} + \frac{U'}{2} \sum_{i,a \neq b,\sigma\sigma'} n_{a,i\sigma} n_{b,i\sigma'} & H_{int} = \frac{4U}{N} \sum_{a,\mathbf{k}\mathbf{k}'} \hat{\Delta}_{a,\mathbf{k}}^{s\dagger} \hat{\Delta}_{a,\mathbf{k}}^{s} \\ &+ \frac{J_{H}}{2} \sum_{i,a \neq b,\sigma\sigma'} c_{a,i\sigma}^{\dagger} c_{b,i\sigma'}^{\dagger} c_{a,i\sigma'} c_{b,i\sigma} & + \frac{4J_{H}}{N} \sum_{\{a \neq b\},\mathbf{k}\mathbf{k}'} \hat{\Delta}_{a,\mathbf{k}}^{s\dagger} \hat{\Delta}_{b,\mathbf{k}'}^{s} \\ &+ \frac{J_{H}}{2} \sum_{i,a \neq b,\sigma \neq \sigma'} c_{a,i\sigma}^{\dagger} c_{a,i\sigma'}^{\dagger} c_{b,i\sigma'} c_{b,i\sigma'} c_{b,i\sigma'} \\ &+ \frac{4J_{H}}{N} \sum_{a \neq b,\mathbf{k}\mathbf{k}'} \hat{\Delta}_{a,\mathbf{k}}^{s\dagger} \hat{\Delta}_{a,\mathbf{k}}^{s} \hat{\Delta}_{a,\mathbf{k}}^{s\dagger} \hat{\Delta}_{a,\mathbf{k}}^{s} \hat{\Delta}_{a,\mathbf{k}}^{s\dagger} \hat{\Delta}_{a,\mathbf{k}}^{s\dagger} \hat{\Delta}_{a,\mathbf{k}}^{s\dagger} \hat{\Delta}_{a,\mathbf{k}}^{s\dagger} \hat{\Delta}_{a,\mathbf{k}}^{s\dagger} \hat{\Delta}_{a,\mathbf{k}}^{s\dagger} \hat{\Delta}_{a,\mathbf{k}'}^{s\dagger} \\ &+ \frac{2(U' - J_{H})}{N} \sum_{a \neq b,\mathbf{k}\mathbf{k}'} \hat{\Delta}_{a,\mathbf{k}}^{s\dagger} \hat{\Delta}_{a,\mathbf{k}}^{s} \hat{\Delta}_{a,\mathbf{k}}^{s} \hat{\Delta}_{a,\mathbf{k}}^{s\dagger} \hat{\Delta}_{a,\mathbf{k}}^{s} \hat{\Delta}_{a,\mathbf{k}}^{s\dagger} \hat{\Delta}_{a,\mathbf{k}'}^{s} \hat{\Delta}_{a,\mathbf{k}}^{s\dagger} \hat{\Delta}_{a,\mathbf{k}}^{s} \hat{\Delta}_{a,\mathbf{k}}^{s\dagger} \hat{\Delta}_{a,\mathbf{k}'}^{s} \\ &+ \frac{2(U' + J_{H})}{N} \sum_{a \neq b,\mathbf{k}\mathbf{k}'} \hat{\Delta}_{a,\mathbf{k}}^{s\dagger} \hat{\Delta}_{a,\mathbf{k}}^{s} \hat{\Delta}_{a,\mathbf{k}}^{s} \hat{\Delta}_{a,\mathbf{k}}^{s} \hat{\Delta}_{a,\mathbf{k}}^{s} \hat{\Delta}_{a,\mathbf{k}}^{s} \hat{\Delta}_{a,\mathbf{k}}^{s} \hat{\Delta}_{a,\mathbf{k}'}^{s} \hat{\Delta}_{a,\mathbf{k}}^{s\dagger} \hat{\Delta}_{a,\mathbf{k}}^{s} \hat{\Delta}_{a,\mathbf{k}'}^{s} \hat{\Delta}_{a,\mathbf{k}}^{s\dagger} \hat{\Delta}_{a,\mathbf{k}'}^{s} \hat{\Delta}_{a,\mathbf{k}}^{s\dagger} \hat{\Delta}_{a,\mathbf{k}'}^{s} \hat{\Delta}_{a,\mathbf{k}}^{s\dagger} \hat{\Delta}_{a,\mathbf{k}'}^{s\dagger} \hat{\Delta}_{a,\mathbf{k}'}^{s\dagger} \hat{\Delta}_{a,\mathbf{k}'}^{s\dagger} \hat{\Delta}_{a,\mathbf{k}'}^{s\dagger} \hat{\Delta}_{a,\mathbf{k}}^{s\dagger} \hat{\Delta}_{a,\mathbf{k}'}^{s\dagger} \hat{$$

C. Puetter, HYK, EPL 98, 27010 (2012) ; arXiv:1101.4656

# Identifying spin-triplet pairing in spin-orbit coupled multi-band superconductors EPL 98, 27010 (2012) arXiv:1101.4656.



& pins d-vector direction (varies in momentum space)

#### atomic SOC: anisotropic S-wave

## **QP** dispersion





## magnetization



C. Puetter, HYK, EPL 98, 27010 (2012) ; arXiv:1101.4656

Deduction of Knight shift for all field directions

#### How to get two-component OP?

## momentum dependent SOC beyond atomic SOC

# momentum-dependent SOC: $\lambda({f k})$



**SOC determines pairing;**  $\Delta^{s}(\mathbf{k}) \propto d_{a/b} \times \lambda(\mathbf{k})$ 

When atomic  $\lambda$  & momentum-dep. SOC  $\lambda^{B_{2g}}$  present

pseudo-spin singlet 
$$s+id_{xy}$$

$$s \propto d_{xz/yz}^x \lambda, \ d_{yz/xy}^y \lambda, \ d_{xz/yz}^z \lambda$$
  
 $d_{xy} \propto d_{yz(xz)/xy}^{x(y)} (\sin k_x \sin k_y) \ \lambda^{B2g}$ 

$$J_H - U' = 0.7$$
  $\lambda = 0.05$   $\lambda^{B2g} = 0.038$   $\lambda^{Eg} = 0.005$ 

$t_1$	$t_2$	$t_3$	$t_4$	$t_{ab}$	$\mu_{1d}$	$\mu_{xy}$
0.45	0.05	0.5	0.2	0.025	0.54	0.64

## **Shadowed Triplet Pairing**

 $s + i d_{xy}$  pseudo-spin singlet

 $d_{lpha/eta}$  pseudo-spin triplet pairing finite away from the Fermi energy



arXiv:2009.08597, J. Clepkens, A. Lindquist, HYK

#### **Effects of Strain**



A. Lindquist, HYK, PRR 2, 320 (2020)

## **Proposal to test the theory**



A. Lindquist, HYK, PRR 2, 320 (2020)

## Beyond MF



LDA+ DMFT: O. Gingras et al, PRL 123, 217005 (2019)

#### Application to Pnictides

O.Vafek, A.V. Chubukov, PRL (2017); Hund's + SOC on 2-orbitals

# Conclusion

#### Within a MF of Kanamori + t2g + SOC: applicable Hund's metal with SOC

- SOC determines the gap size and k-dependence of pairing
- pseudospin singlet + pseudospin triplet + i induced singlet
- d-vector changes in k-space
- For Sr2RuO4: s+ i d (TRSB SC) & pseudospin triplet & induced singlet

#### beyond on-site interaction? Tc? HQV?