Shadowed Triplet Pairing in Hund's metal with Spin-Orbit Coupling

Hae-Young Kee
University of Toronto

KITP Correlated Systems with Multicomponent Local Hilbert Spaces, 2020 November 10

Austin Lindquist

Jonathan Clepkens

Christoph Puetter

References

arXiv:2009.08597
Shadowed Triplet Pairings in Hund's Metals with Spin-Orbit Coupling J. Clepkens, A. Lindquist, HYK
arXiv:1912.02215
Distinct reduction of Knight shift in superconducting state of Sr2RuO4 under uniaxial strain, PRR 2, 320 (2020).
A. Lindquist, HYK
arXiv:1101.4656
Identifying spin-triplet pairing in spin-orbit coupled multi-band superconductors, EPL 98, 27010 (2012).
C. Puetter, HYK C. M. Puetter, PhD Thesis, Univ. of Toronto (2012).

Significant spin-orbit coupling (SOC) Importance of Hund's coupling

$\begin{aligned} & 1 \\ & \mathbf{H} \end{aligned}$																		$\begin{gathered} 2 \\ \mathrm{He} \end{gathered}$
3	4												5	6	7	8	9	10
Li	Be												B	C	N	0	F	Ne
11	12												13	14	15	16	17	18
Na	Mg												Al	Si	P	S	CI	Ar
19	20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca		Sc	Ti	\checkmark	Cr	Mn	Fe	Co	NT	Cll	Zn	Ga	Ge	As	Se	Br	Kr
37	38				41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr		Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
55	56		71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	*	Lu	Hir	Ta	W	Re	Os	1	Pt	AII	Hg	II	Pb	Bi	Po	At	Rn
87	88	*	103	104	105	106	Tur	108	109	110	111	112	113	114	115	116	117	118
Fir	Ra	*	LI	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub	Uut	Uuq	Uup	Uuh	Uus	Uuo

	57	58	59	60	61	62	63	64	65	${ }^{66}$	67	68	69	70
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
*	89	90	91	92	93	94	95	96	97	98	99	100	101	102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No

Sr2RuO4 SOC < bandwidth; $4 d^{4}$

SOC \& Hund's

RuCl3 SOC > bandwidth (honeycomb); $4 d^{5}$
Kitaev \& Gamma interaction from SOC \& Hund's

Outline

- Sr2RuO4; spin-triplet vs. singlet?
- Even-parity spin-triplet pairing and SOC: Shadowed triplet
- Applying to Sr2RuO4
- Proposed experiment

Sr2RuO4

	$\mathrm{Sr}_{2} \mathrm{RuO}_{4}$	$\mathrm{Sr}_{3} \mathrm{Ru}_{2} \mathrm{O}_{7}$	SrRuO_{3}
n	superconductor $\left(T_{\mathrm{c}}=1.5 \mathrm{~K}\right)$	paramagnetic metal	ferromagnetic metal $\left(T_{\mathrm{c}}=165 \mathrm{~K}\right)$
	1	2	∞
	tetragonal	orthorhombic	orthorhombic
lattice	$a=3.862 \AA$,	$a=b=5.5006 \AA$,	$a=5.56 \AA, b=5.53 \AA$
parameters	$c=12.729 \AA$,	$c=20.725 \AA$,	$c=7.84 \AA$
	$\theta=\phi=0^{\circ}$	$\theta=6.8^{\circ}, \phi=0^{\circ}$	$\theta \neq 0, \phi \neq 0$
$\rho_{c} / \rho_{a b}$	$\gtrsim 400$	~ 300	~ 1.1
γ	$38 \frac{\mathrm{~mJ}}{\mathrm{Rumol} \mathrm{K}^{2}}$	$110 \frac{\mathrm{~mJ}}{\mathrm{Rumol} \mathrm{K}^{2}}$	$29 \frac{\mathrm{~mJ}}{\mathrm{Rumol} \mathrm{K}^{2}}$
m^{*} / m_{0}	~ 4	-	$\sim 3-3.4$
R_{W}	$1.7-1.8$	$\gtrsim 10$	-
μ	-	-	$1.1 \mu_{\mathrm{B}} / \mathrm{Ru}$
			(in-plane)

Rice and Sigrist, JPCM (1995): spin triplet with

$$
\vec{d}(\mathbf{p})=\hat{z}\left(p_{x}+i p_{y}\right)-\text { analog He3 A-phase }
$$

Spin Triplet

A theoretical description of the new phases of liquid ${ }^{3} \mathrm{He}$

Cooper pair explicitly in the form

$$
\begin{align*}
& \Psi\left(\sigma_{1} \sigma_{2}: \mathbf{n}\right)=\Psi_{\uparrow \uparrow}(\mathbf{n})|\uparrow \uparrow\rangle+\mathbf{\Psi}_{\uparrow \downarrow}(\mathbf{n})|\uparrow \downarrow+\downarrow \uparrow\rangle \\
& \quad+\mathbf{\Psi}_{\downarrow \downarrow}(\mathbf{n})|\downarrow \downarrow\rangle \tag{7.38}
\end{align*}
$$

and then verify explicitly that for real $d(n)$ we have the operator relation

$$
\begin{equation*}
\mathbf{d}(\mathbf{n}) \cdot \hat{\mathbf{S}} \Psi\left(\sigma_{1} \sigma_{2}: \mathbf{n}\right) \equiv 0 \tag{7.39}
\end{equation*}
$$

Introducing d-vector

pairs are condensed in the eigenstates of $S=I$ and $S_{z}=0$

Discovery of SC, Y. Maeno et al , Nature (1994)
Rice and Sigrist, JPCM (1995): spin triplet with

$$
\vec{d}(\mathbf{p})=\hat{z}\left(p_{x}+i p_{y}\right)-\text { analog He3 A-phase }
$$

Summer Seminars for Correlated Electrons and Frustrated Magnets

Zoom Link
https://sites.google.com/umn.edu/cm-weekly-seminar/home update on Sr2RuO4: A. Mackenzie

NMR: Knight shift

A. Pustogow et al, Nature (2019)

K. Ishida et al, JPSJ 89, 0347 I2 (2020)

muSR under strain

time reversal symmetry broken SC

V. Grinenko et al, arXiv:200I.08I52

reality vs. beauty of simplicity

topology $=$ ball $=$ trivial

Reality of multi-orbital systems

Fermi Surface

A. Tamai et al, PRX (2019)
A. Mackenzie et al, PRL 76, 3786 (1996);
C. Bergemann et al, PRL 84, 2662 (2000);
A. Damascelli et al, PRL 85, 5 I 94 (2000);

Orbitals are mixed

SOC: spin direction changes along k-space

Antisymmetric wave-function condition

$$
\vec{d}(\mathbf{k})=-\vec{d}(-\mathbf{k})
$$

Single band/orbitals
odd-parity pairing;
example p -wave, $\sin (\mathrm{kx})$ or $\sin (\mathrm{ky})$

Multi-orbital/bands
even-parity triplet pairing is allowed; orbital (a,b) antisymmetric

$$
\vec{d}(\mathbf{k})=\vec{d}(-\mathbf{k})
$$

eg: $\left\langle c_{\mathbf{k}, \sigma, a}^{\dagger} c_{-\mathbf{k}, \sigma, b}^{\dagger}-c_{\mathbf{k}, \sigma, b}^{\dagger} c_{-\mathbf{k}, \sigma, a}^{\dagger}\right\rangle$

Multi-orbital Interaction

$$
\begin{aligned}
H_{i n t}= & \frac{U}{2} \sum_{i, a, \sigma \neq \sigma^{\prime}} n_{a, i \sigma} n_{a, i \sigma^{\prime}}+\frac{U^{\prime}}{2} \sum_{i, a \neq b, \sigma \sigma^{\prime}} n_{a, i \sigma} n_{b, i \sigma^{\prime}} & H_{i n t}=\frac{4 U}{N} \sum_{a, \mathbf{k} \mathbf{k}^{\prime}} \hat{\Delta}_{a, \mathbf{k}}^{s \dagger} \hat{\Delta}_{a, \mathbf{k}^{\prime}}^{s} \\
& +\frac{J_{H}}{2} \sum_{i, a \neq b, \sigma \sigma^{\prime}} c_{a, i \sigma}^{\dagger} c_{b, i \sigma^{\prime}}^{\dagger} c_{a, i \sigma^{\prime}} c_{b, i \sigma} \longrightarrow & +\frac{2 U^{\prime}-J_{H}}{N} \sum_{\{a \neq b\}, \mathbf{k k ^ { \prime }}} \hat{\mathbf{d}}_{a / b, \mathbf{k}}^{\dagger} \cdot \hat{\mathbf{d}}_{a / b, \mathbf{k}^{\prime}} \\
& +\frac{J_{H}}{2} \sum_{i, a \neq b, \sigma \neq \sigma^{\prime}} c_{a, i \sigma}^{\dagger} c_{a, i \sigma^{\prime}}^{\dagger} c_{b, i \sigma^{\prime}} c_{b, i \sigma}, & +\frac{4 J_{H}}{N} \sum_{a \neq b, \mathbf{k k ^ { \prime }}} \hat{\Delta}_{a, \mathbf{k}}^{s \dagger} \hat{\Delta}_{b, \mathbf{k}^{\prime}}^{s} \\
& & +\frac{2\left(U^{\prime}+J_{H}\right)}{N} \sum_{a \neq b, \mathbf{k} \mathbf{k}^{\prime}} \hat{\Delta}_{a / b, \mathbf{k}}^{s \dagger} \hat{\Delta}_{a / b, \mathbf{k}^{\prime}}^{s},
\end{aligned}
$$

C. Puetter, HYK, EPL 98, 270 IO (20I2) ;arXiv:IIOI. 4656

Pairing is local: $U^{\prime}<J_{H}$

However, it is fragile

- requires degeneracy of bands

$\Delta / \Delta_{\max }$

$$
t_{a b} c_{i}^{a \dagger} c_{j}^{b}
$$

Orbital hybridization

$t^{-}\left(c_{i}^{a \dagger} c_{j}^{a}-c_{i}^{b \dagger} c_{j}^{b}\right)$
Orbital hopping difference

Hund's rule coupling as the microscopic origin of the spin-triple tpairing in a correlated and degenerate band system, A. Klejnberg, J. Spalek, JPCMP I I, 6553 (I999);
X. Dai et al, PRL (2008) on Pnictides

SOC!

C. Puetter, HYK, EPL 98, 270 IO (2012); O.Vafek, A.V. Chubukov, PRL (20I7);

Effects of SOC: 2-orbital model

$$
H=\sum_{\mathbf{k}} \Psi_{\mathbf{k}}^{\dagger}\left(H_{0}(\mathbf{k})+H_{\mathrm{SOC}}^{z}(\mathbf{k})+H_{\mathrm{pair}}(\mathbf{k})\right) \Psi_{\mathbf{k}}
$$

$$
\Psi_{\mathbf{k}}^{\dagger}=\left(\psi_{\mathbf{k}}^{\dagger}, T \psi_{\mathbf{k}}^{T} T^{-1}\right) \quad \psi_{\mathbf{k}}^{\dagger}=\left(c_{\mathbf{k} \uparrow}^{a \dagger}, c_{\mathbf{k} \uparrow}^{b \dagger}, c_{\mathbf{k} \downarrow}^{a \dagger}, c_{\mathbf{k} \downarrow}^{b \dagger}\right)
$$

$$
\begin{aligned}
H_{0}(\mathbf{k})= & \rho_{3}\left(\frac{\xi_{\mathbf{k}}^{+}}{2} \sigma_{0} \tau_{0}+\frac{\xi_{\mathbf{k}}^{-}}{2} \sigma_{0} \tau_{3}+t_{\mathbf{k}} \sigma_{0} \tau_{1}\right) \\
& \xi_{\mathbf{k}}^{ \pm}=\xi_{\mathbf{k}}^{a} \pm \xi_{\mathbf{k}}^{b}, \quad t_{\mathbf{k}} c_{\mathbf{k}}^{a \dagger} c_{\mathbf{k}}^{b}: \text { orbital hybridization }
\end{aligned}
$$

$$
H_{\mathrm{SOC}}^{z}(\mathbf{k})=-\lambda_{\mathbf{k}} \rho_{3} \sigma_{3} \tau_{2} \quad \text { momentum dep. sOC }
$$

$$
H_{\mathrm{pair}}=-d_{a / b}^{z} \rho_{2} \sigma_{3} \tau_{2}
$$

$$
\left.d_{a / b}^{z} \equiv U^{\prime}-J_{H}\right) \frac{1}{N} \sum_{\mathbf{k}}\left\langle\hat{d}_{a / b, \mathbf{k}}^{z}\right\rangle . \text { spin-triplet }
$$

change to band basis

$$
\binom{c_{\mathbf{k} \sigma}^{a}}{c_{\mathbf{k} \sigma}^{b}}=\left(\begin{array}{cc}
\frac{\eta_{\sigma}+1}{2} f_{\mathbf{k}}-\frac{\eta_{\sigma}-1}{2} f_{\mathbf{k}}^{*} & -g_{\mathbf{k}} \\
g_{\mathbf{k}} & \frac{\eta_{\sigma}+1}{2} f_{\mathbf{k}}^{*}-\frac{\eta_{\sigma}-1}{2} f_{\mathbf{k}}
\end{array}\right)\binom{\alpha_{\mathbf{k}, s}}{\beta_{\mathbf{k}, s}}
$$

In the band basis

two bands α, β

pseudo-spin singlet (intra-band)

$$
\begin{aligned}
\tilde{H}_{\mathrm{pair}}(\mathbf{k})= & i \Delta^{s}(\mathbf{k})\left[\left(\alpha_{\mathbf{k},+}^{\dagger} \alpha_{-\mathbf{k},-}^{\dagger}-\alpha_{\mathbf{k},-}^{\dagger} \alpha_{-\mathbf{k},+}^{\dagger}-\beta_{\mathbf{k},+}^{\dagger} \beta_{-\mathbf{k},-}^{\dagger}-\beta_{\mathbf{k},-}^{\dagger} \beta_{-\mathbf{k},+}^{\dagger}\right)\right] \\
+ & i \Delta_{\alpha \beta}^{s}(\mathbf{k})\left[\left(\alpha_{\mathbf{k},+}^{\dagger} \beta_{-\mathbf{k},-}^{\dagger}-\alpha_{\mathbf{k},-}^{\dagger} \beta_{-\mathbf{k},+}^{\dagger}\right)+\left(\beta_{\mathbf{k},+}^{\dagger} \alpha_{-\mathbf{k},-}^{\dagger}-\beta_{\mathbf{k},-}^{\dagger} \alpha_{-\mathbf{k},+}^{\dagger}\right)\right] \\
& d_{\alpha \beta}^{z}(\mathbf{k})\left[\left(\alpha_{\mathbf{k},+}^{\dagger} \beta_{-\mathbf{k},-}^{\dagger}+\alpha_{\mathbf{k},-}^{\dagger} \beta_{-\mathbf{k},+}^{\dagger}\right)-\left(\beta_{\mathbf{k},+}^{\dagger} \alpha_{-\mathbf{k},-}^{\dagger}+\beta_{\mathbf{k},-}^{\dagger} \alpha_{-\mathbf{k},+}^{\dagger}\right)\right] .
\end{aligned}
$$

pseudo-spin triplet (inter-band)

$$
\begin{aligned}
& \Delta^{s}(\mathbf{k})=-2 d_{a / b}^{z} \operatorname{Im}\left(f_{\mathbf{k}}\right) g_{\mathbf{k}}=\frac{-2 d_{a / b}^{z} \lambda_{\mathbf{k}}}{\left.\sqrt{\xi_{\mathbf{k}}^{-2}+4\left(t_{\mathbf{k}}^{2}+\lambda_{\mathbf{k}}^{2}\right.}\right)} \\
& \Delta_{\alpha \beta}^{s}(\mathbf{k})=-d_{a / b}^{z} \operatorname{Im}\left(f_{\mathbf{k}}^{2}\right)=-2 d_{a / b}^{z}\left|f_{\mathbf{k}}\right|^{2} \frac{t_{\mathbf{k}} \lambda_{\mathbf{k}}}{t_{\mathbf{k}}^{2}+\lambda_{\mathbf{k}}^{2}} \\
& d_{\alpha \beta}^{z}(\mathbf{k})=d_{a / b}^{z}\left(g_{\mathbf{k}}^{2}+\operatorname{Re}\left(f_{\mathbf{k}}^{2}\right)\right)=d_{a / b}^{z}\left(g_{\mathbf{k}}^{2}+\left|f_{\mathbf{k}}\right|^{2} \frac{t_{\mathbf{k}}^{2}-\lambda_{\mathbf{k}}^{2}}{t_{\mathbf{k}}^{2}+\lambda_{\mathbf{k}}^{2}} .\right.
\end{aligned}
$$

Significance of SOC on the pairing $\Delta^{s}(\mathbf{k})$

Figure from arXiv:2009.08597, J. Clepkens, A. Lindquist, HYK

Back to Sr2RuO4: t2g orbitals

Energy Scale

orbital degeneracy breaking terms, e.g, orbital hybridization $\sim 0.01-0.1 \mathrm{eV}$

$$
\mathrm{SOC} \sim 0.05-0.16 \mathrm{eV}
$$

crystal field: $\mathrm{dxy}-\mathrm{dxz} / \mathrm{yz} \sim 0.08 \mathrm{eV}$

$$
\mathrm{Tc} \sim \mathrm{I} .5-3 \mathrm{~K}
$$

$\mathrm{H}=\mathrm{H}_{\mathrm{int}}+\mathrm{H}_{\mathrm{kin}}+\mathrm{H}_{\mathrm{soc}}$

$$
H_{\mathrm{kin}}+H_{\mathrm{SO}}=\sum_{\mathbf{k}, \sigma} C_{\mathbf{k} \sigma}^{\dagger}\left(\begin{array}{ccc}
\varepsilon_{\mathbf{k}}^{y z} & \varepsilon_{\mathbf{k}}^{1 d}+i \lambda & -\lambda \\
\varepsilon_{\mathbf{k}}^{1 d}-i \lambda & \varepsilon_{\mathbf{k}}^{x z} & i \lambda \\
-\lambda & -i \lambda & \varepsilon_{\mathbf{k}}^{x y}
\end{array}\right) C_{\mathbf{k} \sigma}, \quad C_{\mathbf{k} \sigma}^{\dagger}=\left(c_{\mathbf{k} \sigma}^{y z \dagger}, c_{\mathbf{k} \sigma}^{x z \dagger}, c_{\mathbf{k}-\sigma}^{x y \dagger}\right)
$$

$$
\begin{aligned}
\varepsilon_{\mathbf{k}}^{y z}= & -2 t_{1} \cos k_{y}-2 t_{2} \cos k_{x}-\mu_{1 \mathrm{D}} \\
\varepsilon_{\mathbf{k}}^{x z}= & -2 t_{1} \cos k_{x}-2 t_{2} \cos k_{y}-\mu_{1 \mathrm{D}} \\
\varepsilon_{\mathbf{k}}^{x y}= & -2 t_{3}\left(\cos k_{x}+\cos k_{y}\right)-4 t_{4} \cos k_{x} \cos k_{y} \\
& -2 t_{5}\left(\cos \left(2 k_{x}\right)+\cos \left(2 k_{y}\right)\right)-\mu_{\mathrm{xy}} \\
t_{\mathbf{k}}= & -4 t_{a b} \sin k_{x} \sin k_{y}
\end{aligned}
$$

λ atomic spin-orbit coupling (SOC)
$\mu_{1 D}$
$\mu_{x y}$$\quad$ atomic potential

Spin-Orbit Coupling

SOC ~ 0.05-0.16 eV

C. M. Puetter, PhD Thesis (20I2).
effective SOC > SOClda
A. Tamai et al, PRX (2019)

Multi-orbital Interaction

$$
\begin{aligned}
H_{i n t}= & \frac{U}{2} \sum_{i, a, \sigma \neq \sigma^{\prime}} n_{a, i \sigma} n_{a, i \sigma^{\prime}}+\frac{U^{\prime}}{2} \sum_{i, a \neq b, \sigma \sigma^{\prime}} n_{a, i \sigma} n_{b, i \sigma^{\prime}} & H_{i n t}=\frac{4 U}{N} \sum_{a, \mathbf{k} \mathbf{k}^{\prime}} \hat{\Delta}_{a, \mathbf{k}}^{s \dagger} \hat{\Delta}_{a, \mathbf{k}^{\prime}}^{s} \\
& +\frac{J_{H}}{2} \sum_{i, a \neq b, \sigma \sigma^{\prime}} c_{a, i \sigma}^{\dagger} c_{b, i \sigma^{\prime}}^{\dagger} c_{a, i \sigma^{\prime}} c_{b, i \sigma} \longrightarrow & +\frac{2 U^{\prime}-J_{H}}{N} \sum_{\{a \neq b\}, \mathbf{k} \mathbf{k}^{\prime}} \hat{\mathbf{d}}_{a / b, \mathbf{k}}^{\dagger} \cdot \hat{\mathbf{d}}_{a / b, \mathbf{k}^{\prime}} \\
& +\frac{J_{H}}{2} \sum_{i, a \neq b, \sigma \neq \sigma^{\prime}} c_{a, i \sigma}^{\dagger} c_{a, i \sigma^{\prime}}^{\dagger} c_{b, i \sigma^{\prime}} c_{b, i \sigma}, & +\frac{4 J_{H}}{N} \sum_{a \neq b, \mathbf{k} \mathbf{k}^{\prime}} \hat{\Delta}_{a, \mathbf{k}}^{s \dagger} \hat{\Delta}_{b, \mathbf{k}^{\prime}}^{s} \\
& & +\frac{2\left(U^{\prime}+J_{H}\right)}{N} \sum_{a \neq b, \mathbf{k} \mathbf{k}^{\prime}} \hat{\Delta}_{a / b, \mathbf{k}}^{s \dagger} \hat{\Delta}_{a / b, \mathbf{k}^{\prime}}^{s},
\end{aligned}
$$

$$
\begin{aligned}
& \text { spin triplet } \\
& \hat{\mathbf{d}}_{a / b, \mathbf{k}}=\frac{1}{4} \sum_{\sigma \sigma^{\prime}}\left[i \sigma^{y} \boldsymbol{\sigma}\right]_{\sigma \sigma^{\prime}}\left(c_{a, \mathbf{k} \sigma} c_{b,-\mathbf{k} \sigma^{\prime}}-c_{b, \mathbf{k} \sigma} c_{a,-\mathbf{k} \sigma^{\prime}}\right) \\
& \hat{\Delta}_{a / b, \mathbf{k}}^{s}=\frac{1}{4} \sum_{\sigma \sigma^{\prime}}\left[i \sigma^{y}\right]_{\sigma \sigma^{\prime}}\left(c_{a, \mathbf{k} \sigma} c_{b,-\mathbf{k} \sigma^{\prime}}+c_{b, \mathbf{k} \sigma} c_{a,-\mathbf{k} \sigma^{\prime}}\right) \\
& \hat{\Delta}_{a, \mathbf{k}}^{s}=\frac{1}{4} \sum_{\sigma \sigma^{\prime}}\left[i \sigma^{y}\right]_{\sigma \sigma^{\prime}} c_{a, \mathbf{k} \sigma} c_{a,-\mathbf{k} \sigma^{\prime}},
\end{aligned}
$$

C. Puetter, HYK, EPL 98, 270 IO (20I2) ; arXiv:IIOI. 4656

Identifying spin-triplet pairing in spin-orbit coupled multi-band superconductors EPL 98, 27010 (2012) arXiv:IIOI.4656.

Christoph M. Puetter ${ }^{1}$ and Hae-Young $\mathrm{Kee}^{1,2(a)}$

$\mathbf{d}_{x z k y}$

$\mathbf{d}_{y z k y}$

SOC enhances inter-orbital (orbital-singlet) even-parity spin-triplet \& pins d-vector direction (varies in momentum space)

QP dispersion

b)

magnetization

C. Puetter, HYK, EPL 98, 270 IO (20I2) ; arXiv:I IOI. 4656

Deduction of Knight shift for all field directions

How to get two-component OP?

momentum dependent SOC beyond atomic SOC

momentum-dependent SOC: $\lambda(\mathbf{k})$

B2g

SOC determines pairing; $\quad \Delta^{s}(\mathbf{k}) \propto d_{a / b} \times \lambda(\mathbf{k})$

When atomic λ \& momentum-dep. sOC $\lambda^{B_{2 g}}$ present

$$
\text { pseudo-spin singlet } s+i d_{x y}
$$

$$
\begin{aligned}
& s \propto d_{x z / y z}^{x} \lambda, d_{y z / x y}^{y} \lambda, d_{x z / y z}^{z} \lambda \\
& d_{x y} \propto d_{y z(x z) / x y}^{x(y)}\left(\sin k_{x} \sin k_{y}\right) \lambda^{B 2 g}
\end{aligned}
$$

$$
J_{H}-U^{\prime}=0.7 \quad \lambda=0.05 \quad \lambda^{B 2 g}=0.038 \quad \lambda^{E g}=0.005
$$

t_{1}	t_{2}	t_{3}	t_{4}	$t_{a b}$	$\mu_{1 d}$	$\mu_{x y}$
0.45	0.05	0.5	0.2	0.025	0.54	0.64

Shadowed Triplet Pairing

$$
s+i d_{x y} \quad \text { pseudo-spin singlet }
$$

$\vec{d}_{\alpha / \beta}$ pseudo-spin triplet pairing finite away from the Fermi energy

arXiv:2009.08597, J. Clepkens, A. Lindquist, HYK

Effects of Strain

A. Lindquist, HYK, PRR 2, 320 (2020)

Proposal to test the theory

NMR under strain

Uniaxial strain along a-axis

A. Lindquist, HYK, PRR 2, 320 (2020)

Beyond MF

LDA+ DMFT: O. Gingras et al, PRL I23, 2 I7005 (20I9)

Application to Pnictides

O.Vafek, A.V. Chubukov, PRL (20I7); Hund's + SOC on 2-orbitals

Conclusion

Within a MF of Kanamori + t2g + SOC: applicable Hund's metal with SOC

- SOC determines the gap size and k-dependence of pairing
- pseudospin singlet + pseudospin triplet +i induced singlet
- d-vector changes in k-space
- For Sr2RuO4: s+id (TRSB SC) \& pseudospin triplet \& induced singlet
beyond on-site interaction? Tc? HQV?

