Composite fermion zero modes:

From the Jain sequence to the integer quantum Hall transition

Srinivas Raghu (Stanford)

arXiv:1803.07767, 1805.06462, 1903.06297, 1907.13141 2006.11862, 2009.07871.

Prashant Kumar

Michael Mulligan

Yong-Baek Kim

Pavel Nosov

Kevin Huang (Stanford '21)

D. Tsui, Phys. B (1990) 59.

Plan for the talk

Magnetic field

Composite fermions

Lopez, Fradkin; Jain; Halperin,Lee,Read; Kalmeyer, Zhang.

Composite fermions

$$
\mathcal{L}_{c f}=\bar{f}\left(\hat{K}_{A+a}+\mu\right) f+\frac{1}{2} \frac{1}{4 \pi} \underbrace{a d a}+\cdots \quad \hat{K}_{A}=i D_{A}^{t}+\frac{1}{2 m} \vec{D}_{A}^{2}
$$

Chern-Simons term: $\quad a d a=\epsilon_{\mu \nu \lambda} a_{\mu} \partial_{\nu} a_{\lambda}$

$$
\mathrm{cf}^{\mathrm{cf}}=\underset{\mathrm{e}^{-}}{-\underset{2 \phi_{0}}{\downarrow} \quad \text { Flux-attachment }}
$$

Composite fermions and the half-filled LL

$$
\nu=1 / 2
$$

$$
\Longrightarrow \quad \nu_{c f}=\infty
$$

Electrons in a large field

CF Fermi sea

Composite fermions and Jain sequence

$$
\text { e.g. } \quad \nu=1 / 3
$$

$$
\nu_{c f}=1
$$

Jain sequence:

$$
\nu=\frac{p}{2 p+1}
$$

$$
\nu_{c f}=p
$$

Jain sequence: integer quantum Hall states of CFs

Magnetic field

Prashant Kumar, Michael Mulligan, SR, PRB 2019.

Particle-hole symmetry of Jain sequence

$$
\nu=\frac{p}{2 p+1} \quad \stackrel{\mathrm{ph}}{\Longrightarrow} \quad 1-\nu=\frac{p+1}{2 p+1}
$$

$$
\begin{aligned}
& \text { e.g. } \\
& p=1 \quad \nu=\frac{1}{3}
\end{aligned}
$$

$$
\stackrel{\mathrm{ph}}{\Longrightarrow}
$$

$$
\nu=\frac{2}{3}
$$

Particle-hole symmetry of Jain sequence

$$
\nu=\frac{p}{2 p+1} \quad \stackrel{\mathrm{ph}}{\Longrightarrow} \quad 1-\nu=\frac{p+1}{2 p+1}
$$

$$
\begin{aligned}
& \text { e.g. } \\
& p=1 \quad \nu=\frac{1}{3}
\end{aligned}
$$

$$
\nu=\frac{2}{3}
$$

Particle-hole symmetry of Jain sequence

$$
\nu=\frac{p}{2 p+1} \quad \stackrel{\mathrm{ph}}{\Longrightarrow} \quad 1-\nu=\frac{p+1}{2 p+1}
$$

> e.g. $\quad \nu=\frac{1}{3}$ $p=1 \quad$

$$
\nu=\frac{2}{3}
$$

Particle-hole symmetry of Jain sequence

$$
\nu=\frac{p}{2 p+1} \quad \stackrel{\mathrm{ph}}{\Longrightarrow} \quad 1-\nu=\frac{p+1}{2 p+1}
$$

$$
\begin{aligned}
& \text { e.g. } \\
& p=1 \quad \nu=\frac{1}{3}
\end{aligned}
$$

$$
\nu=\frac{2}{3}
$$

$\nu_{c f}=-2$
w
Resolution: CF zero mode.

Particle-hole symmetry of CFs

$$
\mathcal{L}_{c f}=\bar{f}\left(\hat{K}_{A+a}+\mu\right) f+\frac{1}{2} \frac{1}{4 \pi} a d a+\cdots \quad \begin{aligned}
B & =\nabla \times A \\
b & =\nabla \times a
\end{aligned}
$$

Particle-hole symmetry of CFs

$$
\mathcal{L}_{c f}=\bar{f}\left(\hat{K}_{A+a}+\mu\right) f+\frac{1}{2} \frac{1}{4 \pi} a d a+\cdots \quad \begin{aligned}
B & =\nabla \times A \\
b & =\nabla \times a
\end{aligned}
$$

Deviate slightly from half-filling: $\quad \mu=\mu_{1 / 2}+V$

Particle-hole symmetry of CFs

$$
\mathcal{L}_{c f}=\bar{f}\left(\hat{K}_{A+a}+\mu\right) f+\frac{1}{2} \frac{1}{4 \pi} a d a+\cdots \quad \begin{aligned}
B & =\nabla \times A \\
b & =\nabla \times a
\end{aligned}
$$

Deviate slightly from half-filling: $\quad \mu=\mu_{1 / 2}+V$

$$
n_{1 / 2}=\frac{B}{4 \pi} \quad \chi=\frac{m}{2 \pi}
$$

Particle-hole symmetry of CFs

$$
\mathcal{L}_{c f}=\bar{f}\left(\hat{K}_{A+a}+\mu\right) f+\frac{1}{2} \frac{1}{4 \pi} a d a+\cdots \quad \begin{aligned}
& B=\nabla \times A \\
& b=\nabla \times a
\end{aligned}
$$

Deviate slightly from half-filling: $\quad \mu=\mu_{1 / 2}+V$

$$
n_{1 / 2}=\frac{B}{4 \pi} \quad \chi=\frac{m}{2 \pi}
$$

Linear response: $\quad n=n_{1 / 2}+\chi V$
$\frac{b+B}{2 m}$

Particle-hole symmetry of CFs

$$
\mathcal{L}_{c f}=\bar{f}\left(\hat{K}_{A+a}+\mu\right) f+\frac{1}{2} \frac{1}{4 \pi} a d a+\cdots \quad \begin{aligned}
& B=\nabla \times A \\
& b=\nabla \times a
\end{aligned}
$$

Deviate slightly from half-filling: $\quad \mu=\mu_{1 / 2}+V$

$$
\text { Linear response: } \quad n=n_{1 / 2}+\chi V
$$

$$
n_{1 / 2}=\frac{B}{4 \pi} \quad \chi=\frac{m}{2 \pi}
$$

$$
-\frac{b+B}{2 m}
$$

$$
\mathcal{L}_{c f}=\bar{f}\left(\hat{K}_{A+a}+\mu_{1 / 2}-\frac{b+B}{2 m}\right) f+\frac{1}{2} \frac{1}{4 \pi} a d a+\cdots
$$

shift : $a \rightarrow a-A$

Particle-hole symmetry of CFs

$$
\mathcal{L}_{c f}=\bar{f}\left(\hat{K}_{A+a}+\mu\right) f+\frac{1}{2} \frac{1}{4 \pi} a d a+\cdots \quad \begin{aligned}
& B=\nabla \times A \\
& b=\nabla \times a
\end{aligned}
$$

Deviate slightly from half-filling: $\quad \mu=\mu_{1 / 2}+V$

$$
n_{1 / 2}=\frac{B}{4 \pi} \quad \chi=\frac{m}{2 \pi}
$$

Linear response: $\quad n=n_{1 / 2}+\chi V$
$-\frac{b+B}{2 m}$

$$
\mathcal{L}_{c f}=\bar{f}\left(\hat{K}_{a}+\mu_{1 / 2}-\frac{b}{2 m}\right) f+\frac{1}{2} \frac{1}{4 \pi}(a-A) d(a-A)+\cdots
$$

$$
\mathcal{L}_{c f}=\bar{f}\left(\hat{K}_{a}+\mu_{1 / 2}-\frac{b}{2 m}\right) f+\frac{1}{2} \frac{1}{4 \pi}(a-A) d(a-A)+\cdots
$$

$$
E_{n}=\frac{|b|}{m}\left\{\begin{array}{cc}
n+1, & b>0 \\
n, & b<0
\end{array}\right.
$$

CF Zero mode occurs only for $b<0$.
p filled LLs for $b>0: p+1$ filled $L L$ for $b<0$.
Including zero mode: crucial for PH symmetry.

Electromagnetic response

$$
\mathcal{L}_{c f}=\bar{f}\left(\hat{K}_{a}+\mu_{1 / 2}-\frac{b}{2 m}\right) f+\frac{1}{2} \frac{1}{4 \pi}(a-A) d(a-A)+\cdots
$$

Let p Landau levels be filled for $\mathrm{b}>0, \mathrm{p}+1$ for $\mathrm{b}<0$.

Integrate out CFs, a, to obtain EM response:

$$
\begin{array}{lll}
\mathcal{L}_{b>0}^{\mathrm{eff}}=\frac{1}{4 \pi} \frac{p}{2 p+1} A d A, & \nu=\frac{p}{2 p+1} & \begin{array}{l}
\text { Including the zero } \\
\text { mode, we recover } \\
\text { ph symmetry. }
\end{array} \\
\mathcal{L}_{b<0}^{\mathrm{eff}}=\frac{1}{4 \pi} \frac{p+1}{2 p+1} \text { AdA, } & \nu=\frac{p+1}{2 p+1} &
\end{array}
$$

PH for electrons $=\mathrm{T}$ for CFs.

$$
\begin{array}{ll}
\nu \rightarrow 1-\nu & \text { electrons } \\
b \rightarrow-b & \\
\text { cfs }
\end{array}
$$

Magnetic field

Disorder of interest

Statistical PH symmetry:

$$
\begin{aligned}
& \overline{V(r)}=0 \\
& \overline{V(r) V\left(r^{\prime}\right)}=\Delta e^{-\left(\mathbf{x}-\mathbf{x}^{\prime}\right)^{2} / \mathcal{R}^{2}}
\end{aligned}
$$

Long-wavelength disorder:

$$
\mathcal{R} \gg \ell_{B}
$$

CFs with disorder

$\mathcal{L}_{c f}=\bar{f}\left(\hat{K}_{A+a}+\mu\right) f+\frac{1}{2} \frac{1}{4 \pi} a d a+\cdots$
Before: tuning away from half-filling:

$$
\mu=\mu_{1 / 2}+V \quad \mu(r)=\mu_{1 / 2}+V(r)
$$

Now: quenched random potential:

Before: we studied

$$
\mathcal{L}_{c f}=\bar{f}\left(\hat{K}_{a}+\mu_{1 / 2}-\frac{b}{2 m}\right) f+\frac{1}{2} \frac{1}{4 \pi}(a-A) d(a-A)+\cdots
$$

CFs with disorder

$$
\mathcal{L}_{c f}=\bar{f}\left(\hat{K}_{A+a}+\mu\right) f+\frac{1}{2} \frac{1}{4 \pi} a d a+\cdots
$$

Before: tuning away from half-filling:

$$
\mu=\mu_{1 / 2}+V \quad \mu(r)=\mu_{1 / 2}+V(r)
$$

Now: with disorder

$$
\mathcal{L}_{c f}=\bar{f}\left(\hat{K}_{a}+\mu_{1 / 2}-\frac{b(r)}{2 m}\right) f+\frac{1}{2} \frac{1}{4 \pi}(a-A) d(a-A)+\cdots
$$

Disorder problem: random potential slaved to random flux.

CFs with disorder

CFs with disorder

$$
\mathcal{L}_{c f}=\bar{f}\left(\hat{K}_{a}+\mu_{1 / 2}-\frac{b(r)}{2 m}\right) f+\frac{1}{2} \frac{1}{4 \pi}(a-A) d(a-A)+\cdots
$$

Associated $1^{\text {st }}$ quantized Hamiltonian:

$$
\mathcal{H}_{c f}=\frac{1}{2 m}\left[(\boldsymbol{p}+\boldsymbol{a})^{2}+b(r)\right], \quad b(r)=\nabla \times a(r)
$$

Disorder problem: random potential slaved to random flux.

Incomplete LL levitation

Start with slight deviation from half-filling. Increase disorder.

D.E. Khmelnitskii, Phys. Lett. A 106, 182 (1984).
R.B. Laughlin, PRL 52, 2304 (1984).

Incomplete LL levitation

Zero mode does not levitate!

D.E. Khmelnitskii, Phys. Lett. A 106, 182 (1984).
R.B. Laughlin, PRL 52, 2304 (1984).

$$
\bar{b}>0 \text { 年 }
$$

Prashant Kumar, Yong-Baek Kim, SR arXiv:1907.13141.

Prashant Kumar, Yong-Baek Kim, SR arXiv:1907.13141.

Prashant Kumar, Yong-Baek Kim, SR arXiv:1907.13141.

"Divide and conquer" approach

1) $\sigma_{x y}^{c f}$ at criticality: analytical calculation using SUSY QM.

"Divide and conquer" approach

1) $\sigma_{x y}^{c f}$ at criticality: analytical calculation using SUSY QM.
2) $\sigma_{x x}^{c f}$ at criticality: explicit derivation of NLSM Lagrangian, self-duality.

"Divide and conquer" approach

1) $\sigma_{x y}^{c f}$ at criticality: analytical calculation using SUSY QM.
2) $\sigma_{x x}^{c f}$ at criticality: explicit derivation of NLSM Lagrangian, self-duality.
3) and 2) uniquely fix the electrical conductivity tensor at criticality.

"Divide and conquer" approach

1) $\sigma_{x y}^{c f}$ at criticality: analytical calculation using SUSY QM.
2) $\sigma_{x x}^{c f}$ at criticality: explicit derivation of NLSM Lagrangian, self-duality.
3) and 2) uniquely fix the electrical conductivity tensor at criticality.
4) Numerical study of critical exponents.

"Divide and conquer" approach

1) $\sigma_{x y}^{c f}$ at criticality: analytical calculation using SUSY QM.
2) $\sigma_{x x}^{c f}$ at criticality: explicit derivation of NLSM Lagrangian, self-duality.
3) and 2) uniquely fix the electrical conductivity tensor at criticality.
4) Numerical study of critical exponents.

Intuitive argument

Intuitive argument

$$
\nu_{e f f}=2 \pi \frac{(\bar{n}+\delta n)-(\bar{n}-\delta n)}{2 \delta b}=2 \pi \frac{\delta n}{\delta b}
$$

Intuitive argument

$$
\nu_{e f f}=2 \pi \frac{(\bar{n}+\delta n)-(\bar{n}-\delta n)}{2 \delta b}=2 \pi \underbrace{\frac{\delta n}{\delta b}}_{-\frac{1}{4 \pi}}
$$

Intuitive argument

$$
\begin{aligned}
& \nu_{e f f}=2 \pi \frac{(\bar{n}+\delta n)-(\bar{n}-\delta n)}{2 \delta b}=2 \pi \underbrace{\nu_{e f f}}_{-\frac{1}{\frac{\delta n}{\delta b}}}=-\frac{1}{2} \\
& \sigma_{x y}^{c f}=-\frac{1}{4 \pi}
\end{aligned}
$$

Analytic proof using SUSY QM: P. Kumar, M. Mulligan, SR, 1805.06462.

CFs with disorder

$$
\mathcal{H}_{c f}=\frac{1}{2 m}\left[(\boldsymbol{p}+\boldsymbol{a})^{2}-b(r)\right], \quad b(r)=\nabla \times a(r)
$$

Numerical result:

$$
\sigma_{x y}^{(c f)}=-\frac{1}{4 \pi}
$$

"Divide and conquer" approach

1) $\sigma_{x y}^{c f}$ at criticality: analytical calculation using SUSY QM.
2) $\sigma_{x x}^{c f}$ at criticality: explicit derivation of NLSM Lagrangian, self-duality.
3) and 2) uniquely fix the electrical conductivity tensor at criticality.
4) Numerical study of critical exponents.

Zero modes clearly visible in numerics.

Kevin Huang, SR, Prashant Kumar Arxiv:2009.07871

Mean-field exponents

$$
\xi \sim\left|b_{0}\right|^{-\nu} \quad \nu=2.56 \pm 0.02
$$

Previous work (Chalker-Coddington model):

Kevin Huang, SR, Prashant Kumar Arxiv:2009.07871

$$
\nu=2.593 \pm 0.01
$$

Multifractal wave-functions: $\left.\left.\quad P_{q} \equiv L^{d}\langle | \psi\right|^{2 q}\right\rangle \propto L^{-2(q-1)-\Delta(q)}$

$$
\Delta(q) \approx 2 q(1-q) \gamma, \gamma=0.129 \pm 0.005
$$

Analytical prediction for

$$
\gamma=\frac{1}{8} \quad \text { M. Zirnbauer, Nucl. Phys. B 941, 458-506 (2019). }
$$

Summary

CF zero modes: crucial for both 1) and 2).

Looking ahead..

Theme: Composite fermion viewpoint of QH critical points.

