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Outline

• Quantum Dimer Magnets and BEC 

• Yb3+ as an Seff = 1/2 quantum ion 

• Yb2Si2O7: A new QDM 

• Thermodynamics 

• Inelastic Neutron Scattering 

• Open questions: “Mystery Field”
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U(1) symmetry and BEC

Zapf, Jaime, Batista, Rev. Mod. Phys. 86 (2014)

Matsubara and Matsuda transformation (XXZ Hamiltonian - valid near Hc1 and Hc2)



U(1) symmetry and BEC
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XY AFM transition corresponding to BEC 
transition in boson language

Spontaneously breaks U(1) 
 symmetry in XY plane 

Zapf, Jaime, Batista, Rev. Mod. Phys. 86 (2014)

Matsubara and Matsuda transformation (XXZ Hamiltonian - valid near Hc1 and Hc2)

QDM  
phase diagram

T. Giamarchi, A.M. Tsvelik, PRB 59 (1999)
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BEC in Quantum magnets
Zapf, Jaime, Batista, Rev. Mod. Phys. 86 (2014)

the density of condensed bosons, there is also a uniform spin
component along the field direction (canted XY ordering) that
corresponds to the overall boson density.
We note that for two-level systems, bosons are subject to the

constraint of a hard-core repulsion, e.g., a maximum of one
boson can occupy each effective orbital. This constraint is
essential to guarantee that a two-level system is mapped into
another two-level system (the mapping must not change the
dimension of the Hilbert space). In a mean-field description,
each two-level system is in a linear superposition of the two
states with different magnetization, i.e., a linear superposition
of states with zero and one boson. As the magnetic field
increases, the moments become more polarized along the field
direction and lose their xy component. The ordered moment is
finally suppressed at the second critical pointH ¼ Hc2, where
the spins become fully polarized. Above this second critical
field, the ground state contains one hard-core boson in each
site and can be regarded as a Mott insulator in the bosonic
language.
The two QCPs at Hc1 and Hc2 belong to the BEC

universality class in dimension D ¼ dþ z. The dynamical
exponent is z ¼ 2 because the single-boson dispersion is
quadratic at the BEC QCPs: ω ∝ kz for k ≪ 1 with z ¼ 2.
This quadratic dispersion is a direct consequence of the fact that
the driving parameter (magnetic field) couples to a conserved
quantity (total magnetization Mz): the quadratic shape of the
single-particle excitations of the quantum paramagnet cannot
be modified whenH approachesHc1 because these excitations
have the same Sz eigenvalue. Therefore, the only effect of the
applied field is to close the gap while keeping the dispersion
unaltered all theway up toHc1.Mxy is zero outside of the range
Hc1 < H < Hc2. Inside that interval it is dome shaped, reach-
ing a peak somewhere between the two critical fields. The XY
ordering requires a spontaneous symmetry breaking that
chooses both a size and an orientation of the moments, i.e.,
the order parameter is a two-dimensional vector. Thus, this
ordering can be suppressed either by suppressing the amplitude
of the order parameter or by increasing its phase fluctuations.
BEC-like transitions correspond to the first case where the
amplitude is suppressed, while transitions induced by phase
fluctuations lead to the so-calledO(2) universality class that has
a dynamical exponent z ¼ 1. The critical exponents expected
for the BEC QCP are summarized in Table III. The dispersion

relation of the bononic quasiparticles (magnons in the spin
language) becomes linear,ω ∝ k for k ≪ 1, in the ordered state
that exists between Hc1 and Hc2. This is the Goldstone mode
that is expected from the spontaneous breaking of the U(1)
symmetry.

III. EXPERIMENTS

A. Compounds

In the following we summarize experiments on quantum
magnets that have been described in terms of BEC. The
quantum magnets described in this section benefit from
the fact that BEC behavior can be accessed for values of
the tuning parameters, such as temperature, magnetic field,
and pressure, that are readily accessible in many condensed
matter physics laboratories (see Fig. 5). Indeed, Table I shows
magnetic ordering temperatures compatible with standard
liquid 4He as well as 3He-4He dilution refrigerators, when
magnetic fields produced by either superconducting, resistive,
resistive hybrid, or resistive pulsed magnets are applied.
Simultaneously, the relatively small exchange interactions
that make these systems amenable to liquid helium studies can
be tuned as a function of laboratory-produced external
pressures.
As we saw in the previous sections, the mapping between

spins and bosons requires at least two different low-energy
spin levels. Then, each spin level corresponds to a different
boson occupation and the gap between these levels can be
tuned with magnetic field. In most quantum magnets exhibit-
ing BEC, a nonmagnetic ground state at zero magnetic field is
separated from a magnetic excited state by a gap Δ. This gap
can be tuned to zero by applied magnetic fields, resulting in a
magnetic-field-induced QCP at Hc1 that belongs to the BEC
universality class.
There are several different ways to create the zero-field gap.

The most widely studied method involves S ¼ 1=2 dimers,
and has been investigated in BaCuSi2O6, TlCuCl3,
KCuCl3, Pb2V3O9, Ba3Cr2O8, Sr3Cr2O8, ðCuClÞLaNb2O7,
Sul-Cu2Cl4, and PHCC among others (see Table I). In these
spin dimer materials, two closely coupled S ¼ 1=2 spins
form a dimer with antiferromagnetic coupling J0. Thus, the

FIG. 5 (color online). ðT;HÞ phase diagram for several quantum
magnets studied in the context of BEC.

TABLE III. Temperature dependencies of the thermodynamic
quantities: Phase boundary, magnetization MðTÞ, thermal expansion
ΔL=L; αðTÞ, specific heat CðTÞ, thermal Grüneisen parameter ΓðTÞ,
and magnetic Grüneisen parameter ΓmagðTÞ at the field-induced QCP
at H ¼ Hc as the temperature T → 0. The variable d denotes the
spatial dimensionality of the system. The exponents of the Ising-like
QCP are given for d ¼ 3.

Property XYAFM order Ising (3D)

Phase boundary HcðTÞ −Hcð0Þ Td=2, ν ¼ 2=d T2

Magnetization MðHc; TÞ Td=2 T2

Thermal expansion ΔL
L ðHc; TÞ Td=2 T2

Coefficient of thermal
expansion αðHc; TÞ

Tðd=2Þ−1 T

Specific heat CðHc; TÞ Td=2 T3

Grüneisen parameter Γ ∝ α=C T−1 T−2
Magnetic Grüneisen Γmag ∝ α=M T−1 T−2

Vivien Zapf, Marcelo Jaime, and C. D. Batista: Bose-Einstein condensation in quantum magnets 583

Rev. Mod. Phys., Vol. 86, No. 2, April–June 2014

superconducting magnet max (neutron scattering)



Yb2Si2O7



Quantum spins from large  
angular momentum ions

• Crystal electric field plus spin orbit 
coupling 

• “well isolated” doublets (compared to 
interaction energy scale). These 
doublets can be mapped onto 
spin 1/2 formalism 

• However, depending on coupling 
between larger J moments, 
Exchange Hamiltonian can in 
principle become highly 
anisotropic 
• e.g. Pyrochlore “Quantum Spin ice”
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These kets can be 
linear combinations 
of “Jz”eigenstates 

e.g. Yb3+ free ion 
with J = 7/2: 

8-fold degenerate

E

|±�
CEF splits the 

angular momentum states 
into Kramers doublets

4f orbital

O2-

really big! 
(compared to T)



BaYb2Zn5O11
quantum tetramers

Yb2Pt2Pb
XXZ Chains 

Spinons

Rau et al, PRL 116 257204 (2016)
Wu et al, Science, 352 (2016)

Paddison et al, Nat. Phys, (2017)

Yb3+ quantum magnets:  
“Ytterbium is the new Copper”

YbMgGaO4
QSL? 

Random Valence Bonds?



Honeycomb compounds with Seff = 1/2

• A potentially useful series: R2Si2O7

J. Felsche, Journal of Less-
Common Metals, 21 (1970)



C2/m 
a = 6.80 Å 
b = 8.87 Å 
c = 4.70 Å 
𝛽 = 102.12

Yb3+

Si4+

 “honeycomb” lattice 
compressed along b 

3.4% difference for in-
plane Yb-Yb distances:
3.428 Å  
3.548 Å 

4.703 Å

Yb2Si2O7



Grown by Dr. 
Harikrishnan Nair 

at CSU 
(now Assistant 
Prof. at UTEP)

Yb2Si2O7 during growth

Yb2Si2O7 Crystal Growth

H. S. Nair, T. DeLazzer, T. Reeder, A. Sikorski, G. Hester, and KAR. Crystals 9(4), 196 (2019)



Tim Reeder 
(UG researcher, 

now at JHU): 
co-alignment of 
crystal pieces 

cracking of growth leads to ~0.6 cm size crystals

Co-alignment of crystal pieces



Neutron scattering: CNCS
Cold Neutron Chopper Spectrometer (CNCS) 

High energy resolution (0.037 meV) - map out elastic and 
inelastic scattering in a plane of reciprocal space

Tim & Hari:
SUCCESS! 

Gavin Hester
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Yb2Si2O7 Quantum Dimers in Zero Field

Jeff Quilliam

• No magnetic Bragg Peaks at 300 mK 
• Schottky form of Cp vs. T, releases all 

Rln2/mol Yb 
• Fits well to Heisenberg model

Jintra = 0.236(4) meV

 Jinter = 0.06(2) meV 



Field Induced Magnetic Order

a) b) c)

Ultrasound Velocity  
(Quilliam lab)

a) b) c)

(2,0,0) Magnetic Bragg Peak  
(T = 100 mK)



Field Induced Magnetic Order: BEC Dome?

a) b) c)
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FIG. 4: INS data at T = 50 mK for four representative field strengths
(H||c). The path shown includes the reciprocal lattice directions [-
0.1K0], [H10], and [-1K0] as shown schematically to the right of the
figure. All slices shown are integrated ± 0.1 r.l.u. in the perpendicular
direction. At zero field (panel a), two bands are visible near (-1,1,0)
and (-0.1, -1, 0) due to a misaligned grain in the sample [28]. These
are actually due to the same excitation which is identified as the
 1,0 state. Between Hc1 and Hc2 (panels b and c), a Goldstone
mode appears which is gapless at zone centers to within the energy
resolution of the instrument, �E = 0.037 meV. Above Hc2 (panel d)
the intensity of the excitation drops dramatically due to the system
entering a field-polarized paramagnet state.

citation appears, which is gapless at the magnetic zone centers
to within the energy resolution of the instrument (�E = 0.037
meV). This Goldstone mode implies spontaneous breaking of
an approximate U(1) symmetry in the plane perpendicular to
the applied magnetic field (the a

⇤-b plane), suggestive of the
BEC transition observed in traditional QDMs [1, 44]. Addi-
tionally we note that the energy resolution is ⇠16% of our
estimated Jintra, thus this measurement of the Goldstone mode
actually allows for a potentially sizable anisotropic exchange
contribution. Furthermore, the presence of a distinguishable
region of hte field-induced phase (between Hm and Hc2) is
not expected for simple Heisenberg or XXZ exchange. We find
that in this field region the Goldstone mode persists, despite
the lack of evidence for spontaneous symmetry breaking in
Cp(T ) (i.e. a sharp anomaly is absent). However, the broad
Cp(T ) feature does move to lower temperature as the field is
further increased in this field region, tracing out the high-field
side of the dome phase boundary. Above Hc2 all of the excita-
tions become fully gapped and the broad feature in Cp moves
to higher temperature with increasing field, consistent with a
field-polarized paramagnet. In the field polarized regime, the
inelastic intensity is greatly reduced due to the development
of strong magnetic Bragg peaks at the elastic line, as expected
based on the sum rule for magnetic neutron scattering.

Recently, rare-earth materials have been identified as po-
tential hosts of Kitaev exchange in honeycomb materials [45].
In light of this, it is important to note that Yb2Si2O7 is struc-
turally similar to the famous Kitaev material Na2IrO3 [46], as

they share the same space group and Wyckoff position of the
magnetic species. Therefore, Kitaev exchange is allowed by
symmetry in Yb2Si2O7. If Kitaev exchange were dominant
in Yb2Si2O7 it could lead to a quantum spin liquid ground
state [11]. Interestingly, the presence of a Goldstone mode
does not rule out such anisotropic Kitaev exchange due to the
“hidden” SU(2) symmetries found within the extended Kitaev-
Heisenberg model [47, 48]. However, our fits to field polarized
INS data are well-approximated by Heisenberg interactions, so
Kitaev interactions are unlikely to be dominant in this material.

In summary, the strongly spin-orbit coupled material
Yb2Si2O7 realizes a QDM ground state with magnetic field-
induced order reminiscent of a BEC phase. However, this
ordered phase exhibits unusual characteristics at the high field
part of the dome, including an abrupt change in the field de-
pendence of the magnetization and sound velocity, and the loss
of a sharp anomaly in the specific heat. The presence of a
Goldstone mode throughout the full field-induced ordered state
suggests dominant Heisenberg or XXZ exchange interactions,
and the former is confirmed by fits to field polarized INS data
and the zero field specific heat. However, the observation of
the unusual regime between Hm and Hc2 may imply that addi-
tional anisotropic interactions are necessary in order to fully
describe the field induced phases of this novel quantum magnet.
Yb2Si2O7 provides the first example of a Yb3+-based QDM
with a possible field-induced BEC phase, adding this canoni-
cal example of quantum magnetism to the roster of quantum
phases exhibited by materials based on this versatile ion.

This research was supported by the National Science Foun-
dation Agreement No. DMR-1611217. JQ acknowledges tech-
nical support from M. Castonguay and S. Fortier, informative
conversations with G. Quirion, C. Bourbonnais and I. Garate
and funding from NSERC. The authors acknowledge the as-
sistance of Aaron Glock and Antony Sikorski in the sample
synthesis, as well as Craig Brown for his assistance with the
BT1 neutron powder diffraction experiment. A portion of this
work used resources at the Spallation Neutron Source and High
Flux Isotope Reactor, which are DOE Office of Science User
Facilities operated by Oak Ridge National Laboratory. The
authors also acknowledges the support of the National Institute
of Standards and Technology, US Department of Commerce in
providing some of the neutron research facilities used in this
work.

⇤ Electronic address: Gavin.Hester@colostate.edu
† Electronic address: Jeffrey.Quilliam@USherbrooke.ca
‡ Electronic address: Kate.Ross@colostate.edu

[1] V. Zapf, M. Jaime, and C. D. Batista, Reviews of Modern Physics
86, 563 (2014).

[2] V. S. Zapf, D. Zocco, B. R. Hansen, M. Jaime, N. Harrison,
C. D. Batista, M. Kenzelmann, C. Niedermayer, A. Lacerda, and
A. Paduan-Filho, Physical Review Letters 96, 077204 (2006).

[3] M. Jaime, V. F. Correa, N. Harrison, C. D. Batista,
N. Kawashima, Y. Kazuma, G. A. Jorge, R. Stern, I. Hein-
maa, S. A. Zvyagin, Y. Sasago, K. Uchinokura, Physical Review
Letters 93, 087203 (2004).

[4] E. C. Samulon, Y. J. Jo, P. Sengupta, C. D. Batista, M. Jaime,
L. Balicas, and I. R. Fisher, Physical Review B 77, 214441
(2008).

[5] A. A. Aczel, Y. Kohama, C. Marcenat, F. Weickert, M. Jaime,
O. E. Ayala-Valenzuela, R. D. McDonald, S. D. Selesnic, H. A.

a) b) c)

0 0.5 1
Temperature (K)

0

2

4

6

8

Sp
ec

ifi
c 

H
ea

t (
J/

K/
m

ol
-Y

b) 0T
0.6T
0.8T
1.0T
1.2T
1.3T



5 x 10-3

4

3

2

1

0

Intensity (arb. units)

0

1

2

3

4 Intensity (arb. units)3T calc

3T data

Jintra = 0.217(3) meV

Jinter = 0.089(1) meV

Sz = -1

Sz = 0

Sz = 1

Field polarized data: fit to extract interactions

Heisenberg model with intra- and 
inter-dimer interactions: gets Hc1 
and Hc2 approximately correct, 
reasonable fit to 3T spin waves 

Jintra = 0.236(4) meV

Jinter = 0.06(2) meV

Spin Waves Heat Capacity



How good is the Heisenberg model for 
Yb2Si2O7?

• Goldstone mode is gapless to within the 
energy resolution of the instrument, 
which is 16% of Jintra 

• Need some other ingredient beyond 
Heisenberg exchange, to account for the 
mystery phase? 

• On the other hand - reason to think 
Heisenberg is not so bad in some Yb 
materials…
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FIG. 3. Bulk spin expectation values as a function of magnetic
field obtained from self-consistent mean field theory. Note X
and Y moments are staggered while Z is uniform. A nonzero
gxz changes the weak (H < Hc1) and strong field (H > Hc2)
phases by forcing Mx 6= 0. The presence of a nonzero My for
Hc1 < H < Hm indicates Z2 symmetry breaking and corre-
sponds to the standard magnetic phase observed on the high-
field side of the BEC phase transition without anisotropy. The
range Hm < H < Hc2 corresponds to a canted antiferromag-
net which crosses over to the saturated regime at Hc2 .

We take gzy = 0, gzx ⌧ gzz. The Hamiltonian (6)
is analyzed with self-consistent methods, feeding in an
ansatz for MA,MB and calculating new values Mi ⌘

h |Si| i, where | i is the instantaneous ground state.
These values are updated until convergence is achieved.

For su�ciently small gzx, we find that the solution
in Fig. 3 is the most energetically favored. For small
fields (H < Hc1), the solution is only weakly magnetic
due to the staggered field induced by gzx. Between the
critical fields Hc1 < H < Hc2 , two phases appear, dis-
tinguished by the value of My. The first (H < Hm)
exhibits Z2 symmetry breaking and accounts for the sin-
gularity observed in the specific heat; the latter exhibits
the high-field crossover behavior required by the absence
of thermodynamic singularities. This previously uniden-
tified phase is a canted XZ antiferromagnet.

We note the existence of another mean-field solution in
which My = 0 everywhere. This case does not support
the experimental data as it has no symmetry breaking.
The energetic favorability of one solution over another
depends on the precise anisotropy parameters chosen; it
is unclear how quantum fluctuations will impact that se-
lection. Further, it is not obvious that the inter-dimer
coupling J2 is su�ciently small to justify a mean-field de-
scription. To address these concerns, we employ DMRG
to investigate the stability of our results. There we find
that both mean field solutions survive quantum fluctu-
ations and remain energetically competitive. Further,
there is a regime of parameters in which the solution in
Fig. 3 is favored.

DMRG Analysis.—To verify the mean-field solution,
we use DMRG to compute ground state expectation val-
ues [26]. This tensor network method e�ciently simulates

FIG. 4. All components of magnetization obtained from
DMRG. Note X and Y moments are staggered while Z is
uniform. For fields in the range [0.35, 1.25]T, a magnetic
phase with Z2 symmetry breaking is observed. In the range
[1.25, 1.6]T we find another phase with My = 0 and a large
Mx. This phase crosses over smoothly to the polarized limit.
The qualitative agreement with the mean-field phase dia-
gram of Fig. 3 confirms the accuracy of that analysis. Here
gxz = gzz/500 is chosen.

systems which are well-described by the matrix product
state (MPS) ansatz [27–31]. Our system is studied on a
cylinder with a width of four dimers and 128 total spins.

We use a single-site representation of the renormal-
ized tensor network to update each step [32] with the
Hamiltonian (1). To guarantee that the proper symme-
try sector is obtained, we apply pinning fields on the
open boundaries of the system to break the Z2 symme-
try of the Hamiltonian. The pinning field is removed
after two DMRG sweeps, and we find that in the sym-
metry breaking region this produces a lower-energy state
than unbiased DMRG.

From the resulting ground-state wavefunction, local

measurements of quantities M↵ =
qPNs

i=1hŜ
↵
i i

2/Ns are
performed. The results are shown in Fig. 4 and closely
match those from mean-field theory. A dome in My

appears in the regime Hz 2 [0.35, 1.25]T which indi-
cates symmetry breaking. The sizable Mx values for
Hz 2 [1.25, 1.6]T di↵erentiate that region from the sat-
urated limit. In this case, we see that the mean field
solutions are su�cient to capture the essential physics of
the system, albeit with di↵erent parameters in the Hamil-
tonian.

The results in Fig. 4 are found with gxz = gzz/500.
This value is arbitrary and can a↵ect which mean field so-
lution is obtained; to account for this, Fig. 5 shows the
dependence of the symmetry-breaking order parameter
My on the staggered field Hx with fixed (uniform field)
Hz. The solutions were found by first tuning Hz to 0.9T
with pinning fields. The pinning fields are then removed
and the staggered field is increased. The ground state
changes from a Y-ordered antiferromagnet to a state
where My = 0 as Hx increases. The instability of the

Potential explanation for H>Hm

https://arxiv.org/pdf/2001.08219.pdf

Mc

Mb

Ma*

Proposal: very weak exchange anisotropy in 
combination with a weak field-induced staggered 

field (off diagonal g-tensor component)

On two phases inside the Bose condensation dome of Yb2Si2O7
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Recent experimental data on Bose-Einstein Condensation (BEC) of magnons in the spin-gap
compound Yb2Si2O7 revealed an asymmetric BEC dome [1]. We examine modifications to the
Heisenberg model on a breathing honeycomb lattice, showing that this physics can be explained by
competing forms of weak anisotropy. We employ a gamut of analytical and numerical techniques
to show that the anisotropy yields a field driven phase transition from a state with broken Ising
symmetry to a phase which breaks no symmetries and crosses over to the polarized limit.

In recent decades, models of localized spins have been
shown to contain a wealth of familiar and exotic phases of
matter. Interesting orders can be achieved by consider-
ing models with competing interactions, which naively
require the satisfaction of incompatible constraints to
achieve a ground state. Nature’s creative mechanisms
for resolving these tensions within quantum mechanics is
responsible for much of the diversity of phenomena ob-
served within many-body theory [2–8].

A clear example of such physics is found in dimer mag-
netism, where antiferromagnetic behavior is brought into
tension with polarizing magnetic fields [1, 9–13]. In these
systems, spins tend to pair into singlets in the low-field
ground state. A simple example of this phenomenon is
realized in the antiferromagnetic Heisenberg model on
the breathing honeycomb lattice. As illustrated in Fig.
1(a), each spin has a preferred neighbor due to the lattice
distortion which picks out pairs of spins to dimerize in
the ground state.

Applying a magnetic field to the singlet state generi-
cally leads to a BEC transition where a triplet band be-
comes degenerate with the S = 0 ground state, creating
an XY antiferromagnet. In typical experiments [9], it has
been found that strengthening this field eventually polar-
izes the system; no other phase transitions are observed.
Recently, experiments on the compound Yb2Si2O7 have
challenged this paradigm by suggesting the presence of an
intermediate magnetic phase with an unknown underly-
ing order [1]. This Letter proposes a modification to the
Heisenberg model whose ground state order is consistent
with all available thermodynamic data and allows for the
possibility of such a phase diagram.

On the breathing honeycomb lattice, the Heisenberg
model in a magnetic field only realizes the previously
mentioned singlet, XY antiferromagnet and polarized
phases. In order to model the additional phase observed
experimentally, we generalize the Heisenberg model by
introducing two forms of anisotropy:

H =
X

hiji,↵

J
↵
ijS

↵
i S

↵
j � h

X

i,↵

gz↵S
↵
i (1)

FIG. 1. (a) A section of the honeycomb lattice. Each spin
(blue dots) has a preferred neighbor (red bonds) which it in-
teracts with more strongly than others: J1 > J2. The ground
state in zero field is a product of spin singlets along the red
bonds. (b) Schematic T = 0 phase diagram obtained from
DMRG and mean-field theory. From left to right, the phases
are a global spin singlet, Z2 symmetry breaking antiferromag-
net, canted antiferromagnet, and the polarized phase. The
critical points Hc1 and Hcm are in the Ising universality class
while Hc2 is a crossover.

Here i, j index lattice sites and ↵ = x, y, z are Carte-
sian indices. The x, y, z directions correspond, repec-
tively, to the a

⇤
, b = b

⇤
, and c axes of the C2/m lat-

tice structure. In other words, we are considering an
XYZ model for a breathing lattice, and allowing for the
possibility that the z-axis is not a principal axis of the
g-tensor. The true “minimal model” for the physics of
interest is significantly more restricted: it is su�cient to
take J

y
ij > J

x
ij = J

z
ij (for all i, j) and gzy = 0, as y is a

principal axis. More precise constraints discussed below
are imposed by consistency with experiments.
As we will see, there is a regime of parameters which

yields the phase diagram in Fig. 1(b). This phase dia-
gram matches thermodynamic data by providing a mech-
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Summary
• Yb2Si2O7 is the first Yb3+-based 

QDM with BEC-like phase 

• Low energy scale for interactions 
— very low critical fields 

• Signatures of BEC (goldstone 
mode) to within at least 16% of 
largest Heisenberg interaction 

• Strange phase in high field part of 
dome - result of modified weakly 
interacting boson model?

the density of condensed bosons, there is also a uniform spin
component along the field direction (canted XY ordering) that
corresponds to the overall boson density.
We note that for two-level systems, bosons are subject to the

constraint of a hard-core repulsion, e.g., a maximum of one
boson can occupy each effective orbital. This constraint is
essential to guarantee that a two-level system is mapped into
another two-level system (the mapping must not change the
dimension of the Hilbert space). In a mean-field description,
each two-level system is in a linear superposition of the two
states with different magnetization, i.e., a linear superposition
of states with zero and one boson. As the magnetic field
increases, the moments become more polarized along the field
direction and lose their xy component. The ordered moment is
finally suppressed at the second critical pointH ¼ Hc2, where
the spins become fully polarized. Above this second critical
field, the ground state contains one hard-core boson in each
site and can be regarded as a Mott insulator in the bosonic
language.
The two QCPs at Hc1 and Hc2 belong to the BEC

universality class in dimension D ¼ dþ z. The dynamical
exponent is z ¼ 2 because the single-boson dispersion is
quadratic at the BEC QCPs: ω ∝ kz for k ≪ 1 with z ¼ 2.
This quadratic dispersion is a direct consequence of the fact that
the driving parameter (magnetic field) couples to a conserved
quantity (total magnetization Mz): the quadratic shape of the
single-particle excitations of the quantum paramagnet cannot
be modified whenH approachesHc1 because these excitations
have the same Sz eigenvalue. Therefore, the only effect of the
applied field is to close the gap while keeping the dispersion
unaltered all theway up toHc1.Mxy is zero outside of the range
Hc1 < H < Hc2. Inside that interval it is dome shaped, reach-
ing a peak somewhere between the two critical fields. The XY
ordering requires a spontaneous symmetry breaking that
chooses both a size and an orientation of the moments, i.e.,
the order parameter is a two-dimensional vector. Thus, this
ordering can be suppressed either by suppressing the amplitude
of the order parameter or by increasing its phase fluctuations.
BEC-like transitions correspond to the first case where the
amplitude is suppressed, while transitions induced by phase
fluctuations lead to the so-calledO(2) universality class that has
a dynamical exponent z ¼ 1. The critical exponents expected
for the BEC QCP are summarized in Table III. The dispersion

relation of the bononic quasiparticles (magnons in the spin
language) becomes linear,ω ∝ k for k ≪ 1, in the ordered state
that exists between Hc1 and Hc2. This is the Goldstone mode
that is expected from the spontaneous breaking of the U(1)
symmetry.

III. EXPERIMENTS

A. Compounds

In the following we summarize experiments on quantum
magnets that have been described in terms of BEC. The
quantum magnets described in this section benefit from
the fact that BEC behavior can be accessed for values of
the tuning parameters, such as temperature, magnetic field,
and pressure, that are readily accessible in many condensed
matter physics laboratories (see Fig. 5). Indeed, Table I shows
magnetic ordering temperatures compatible with standard
liquid 4He as well as 3He-4He dilution refrigerators, when
magnetic fields produced by either superconducting, resistive,
resistive hybrid, or resistive pulsed magnets are applied.
Simultaneously, the relatively small exchange interactions
that make these systems amenable to liquid helium studies can
be tuned as a function of laboratory-produced external
pressures.
As we saw in the previous sections, the mapping between

spins and bosons requires at least two different low-energy
spin levels. Then, each spin level corresponds to a different
boson occupation and the gap between these levels can be
tuned with magnetic field. In most quantum magnets exhibit-
ing BEC, a nonmagnetic ground state at zero magnetic field is
separated from a magnetic excited state by a gap Δ. This gap
can be tuned to zero by applied magnetic fields, resulting in a
magnetic-field-induced QCP at Hc1 that belongs to the BEC
universality class.
There are several different ways to create the zero-field gap.

The most widely studied method involves S ¼ 1=2 dimers,
and has been investigated in BaCuSi2O6, TlCuCl3,
KCuCl3, Pb2V3O9, Ba3Cr2O8, Sr3Cr2O8, ðCuClÞLaNb2O7,
Sul-Cu2Cl4, and PHCC among others (see Table I). In these
spin dimer materials, two closely coupled S ¼ 1=2 spins
form a dimer with antiferromagnetic coupling J0. Thus, the

FIG. 5 (color online). ðT;HÞ phase diagram for several quantum
magnets studied in the context of BEC.

TABLE III. Temperature dependencies of the thermodynamic
quantities: Phase boundary, magnetization MðTÞ, thermal expansion
ΔL=L; αðTÞ, specific heat CðTÞ, thermal Grüneisen parameter ΓðTÞ,
and magnetic Grüneisen parameter ΓmagðTÞ at the field-induced QCP
at H ¼ Hc as the temperature T → 0. The variable d denotes the
spatial dimensionality of the system. The exponents of the Ising-like
QCP are given for d ¼ 3.

Property XYAFM order Ising (3D)

Phase boundary HcðTÞ −Hcð0Þ Td=2, ν ¼ 2=d T2

Magnetization MðHc; TÞ Td=2 T2

Thermal expansion ΔL
L ðHc; TÞ Td=2 T2

Coefficient of thermal
expansion αðHc; TÞ

Tðd=2Þ−1 T

Specific heat CðHc; TÞ Td=2 T3

Grüneisen parameter Γ ∝ α=C T−1 T−2
Magnetic Grüneisen Γmag ∝ α=M T−1 T−2
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