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Introduction: spin-orbital entanglement

States |g> are spin-orbitally entangled: 

● “Cannot be written as a product of spin and orbital states”:

● Formally – nonzero von Neumann entropy:

                                                                  where

● Example for 1 site:

● An example for 2 sites...

[A. M. Oles et al., PRL 96, 147205 (2006); Y. Chen et al., PRB 75, 195113 (2007); G. Khaliullin & S. Maekawa PRL 85, 3950 (2000)]
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But is the concept of spin-orbital entanglement useful?



Introduction:

spin-orbital entanglement in 3d Mott insulators

[KI Kugel & DI Khomskii, Sov. Phys. Usp. 25, 231 (1982); Y. Tokura and N. Nagaosa, Science 288, 462 (2000)]

 Alternating Orbital (AO) →  Ferromagnetism (FM) Ferroorbital (FO) →  Antiferromagnetism (AF) 

 Goodenough-Kanamori rules in Mott insulators with partially filled 3d orbitals:

  

   

Justification: 

– “typical Kugel-Khomskii” spin-orbital model, i.e. (super)exchange & no spin-orbit coupling:

– spins S and orbital pseudospins T decoupled in a mean-field way:

– consequently: Goodenough-Kanamori rules, valid e.g. in LaMnO
3
 or KCuF

3

MOTIVATION #1: 

spin-orbital entanglement in ground state of 3d Mott insulator



Goodenough-Kanamori rules can be (partially) violated:

– |Orbital Liquid>|AF> in  LaTiO
3

– |Weak AO>|FM>  and anomalously large ferromagnetic J || c in LaVO
3

Origin of the violation:

– spin-orbital correlation nonzero for small Hund's constant η 

   → mean-field decoupling fails

Interestingly: 

– spin-orbital correlation correlation = a good proxy for spin-orbital entanglement

– nonzero spin-orbital entanglement → violation of the Goodenough-Kanamori rules

MOTIVATION #1: 

spin-orbital entanglement in ground state of 3d Mott insulator

[G. Khaliullin & S. Maekawa, PRL 85, 3950 (2000); G. Khaliullin et al., PRL 86, 3879 (2001); A. M. Oles et al., PRL 96, 147205 (2006); W. L. You et al., PRB 92, 054423 (2015)]



Experiment:

RIXS on quasi-1D (||x) cuprate, Sr
2
CuO

3

– |GS> = 1D |AF>|FO>, no S-O entanglement 

– highly dispersive |xz> excitation

– a huge continuum associated with |xz> 

Theory #1:

– “proper” Kugel-Khomskii model

– mean-field decoupling of spin & orbitals

– mostly “single branches”, no intrinsic continuum

– failure → S-O entanglement for excitations?

[K. Wohlfeld et al., PRL 107, 147201 (2011); J. Schlappa et al., Nature 82, 10974 (2012); CC Chen et al., PRB 91, 165102 (2015)]

MOTIVATION #1: 

spin-orbital entanglement in 3d Mott insulators

MOTIVATION #2: 

spin-orbital entanglement in excited state of 3d Mott insulator



Experiment:

RIXS on quasi-1D (||x) cuprate, Sr
2
CuO

3

– |GS> = 1D |AF>|FO>, no S-O entanglement 

– highly dispersive |xz> excitation

– a huge continuum associated with |xz> 

Theory #2:

– “proper” Kugel-Khomskii model

– exact diagonalisation (ED)

– almost perfect agreement → how to understand it?

[K. Wohlfeld et al., PRL 107, 147201 (2011); J. Schlappa et al., Nature 82, 10974 (2012); CC Chen et al., PRB 91, 165102 (2015)]

MOTIVATION #2: 

spin-orbital entanglement in excited state of 3d Mott insulator



  

O (k, w)S(k, w)

Understanding the continuum in orbital excitation → “large-N mean-field”:

–  S and T in terms of  f
i ασ

 constrained fermions 

    (“back to the derivation of Kugel-Khomskii model”) 

–  In k space: |f
k ασ

> = entangled spin-orbital state

–  Hamiltonian after mean-field = free f
k ασ

 fermions

–  Orbital spectrum ~   f+

k+q

 

aσ  
f

k bσ

[Note: one can choose the basis differently & obtain spin-orbital separation...]

ED

“large-N mean-field”

 [D. P. Arovas and A. Auerbach, Phys. Rev. B 38, 316 (1988); CC Chen et al., PRB 91, 165102 (2015)]
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MOTIVATION #2: 

spin-orbital entanglement in excited state of 3d Mott insulator

Any other examples where this concept might be useful?



[BJ Kim et al., PRL 108, 177003 (2012); S. M. Winter et al., Nat. Commun.  8, 1152 (2017)] 

MOTIVATION #3: 

“novel” Mott insulators with strong spin-orbit coupling

“Novel” Mott insulators found in 5d transition metal compounds: 

– gained popularity due to PRL by G. Jackeli and G. Khaliullin (2009) 

– so far mostly 4 iridates: Sr
2
IrO

4
, Ba

2
IrO

4
, Li

2
IrO

3
, Na

2
IrO

3

– no need to introduce them here

– just one point to be stressed on next slide: crucial role of spin-orbit coupling...



(1) Basic ingredients: 

      – Kugel-Khomskii spin-orbital exchange

     – on-site spin-orbit coupling  λ 

(2) Crucial role of strong λ → effective model in terms of j=1/2 isospins: 

        

[G. Jackeli & G. Khaliullin, PRL 102, 017205 (2009)]

MOTIVATION #3: 

“novel” Mott insulators with strong spin-orbit coupling

– “2-1-4” → square lattice:

– physics (almost) like in 2D cuprates  

– “2-1-3” → honeycomb lattice:

– contain Kitaev isospin liquid physics

=



SUMMARY OF MOTIVATION:

How about spin-orbital entanglement

in 5d Mott insulators with strong spin-orbit coupling?

→ 

MAIN QUESTION:

How spin-orbital entanglement depends on the spin-orbit coupling?



Model and methods
Spin-orbital 1D model

1) Hamiltonian

● SU(2)xSU(2) intersite spin-orbital superexchange

● Ising onsite spin-orbit coupling 

● S=1/2 spin and T=1/2 orbital (pseudospin) operators

● 3 independent parameters: α, β, λ

 



Model and methods
Spin-orbital 1D model

2) Lanczos exact diagonalization (ED) on L= 4, 8, 12, 16, 20-site chains

3) Calculated “observables”:

● von-Neumann spin-orbital entanglement entropy in ground state |GS>:

                                                       where

● simple spin, orbital, and spin-orbital correlators in |GS>...:

 



Model and methods
Spin-orbital 1D model

2) Lanczos exact diagonalization (ED) on L= 4, 8, 12, 16, 20-site chains

3) Calculated “observables”:

● von-Neumann spin-orbital entanglement entropy in ground state |GS>:

                                                       where

● ..and a particular intersite spin-orbital correlation function:

 



Model and methods
Spin-orbital 1D model

4) Why study this particular model?

● Superexchange: 

simple, yet nontrivial “Kugel-Khomskii physics”

● Spin-orbit coupling: 

   simplest possible and relatively realistic for S=1/2 & T=1/2 case

● 1D: 

    small finite size effects & analytic “benchmarking” possible

                                                       

 

 [cf. model for p
x
 and p

y
 orbitals RbO

2
, KO

2
, etc. in EPL 96, 27001 (2011) or PRB 102, 085129 (2020)]



Results
Central result = von-Neumann spin-orbital entanglement entropy

● ED on L=12-site chains

● As function of (α, β) and for 3 distinct values of spin-orbit coupling λ...



Results
Central result = von-Neumann spin-orbital entanglement entropy

● Relatively small area of nonzero entanglement

● Why the entanglement largely vanishes? Does it agree with existing results?

● Question #1: Does the λ=0 result make sense?
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● Question #2: Is the “small” λ qualitatively similar to the λ=0 case?  
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Results
Central result = von-Neumann spin-orbital entanglement entropy

● Drastic increase of entanglement in the model parameter space

● Question #3: Why there is such an increase of entanglement for “large” λ?

● Question #4: Why for “large” λ the spin-orbital entanglement can vanish? 

Note: trying to answer questions #3 & #4 is the main point of this talk...



Q1: Does the λ=0 result make sense? 

1) Benchmarking against existing results:

2) Understanding this result → phase diagram of the SU(2)xSU(2) model:

● 3 product phases

● 2 entangled phases:

– AF gapless “SU(4) singlet”

– AF gapped dimerised  

R. Lundgren et al., PRB 86, 22442 (2012)

Y. Q. Li et al., PRL 81, 3527 (1998);

S. K. Pati et al., PRL 81, 5406 (1998);  

R. Lundgren et al., PRB 86, 224422 (2012)



Q2: Is the “small” λ qualitatively similar to the λ=0 case? 

To verify the nature of the ground state at λ=0.1J versus at λ=0

→  

we look at 2 specific values of (α, β) 

& study the evolution of the ground state properties with λ 



Q2: Is the “small” λ qualitatively similar to the λ=0 case? 

To verify the nature of the ground state at λ=0.1J versus at λ=0

→  

we look at 2 specific values of (α, β) 

& study the evolution of the ground state properties with λ 

α=0.5=-β

α=β=0



Q2: Is the “small” λ qualitatively similar to the λ=0 case? 

1) α=0.5=-β: overall still dominant FM/AO, still disentangled

but spatial anisotropy in spins induced → perturbed FMxAO 

2) α=β=0: still no difference between spins and orbitals, still entangled 

but spatial anisotropy induced & changes in        → distinct entangled phase



Q3: Why there is such an increase of entanglement for “large” λ?

● Rewrite the Hamiltonian, highlighting terms responsible for entanglement

● Once α~β~0 → finite spin-orbital entanglement expected for any λ
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Q3: Why there is such an increase of entanglement for “large” λ?

● What about α~-β       ? Why such an increase in entanglement for “large” λ? 

   – “Large” λ supports 

    

    

  – Once α~-β & since

       i.e. the intersite terms fully entangled

                                                 

Indeed:It wants spins and orbitals 

on “equal footing”

α=0.5



Q3: Why there is such an increase of entanglement for “large” λ?

● What about α~-β       ? Why such an increase in entanglement for “large” λ? 

   – “Large” λ supports 

    

    

  – Once α~-β & since

       i.e. the intersite terms fully entangled

                                                 

Indeed:It wants spins and orbitals 

on “equal footing”

α=0.5

“Cooperation” between superexchange & spin-orbit coupling

→ huge increase in spin-orbital entanglement   



Q4: Why for “large” λ the spin-orbital entanglement can vanish? 

Trying the 1st way...:

● Rewrite the Hamiltonian, highlighting terms responsible for entanglement

● Once α ~ β & if                                           due to “large” λ 

    → then perhaps indeed small entanglement for large enough |α|~|β| 

● But this does not nicely explain vanishing entanglement for                       



Q3: Why there is such an increase of entanglement for “large” λ?

2nd way to understand it:

Q4: Why for “large” λ the spin-orbital entanglement can vanish? 



2nd way to understand it:

● Derive an effective model assuming “large” λ

    where J=1/2 is isospin operator with e.g.

● Next, rewrite a good proxy for spin-orbital entanglement in this basis:

● Finally, note that for α=-β →  effective Hamiltonian = XY model:

[Similar procedure as for the t
2g

 spin-orbital model of the iridium oxides, cf. G. Jackeli & G. Khaliullin, PRL 102, 017205 (2009)]

~

Q4: Why for “large” λ the spin-orbital entanglement can vanish? 
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2nd way to understand it:

● Derive an effective model assuming “large” λ

    where J=1/2 is isospin operator with e.g.

● Next, rewrite a good proxy for spin-orbital entanglement in this basis:

● Altogether:

Go to effective Hamiltonian assuming “large” λ and calculate correlators

[Similar procedure as for the t
2g

 spin-orbital model of the iridium oxides, cf. G. Jackeli & G. Khaliullin, PRL 102, 017205 (2009)]

~

Q4: Why for “large” λ the spin-orbital entanglement can vanish? 



Q4: Why for “large” λ the spin-orbital entanglement can vanish? 

2nd way to understand the problem is easier...:

● Go to effective Hamiltonian, valid for “large” λ, and calculate correlators

 

● This shows that the proxy for spin-orbital entanglement:

    vanishes for                         due to the onset of Ising FM (in J isospins)  ~



Summary
Spin-orbital entanglement entropy for 3 values of spin-orbit coupling λ

● For “small” λ: 

   – spin-orbit coupling rather does not induce extra entanglement 

   – phases can be distinct w.r.t. λ=0 

● For “large” λ:

– a novel spin-orbitally entangled phase, even if no entanglement at λ=0

– a novel phase, though with vanishing entanglement   
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Conclusions
[MAIN RESULT] 

For “large” λ:

– a novel spin-orbitally entangled phase, even if no entanglement at λ=0

– a novel phase, though with vanishing entanglement   

[TAKE-HOME MESSAGE]

1) Entanglement can be triggered by a joint action of: 

            on-site spin-orbit coupling and superexchange

2) But entanglement can also vanish, even if spin-orbit coupling is large



Conclusions
[MAIN RESULT] 

For “large” λ:

– a novel spin-orbitally entangled phase, even if no entanglement at λ=0

– a novel phase, though with vanishing entanglement   

[TAKE-HOME MESSAGE]

1) Entanglement can be triggered by a joint action of: 

            on-site spin-orbit coupling and superexchange

2) But entanglement can also vanish, even if spin-orbit coupling is large

Ad. 1) → Supposedly the case of iridates

Ad. 2) → Maybe a bit academic but should not be forgotten



  

PS: RVB mean-field theory 

Schwinger bosons:

Constrained fermions:

Mean-field for constrained fermions:



  

PS: RVB mean-field theory 

Mean-field for constrained fermions:

E
z
 = E cr

zE
z
 = E cr

z  
/ 2E

z
 = 0

Distinct 'topology' of the Fermi 'surface' ( E
z
 ) 

→ distinct orbital and spin spectra ( E
z
 ) 



  

O (k, w)S(k, w)

Note: “analytics” (RVB mean-field) → always entanglement

 

So why separation suggested in another approach to the 'realistic' chain?

→ freedom of choosing the basis in the 'realistic' case:

     orbital q. number for all electrons in lower orbital (incl. spinon) can be neglected

     

     spin q. number for all electrons in upper orbital (→ orbiton ) can be neglected 

PS: Entanglement vs. separation
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