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What is known:

e The Kitaev model on » (b) J.

(a)

lattice can be solved . »
- 2

. o | iy

the ground state is
r-flux.
H=-J, Z oion — Jy Z ooy — J- Z 0; 0%,
WLISE: (1k)ey (jk)e=

e The phase diagram has two gapped phases A1 and Ao,
separated by the gapless line (Jf + Jy2 = JZZ).

——

* red:x, green:y, blue:z  This is already known by S. Yang et al., PRB 76, 180404(R).

 On the gapless line, two Dirac cones appear at (0,0) and (rt,11).



1st guess:
weak symmetry breaking

e As for the honeycomb case,
Kitaev originally explains
the phase difference of
Ax, Ay, and A; using

the condensation of anyons. Jel sm0
gapless
e The three phases are \ . e
B

distinct by the condensation 4

pattern of e- and m-anyons. \ /)
J =1 % %y / J =1
* Indeed the three phases are i N\ T

Jy=J,=0 J=J,=0
not adiabatiacally connected.
A. Kitaev, Ann. Phys. 321, 2 (2006).
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1st guess:
weak symmetry breaking

to the squareoctagon lattice because ﬁfﬁ

e-m anyons do not break ! :,@%
the translation symmetry. (e) 4-8-8
S. Yang et al., PRB 76, 180404(R).

A+ and Az phases are the same in the sense of Kitaev’s
weak symmetry breaking (anyon condensation).

Kitaev’s original theory is not applicable

The 1st guess failed.

Another guess is projective symmetry group (PSQG). If
PSG is different, two phases can be distinct.

4



2nd guess:
projective symmetry group

e Of course, PSG is a successful theory to classify gapped
(or gapless) spin liquids (X. G. Wen 2002 etc.).

e However, Lieb’s theorem applies to the whole phase
diagram, so the t-flux ansatz state stabilizes in the whole
region with the following constant PSG:

PSG = ({Go, GTy,GTy, GO}), (6) ; A -
, 1
where Gy(7) = —1 generates the invariant gauge group. T2 72/

e 1-flux ground state and PSG are
protected by Lieb’s theorem (i.e. same for
A1 and Az), so PSG also does not work to distinguish them.



Correct answer:
SPT order (topological insulator)
of Majorana fermions!



Remark: PSG still plays an
Important role

o Naively, the Kitaev model is in class BDI because ®° =+ 1.

* There is no topological insulator in 2D according to the
topological periodic table.

* However, the time-reversal symmetry is implemented
projectively, which changes the classification. <~ main topic

* Inthe Kitaev model the time reversal is related to the
sublattice symmetry, and ® = (— 1)K effectively breaks

translation in the squareoctagon. /i A
d Q/&

(—1)/ : sublattice parity

v |



Answer 1: Fu-Kane
symmetry indicator

e Since the sublattice parity is not N
commensurate with the translation
on the squareoctagon lattice, the
time reversal connects k to —k + k. ,

kO = (7, ) Iy T 2tk

e This somehow flips the inversion eigenvalue, so the
inversion eigenvalue has a relation at [IM (not TRIM):
S == ¢, (1'5), and S (1) = — &, (I'y).

[IM: Inversion-invariant momentum

N 2
. Thus, the topological Zz invariant is 0 = HH&Q(FZ.).

a4 o=1
7;/' L. Fu and C. L. Kane, PRB 76, 045302 (2007).




Answer 2: Nonlocal
Pfaffian invariants

The topological Z> invariant can be defined using a
Pfaffian invariant, but is not local in the original BZ.

There is an effective Kramers degeneracy between k and
—k + k. The “Kramers degeneracy” is apparent only
after folding the Brillouin zone between k and k + k,

After that, we can define a new time reversal ® _ with

®? = — 1. Then, the definition gets similar to the one by
Fu-Kane-Mele.

5= HPt [w( H H (10)

L. Fuand C. L. Kane, PRB 76, 045302 (2007).



Answer 3: Dimensional
reduction approach

Assuming that the time reversal weakly e Q/-—d’ o
breaks the translation, the unit cell is LA !
expanded twice. d( | >

Then, (half translation x time reversal) becomes one of the
underlying symmetries without a gauge transformation.

O, = TpK obeys O = e?Dki soonthe 2D - k = rline
the symmetry class becomes class DIII.

If we take D = (1/2,1/2), one dimensional subsystem
passing (0,m) and (11,0) is a class DIl superconductor.

C. Fang, M. J. Gilbert, and B. A. Bernevig, PRB 88, 085406 (2013).
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Answer 3: Dimensional
reduction approach

e Thus, we can use a Z: invariant for the 1D DIl topological

superconductor on this subsystem.
/

Pflwg(0, )]
Pflwg(m,0)]

O action at (0,m)

6 = (det UK) (11)

UK, = (a (nlijgo I1 Pp(kj)> 8, (12
§=0

where k; = (jm/n,m — jn/n) and Pp(k) is a spectral
projector onto the occupied states at k [23].

i
S,
1l
= |
[S—

e Reproducing 0, and edge states for & = -1 (A1 phase).

J. C. Budich and E. Ardonne, PRB 88, 134523 (2013).
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Summary

We defined the same invariant in three ways.

A new Z: invariant is beyond the topological periodic table
(cannot be explained by class BDI).

A new classification is beyond PSG or anyon
condensation.

Suggesting the existence of a large number of unknown

gapped spin liquids: topological crystalline spin liquids,
etc.
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