Topological Z₂ invariant in Kitaev spin liquids

Masahiko G. Yamada (Osaka University, JST CREST)

Nov 9th, 2020

correlated-20 program

arXiv:2005.03399

What is known:

- The Kitaev model on the squareoctagon lattice can be solved exactly.
- From Lieb's theorem the ground state is π-flux.

$$H = -J_x \sum_{\langle jk \rangle \in x} \sigma_j^x \sigma_k^x - J_y \sum_{\langle jk \rangle \in y} \sigma_j^y \sigma_k^y - J_z \sum_{\langle jk \rangle \in z} \sigma_j^z \sigma_k^z,$$

- The phase diagram has two gapped phases A_1 and A_2 , separated by the gapless line $(J_x^2 + J_y^2 = J_z^2)$.
- red: x, green: y, blue: z This is already known by S. Yang et al., PRB **76**, 180404(R).
- On the gapless line, two Dirac cones appear at (0,0) and (π,π) .

1st guess: weak symmetry breaking

- As for the honeycomb case, Kitaev originally explains the phase difference of A_x, A_y, and A_z using the condensation of anyons.
- The three phases are distinct by the condensation pattern of e- and m-anyons.
- Indeed the three phases are not adiabatiacally connected.

A. Kitaev, Ann. Phys. 321, 2 (2006).

1st guess: weak symmetry breaking

 Kitaev's original theory is not applicable to the squareoctagon lattice because e-m anyons do not break the translation symmetry.

S. Yang et al., PRB **76**, 180404(R).

- A₁ and A₂ phases are the same in the sense of Kitaev's weak symmetry breaking (anyon condensation).
- The 1st guess failed.
- Another guess is projective symmetry group (PSG). If PSG is different, two phases can be distinct.

2nd guess: projective symmetry group

- Of course, PSG is a successful theory to classify gapped (or gapless) spin liquids (X. G. Wen 2002 etc.).
- However, Lieb's theorem applies to the whole phase diagram, so the π-flux ansatz state stabilizes in the whole region with the following constant PSG:

$$PSG = \langle \{\hat{G}_0, \hat{G}\hat{T}_1, \hat{G}\hat{T}_2, \hat{G}\hat{\Theta}\} \rangle, \tag{6}$$

π-που ground state and PSG are protected by Lieb's theorem (i.e. same for A₁ and A₂), so PSG also does not work to distinguish them.

Correct answer: SPT order (topological insulator) of Majorana fermions!

Remark: PSG still plays an important role

- Naively, the Kitaev model is in class BDI because $\Theta^2 = +1$.
- There is no topological insulator in 2D according to the topological periodic table.
- However, the time-reversal symmetry is implemented projectively, which changes the classification. ←main topic
 - In the Kitaev model the time reversal is related to the sublattice symmetry, and $\Theta = (-1)^j K$ effectively breaks translation in the squareoctagon.

 $(-1)^{j}$: sublattice parity

Answer 1: Fu-Kane symmetry indicator

• Since the sublattice parity is not commensurate with the translation on the squareoctagon lattice, the time reversal connects k to $-k + k_0$.

$$\mathbf{k}_0 = (\pi, \pi)$$

• This somehow flips the inversion eigenvalue, so the inversion eigenvalue has a relation at IIM (not TRIM):

$$\xi_{\alpha}(\Gamma_1) = -\xi_{\alpha}(\Gamma_3)$$
, and $\xi_{\alpha}(\Gamma_2) = -\xi_{\alpha}(\Gamma_4)$.

IIM: inversion-invariant momentum

Thus, the topological Z₂ invariant is $\delta = \prod_{\alpha=1}^{6} \prod_{i=1}^{6} \xi_{\alpha}(\Gamma_{i})$

(b)
$$J_z$$
 $\delta = -1$

$$J_z$$
 $\delta = 1$

L. Fu and C. L. Kane, PRB 76, 045302 (2007).

Answer 2: Nonlocal Pfaffian invariants

- The topological Z₂ invariant can be defined using a Pfaffian invariant, but is not local in the original BZ.
- There is an effective Kramers degeneracy between k and $-k+k_0$. The "Kramers degeneracy" is apparent only after folding the Brillouin zone between k and $k+k_0$.
- After that, we can define a new time reversal Θ_{-} with $\Theta_{-}^2 = -1$. Then, the definition gets similar to the one by Fu-Kane-Mele. $_{N}$

$$\delta = \prod_{i=1}^{2} \operatorname{Pf}[w(\Gamma_i)] = \prod_{\alpha=1}^{N} \prod_{i=1}^{2} [-i\xi_{\alpha}(\Gamma_i)], \quad (10)$$

L. Fu and C. L. Kane, PRB 76, 045302 (2007).

Answer 3: Dimensional reduction approach

 Assuming that the time reversal weakly breaks the translation, the unit cell is expanded twice.

- Then, (half translation × time reversal) becomes one of the underlying symmetries without a gauge transformation.
- $\Theta_S = T_D K$ obeys $\Theta_S^2 = e^{2D \cdot ki}$, so on the $2D \cdot k = \pi$ line the symmetry class becomes class DIII.
- If we take D = (1/2,1/2), one dimensional subsystem passing $(0,\pi)$ and $(\pi,0)$ is a class DIII superconductor.

C. Fang, M. J. Gilbert, and B. A. Bernevig, PRB 88, 085406 (2013).

Answer 3: Dimensional reduction approach

• Thus, we can use a Z_2 invariant for the 1D DIII topological superconductor on this subsystem. Θ_S action at $(0,\pi)$

$$\delta = \left(\det U^K\right) \frac{\Pr[w_S(0,\pi)]}{\Pr[w_S(\pi,0)]}.$$
 (11)

$$U_{\alpha\beta}^{K} = \langle \tilde{\alpha} | \left(\lim_{n \to \infty} \prod_{j=0}^{n} P_{F}(\mathbf{k}_{j}) \right) | \beta \rangle, \qquad (12)$$

where $\mathbf{k}_j = (j\pi/n, \pi - j\pi/n)$ and $P_F(\mathbf{k})$ is a spectral projector onto the occupied states at \mathbf{k} [23].

• Reproducing δ , and edge states for $\delta = -1$ (A₁ phase).

J. C. Budich and E. Ardonne, PRB 88, 134523 (2013).

Summary

- We defined the same invariant in three ways.
- A new Z₂ invariant is beyond the topological periodic table (cannot be explained by class BDI).
- A new classification is beyond PSG or anyon condensation.
- Suggesting the existence of a large number of unknown gapped spin liquids: topological crystalline spin liquids, etc.