Cold Streams in the Hot Halo CGM of z~2-3 Galaxies

Han Aung

Collaborators: Nir Mandelker, Avishai Dekel, Yuval Birnboim, Daisuke Nagai, and more ...

KITP Cosmic Web Conference

האוניברסיטה העברית בירושלים דאוניברסיטה העברית בירושלים דאוניברסיטה דאוניברסיטה דאוניבר MORTIMER B. ZUCKERMAN STEM LEADERSHIP PROGRAM

Cosmic Web and Galaxy Evolution

Star formation in galaxies is dictated by how accreted gas from the cosmic web is transported to the galaxy at the center of dark matter halos.

Cold Streams Feeding CGM at High-z

Massive galaxies at high-z (>10¹² M_{\odot} , z>2) have cold streams penetrating hot shock-heated CGM as main mode of accretion.

Accretion shock: outermost boundary of hot halo gas, analogous to dark matter splashback radius (Aung+21)

Birnboim & Dekel 03, Keres+ 05, Dekel & Birnboim 06, Fielding+ 17

Simulated vs Observed CGM

VELA simulations: Ceverino+14, Zolotov+15

Matsuda+11 Subaru, z~3

Observations of CGM show clumpy, dense, cold, Lyman- α emitting clouds.

SImulated vs Observed CGM- Lyman α

Simulations suggest observed Lyman-α blobs may be powered by cold streams infalling and dissipating gravitational energy. (Dijkstra & Loeb 09, Goerdt+10, Steidel+00, Matsuda+06,11)

What is the mechanism for this dissipation?

Cold Gas Stream in Hot Halo

Dense streams cool efficiently: $T_s \sim 10^4 K$ form cooling curve

Dilute halo doesn't cool: $T_b \sim 10^6 K$ from shock heating

Pressure equilibrium sets $\rho_s / \rho_b = T_b / T_s$

DN1= $\delta \sim \rho_{s} / \rho_{b} \sim 30-300$

Stream is supersonic relative to halo

DN2= **M**_b~ v/c_b~0.5-2

very supersonic relative to itself $v/c_s \sim 10$

Stream radii constrained by cosmological accretion rate

DN3=
$$\mathbf{R}_{\mathbf{s}} / \mathbf{R}_{\mathbf{vir}} \sim t_{sc} / t_{v}$$

Predicted Stream Parameters

For $M_v = 10^{12.5} M_{\odot}$ at z=2, $\delta \sim 200$, $n_s \sim 0.01 \text{ cm}^{-3}$, $R_s / R_v \sim 0.1$

Kelvin Helmholtz Instability (KHI)

Adiabatic (Mandelker+16,19, Padnos+18): KHI disrupts and decelerates the stream. Magnetic field (Berlok & Pfrommer 19, Mandelker+in prep): Suppresses KHI Self-gravity (Aung+20): Suppresses KHI, but forms clumps at high gravity due to gravitational collapse.

KH Instability with Cooling

Mandelker+2020a

<u>Cooling</u>

Depends on additional dimensionless number:

 $\tau = t_{cool}/t_{dis}$ ratio of the cooling time in mixing region vs stream disruption time

Differences

- Background condenses onto stream
- Stream remains dense

Similarities

- Entrains mass
- Decelerates

<u>No cooling</u>

Differences

- Stream expands into background
- Stream density decreases

Similarities

- Entrains mass
- Decelerates

KH Instability with Cooling

Mandelker+2020a

<u>Cooling</u>

Depends on additional dimensionless number:

 $\tau = t_{cool}/t_{dis}$ ratio of the cooling time in mixing region vs stream disruption time

$\tau < 1$ Differences

- Background condenses onto stream
- Stream remains dense

Similarities

- Entrains mass
- Decelerates

 τ >1: same as no cooling

<u>No cooling</u>

Differences

- Stream expands into background
- Stream density decreases

Similarities

- Entrains mass
- Decelerates

Evolution of Cooling Stream

Mass Entrainment

Deceleration of Stream

Lyman-a Emission

Cooling stream entrains mass, decelerates, and dissipated energy may be observed as Lyman- α (lower than observed luminosity of Lyman- α , but no halo potential yet).

Prediction for Cold Stream in High-z Galaxies

 $t_{cool} < t_{dis}$ for the stream to survive.

$$t_{dis} \mathbf{x} t_{sc} \mathbf{x} R_{sc}$$

There is a critical stream radius above which the stream will survive due to cooling. KHI below $R_{s,crit}$

$$R_s^2 \propto \frac{\dot{M}}{\rho_s v} \propto \frac{M(1+z)^{2.5}}{\delta \rho_{vir} v}$$

based on predicted stream parameters

At z=2, almost all streams are stable.

Analytic Model of Cold Stream in Halo Potential

Halo potential causes:

- stream to accelerate: counteract the deceleration of stream
- narrower stream: faster sound crossing and entrainment
- increased density: faster cooling and entrainment

$$t_{sc} \propto r_s(r) \propto r^{\beta/2}$$

$$t_{cool} \propto \rho(r)^{-1} \propto r^{\beta}$$

$$t_{ent} \propto \left(\frac{t_{cool}}{t_{sc}}\right)^{1/4} t_{sc} \propto r^{5\beta/8}$$

 β is 2 for conic stream, and constant density contrast with isothermal halo.

Varying β for isothermal stream in hydrostatic CGM within NFW halo

Analytic Model of Cold Stream in Halo Potential

Halo potential causes:

- stream to accelerate: counteract the deceleration of stream
- narrower stream: faster sound crossing and entrainment
- increased density: faster cooling and entrainment

$$t_{sc} \propto r_s(r) \propto r^{\beta/2}$$

$$t_{cool} \propto \rho(r)^{-1} \propto r^{\beta}$$

$$t_{ent} \propto \left(\frac{t_{cool}}{t_{sc}}\right)^{1/4} t_{sc} \propto r^{5\beta/8}$$

$$\mathcal{L}_{ ext{diss}} \simeq \left| \dot{E}_{ ext{k}}
ight| + rac{5}{3} \left| \dot{E}_{ ext{th}}
ight|.$$

Both energy:
$$\dot{E}_k, \dot{E}_{th} \propto \frac{1}{t_{ent}}$$

Entrainment time scale controls both energy dissipation rates as the entrainment causes the deceleration and radiation of thermal energy.

Cooling Stream in Halo Potential

Radial mass flux of cold gas>1 implies additional source other than radial inflow from stream: Entrainment of cooling CGM gas onto cold stream

stream gas

Faster entrainment and acceleration leads to more cold gas flowing into the galaxy than dark matter halo.

Implication for Galaxy Formation

Bathtub/equilibrium model: Balancing the inflow, outflow of gas and formation of stars in ISM (Dave+12, Lilly+13, Dekel & Mandelker 2014)

Implication for Galaxy Formation

The model underpredicts sSFR of z=2-3 galaxies, but not z>5 (Dekel & Mandelker 2014).

Observations at z>3 for M<Mshock, no hot CGM, good agreement

Observations at z=1-3 for $10^{12}M_{\odot}$, can sustain hot CGM, disagreement

Implication for Galaxy Formation

The model underpredicts sSFR of z=2-3 galaxies, but not z>5 (Dekel & Mandelker 2014).

The difference can be reconciled if the cold gas accretion onto the galaxy is boosted from cosmological accretion with s=[2-4]

$$\frac{\dot{M}}{M} = s\left(\frac{\dot{M}}{M}\right)_{\text{fiducial}}$$

Lyman-a Emission of Cooling Stream in Halo Potential

Stream flow 10^{42} 10^{41} $\stackrel{(1)}{\overset{(1)}{\wedge}}_{7}^{0}$ $V_s/V_{\rm vir}, \, \delta, \, n_H$ 1,100,0.01 10^{39} 1,300,0.01 1, 30, 0.01 10^{38} 1, 100, 0.1analytic 10^{37} 0.2 0.4 0.8 1.00.6 $r/R_{\rm vir}$

Total luminosity integrated outside r

Emission from cold stream can explain the observed Lyman-a emission in CGM >10⁴²erg/s.

Summary

- Cold streams feeding high-z galaxies can dissipate kinetic and thermal energy and entrains mass as it mixes with hot CGM due to KHI.
- Halo potential causes stream to get narrower, accelerate, and increases the dissipation of energy and entrainment rate.
- Cold gas accretion onto the galaxy is boosted from cosmological accretion by a factor of [2-4], supplied by entrainment and cooling of CGM gas
- Lyman- α emission through the CGM can match the observed luminosity of Lyman- α blobs.

Next Steps

- Combine halo potential + cooling + self-gravity + MHD
- Cosmological simulations with refinements on stream

Mass Entrainment

Hot gas mixes with cold gas, cools down and condenses onto stream.

Deceleration of Stream

Inflowing stream mixes with background without momentum -> stream decelerates over time (no halo potential yet)

Lyman α with Halo Potential

As the stream falls into halo, and entrainment is faster, and emission is stronger

Lyman α with Halo Potential

Halo potential pushes Lya luminosity above observed values (10⁴²⁻⁴⁴) in inner region of the halo.