The Cosmic Web as a Probe of Inflationary Physics

Nathan J. Carlson (CITA, Toronto) **Dick Bond, Jonathan Braden, Thomas Morrison** Cosmic Web @ KITP - 9 Feb 2023

In this talk I'll discuss how we can look for signatures of novel early-universe physics in the Cosmic Web

What is non-Gaussianity and how do we measure it?

We will soon be putting out a new public release of WebSky catalogues with a range of non-Gaussian initial conditions.

The Peak-Patch/WebSky Pipeline

for fast generation of mock cosmological observables

Constraining inflation with statistics of mock sky maps

The CMB is highly Gaussian, but all our theories predict some deviation. Inflation transports modes outside the horizon, the scalar perturbation field ζ is a conserved quantity outside the horizon

Gaussian zeta and overdensity fields. These are used as the initial conditions for Peak Patch.

coupling to a single underlying Gaussian field. This is tightly constrained by bispectrum.

The lowest-order non-Gaussian term that can arise from single-field inflation is from a quadratic

 $\zeta(\mathbf{x}) = \zeta_g(\mathbf{x}) + f_{\mathsf{NL}} \left(\zeta_g^2(\mathbf{x}) - \langle \zeta_g^2(\mathbf{x}) \rangle \right)$ Non-Gaussian component is a function of Gaussian component

CMB bispectrum measurements put fairly tight constraints on various different types of perturbative non-Gaussianity $f_{\text{NI}}^{\text{local}} = -0.9 \pm 5.1$, $f_{\text{NI}}^{\text{equil}} = -26 \pm 47$, $f_{\text{NI}}^{\text{ortho}} = -38 \pm 24$ with 1- σ C.L. [1905.05697]

The lowest-order non-Gaussian term that can arise from single-field inflation is from a quadratic coupling to a single underlying Gaussian field. This is tightly constrained by bispectrum.

CMB bispectrum measurements put fairly tight constraints on various different types of perturbative non-Gaussianity $f_{\text{NI}}^{\text{local}} = -0.9 \pm 5.1$, $f_{\text{NI}}^{\text{equil}} = -26 \pm 47$, $f_{\text{NI}}^{\text{ortho}} = -38 \pm 24$ with 1- σ C.L. [1905.05697]

There are other mechanisms that can generate non-Gaussianity which is not correlated to the underlying Gaussian field. In such cases, similar " f_{NL} " give considerably less effect.

Gaussian overdensity $\delta_g(\mathbf{x})$

Underlying Gaussian sourced only by $\zeta_g(\mathbf{x})$

Classical f_{NL} non-Gaussianity sourced by $\zeta(\mathbf{x}) = \zeta_g(\mathbf{x}) + f_{\mathsf{NL}} \left(\zeta_g^2(\mathbf{x}) - \langle \zeta_g^2(\mathbf{x}) \rangle \right)$ with $f_{\rm NL} = 10^5$.

Correlated Gaussian overdensity $\delta_{g}(\mathbf{x})$

Uncorrelated Gaussian overdensity $\delta_{\rho}(\mathbf{x})$

Uncorrelated gaussian field $\chi_g(\mathbf{x})$ with nearly scale-invariant power spectrum giving rise to non-Gaussianity sourced by $\zeta(\mathbf{x}) = \zeta_g(\mathbf{x}) + \tilde{f}_{\mathsf{NL}} \left(\chi_g^2(\mathbf{x}) - \langle \chi_g^2(\mathbf{x}) \rangle \right)$ with $f_{\rm NL} = 10^5$

Other mechanisms generate non-Gaussianity from uncorrelated primordial fields coupling to observables via functional forms that don't fit the $f_{\rm NI}$ series expansion approach

Generalized functional form

$$\zeta(\mathbf{x}) = \zeta_g(\mathbf{x}) + F_{\mathsf{NL}} \left[\chi_g(\mathbf{x}) \right]$$

We are particularly interested in models that give rise to intermittent non-Gaussianity peaks.

Model by Morrison et al 2023 (in prep) inflationary fields traverse an instability in the potential and injects power at some characteristic scale

Other mechanisms generate non-Gaussianity from uncorrelated primordial fields coupling to observables via functional forms that don't fit the f_{NL} series expansion approach

Transverse inflationary field χ

Relative power is a better measure of the amplitude of non-Gaussianity than $f_{\rm NL}$

$$\zeta(\mathbf{x}) = \frac{\sigma_8^{Planck}}{\sigma_8^{ng}} \left[\zeta_g(\mathbf{x}) + F_{\text{NL}} \left[\chi_e(\mathbf{x}) \right] \right]$$

Where $\sigma_{8,\text{Obs}}$ is the standard deviation in the density perturbations $\delta(\mathbf{x})$ smoothed at a scale of 8 h^{-1} Mpc so we can use the *Planck* result for instance.

The (mass) Peak Patch-WebSky pipeline has native support for a diversity of non-Gaussian initial conditions, provides a fast and robust

Gaussian DM halo catalogue

Peak Patch dark matter halo catalogues showing a 50 Mpc thick slab projected onto a plane (Carlson+23 in prep).

The (mass) Peak Patch-WebSky pipeline has native support for a diversity of non-Gaussian initial conditions, provides a fast and robust

Peak Patch dark matter halo catalogues showing a 50 Mpc thick slab projected onto a plane (Carlson+23 in prep).

tSZ and kappa slices from z ~ 2.5 to z ~ 3.5

tSZ and kappa slices from z ~ 2.5 to z ~ 3.5

 $8.182^{\circ} \times 8.182^{\circ}$ integrated CIB signal from $z \in [2.53, 3.56]$ with Gaussian initial conditions.

 $8.182^{\circ} \times 8.182^{\circ}$ integrated CIB signal from $z \in [2.53, 3.56]$ with non-Gaussian initial conditions.

By measuring harmonic power spectra from these mock observables, we can directly compare the results of these novel non-Gaussian cosmologies to data

Upcoming Public non-Gaussian WebSky catalogue, we (may) take requests

Conclusion

- The (mass) Peak-Patch/WebSky pipeline is well-suited for mocking universes with any non-Gaussian initial conditions.
- WebSky mocks can be used to put constraints on multi-field inflation models.
- We will be updating the existing public WebSky catalogues to include various non-Gaussian models. If you have a favourite model, let us know, we may include it!

Fly-through CO line intensity maps with and without the inflaton traversing an instability during inflation (courtesy of Dongwoo Chung)

G, z = 2.391

nonG, z = 2.391

Conclusion

- The (mass) Peak-Patch/WebSky pipeline is well-suited for mocking universes with any non-Gaussian initial conditions.
- WebSky mocks can be used to put constraints on multi-field inflation models.
- We will be updating the existing public WebSky catalogues to include various non-Gaussian models. If you have a favourite model, let us know, we may include it!

UNIVERSITY OF TORONTO

Fly-through CO line intensity maps with and without the inflaton traversing an instability during inflation (courtesy of Dongwoo Chung)

2

Dark matter halo catalogues are generated using the mass Peak Patch algorithm

- Peak Patch uses RG flow and approximate dynamics to identify structures that will form DM halos in the DM overdensity field of the early universe. A merging and exclusion algorithm is run to avoid double counting mass.
- Density **peaks** in initial fields are treated as **patches** of dynamically hot fluid with highly nonlinear dynamics. In the space between patches, flows are laminar, with a mix of warm and cool dynamics, well-described by low-order perturbations from a uniform fluid, so patch displacement can be done with low-order perturbations.
- DM halo catalogues from general initial conditions without expense of full N-body simulations.

Stein et al., 2020 (arXiv:1810.07727)

