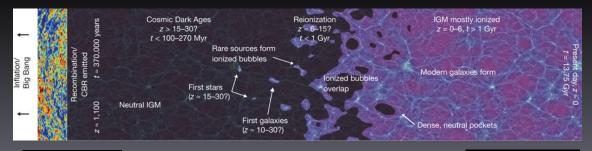

([CII]) single-dish line-intensity mapping

—observational and theoretical outlook at the epoch of reionisation



Dongwoo Chung

CITA/Dunlap Institute, University of Toronto

2023/02/07

the name of the game: map large cosmic volumes

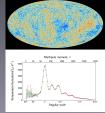
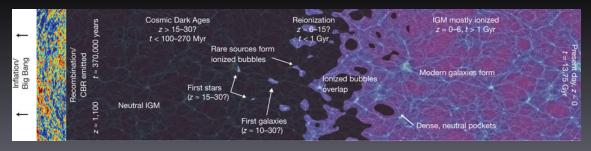



Figure: Planck (IPAC website gallery)

Figure: Robertson+10 (arXiv:1011.0727)

Figure: Blanton via SDSS blog

the name of the game: map large cosmic volumes at high redshift

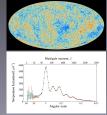
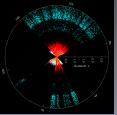
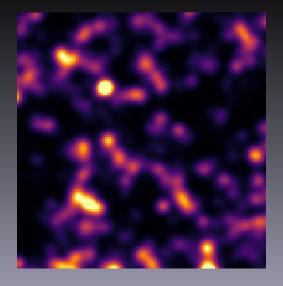
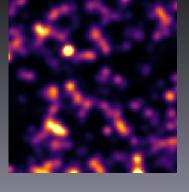


Figure: Planck (IPAC website gallery)

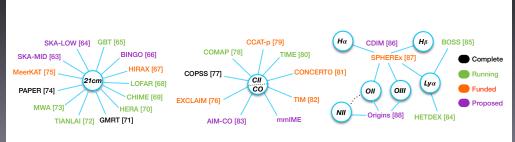

Figure: Blanton via SDSS blog

line-intensity mapping: spatial-spectral fields, not individual sources

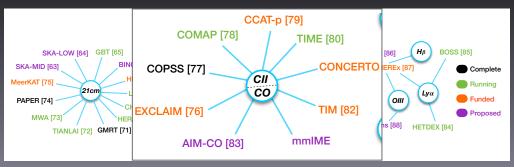
 $I(\mathbf{x})$ [or $T(\mathbf{x})$], not \mathbf{x}_i

line-intensity mapping: spatial-spectral fields, not individual sources

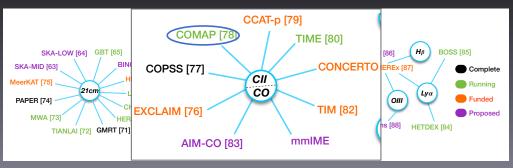
summary statistics


- *P*(*k*) (and anisotropic moments)
- voxel intensity distribution
- cross-correlations with other observables

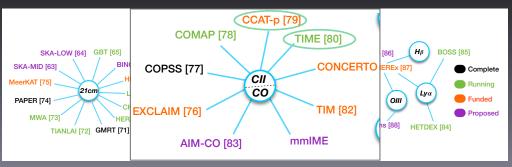
incorporate clustering of faint sources


astrophysics/cosmology

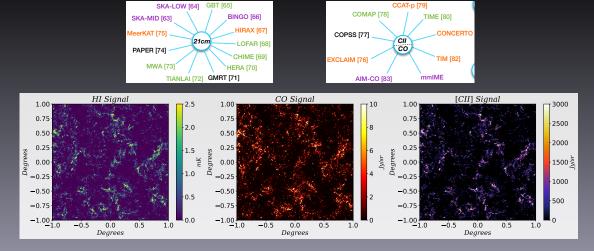
- luminosity functions
- cosmic densities of star-formation rate, molecular gas, ...
- the nature of the high-z cosmic web and the processes that flow through and illuminate it


(5/36)

Kovetz+19 [1903.04496]

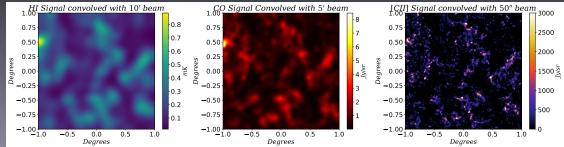


Kovetz+19 [1903.04496]


Kovetz+19 [1903.04496]

(8/36)

Kovetz+19 [1903.04496]


LIM will probe the same cosmic web with different lines

Simulations: courtesy Patrick Horlaville

LIM will probe the same cosmic web with different lines

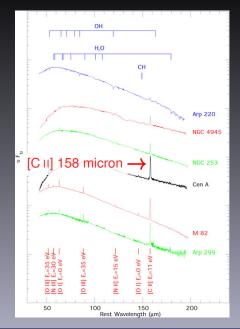
Simulations: courtesy Patrick Horlaville

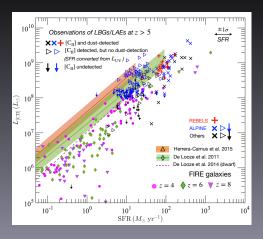
the future will see cosmological LIM experiments!

Cosmology with mm-wave line intensity mapping

Spec- hrs	Example	Time- scale	$\sigma(f_{ m NL})$	$\sigma(M_{ u})$ (meV)	$\sigma(N_{ m eff})$	$\sigma(w_0) \times 10^2$	$\sigma(w_{\rm a}) \times 10^2$	FoM
10^{5}	TIME, CCAT-p, SPT-SLIM	2022	5.1 (5.1)	61 (65)	0.1 (0.11)	13 (14)	51 (52)	0.0015
10^{6}	TIME-EXT	2025	4.7 (5)	43 (47)	0.082 (0.087)	5.3 (6.3)	21 (26)	(0.09-0.1)
107	SPT-like 1 tube	2028	3.1 (4.2)	23 (28)	0.043 (0.051)	2 (2.2)	8.5 (9.7)	(1.7-3.1)
108	SPT-like 7 tubes	2031	1.2 (3)	9.7 (13)	0.02 (0.023)	0.93 (1)	3.8 (4.3)	(9.5-28)
109	CMB-S4-like 85 tubes	2037	0.48 (2.4)	4.1 (6.8)	0.013 (0.016)	0.61 (0.73)	2.1 (2.8)	(21-108)
Planck			5.1	83	0.187	41	100	

Table: from Karkare+22 whitepaper [arXiv:2203.07258]


the future will see cosmological LIM experiments!


Cosmology with mm-wave line intensity mapping

Spec- hrs	Example	Time- scale	$\sigma(f_{ m NL})$	$\sigma(M_{ u})$ (meV)	$\sigma(N_{ m eff})$	$\sigma(w_0) \times 10^2$	$\sigma(w_{\rm a}) \times 10^2$	FoM
10 ⁵	TIME, CCAT-p, SPT-SLIM	2022	5.1 (5.1)	61 pathfi	nders targetii	ng initial de	tections	0.0015
10^{6}	TIME-EXT	2025	4.7 (5)			5.3 (6.3)		(0.09-0.1)
107	SPT-like 1 tube	2028	³ interme	ediate sta	ges characte	rising line-i	ntensity clu	stering
108	SPT-like 7 tubes	2031	1.2 (3)		0.02 (0.023)	0.93 (1)		(9.5-28)
109	CMB-S4-like 85 tubes	2037	0.48 (2.4)		0.01cosmolo	gical LIM		(21-108)
	Planck		5.1	83	0.187	41	100	

Table: from Karkare+22 whitepaper [arXiv:2203.07258]

the target for mm-wave LIM: [C II], a bright FIR cooling line

Figures: (Left) Fischer00 (arXiv:astro-ph/0009395), (Right) Liang+23 (incl DTC, arXiv:2301.04149)

first steps to cosmological LIM: pathfinders eyeing an initial detection

CONCERTO (2021-)

TIME (2023–)

EoR-Spec on FYST (2024?–)

see also: SPT-SLIM, balloon-based experiments at higher frequencies (EXCLAIM, TIM)

the Tomographic Ionised-carbon Mapping Experiment

Abby Crites [PI] Sophia Pereira Sukhman Singh Ibrahim Shehzad

Caltech JPL

Jamie Bock Matt Bradford Tzu-Ching Chang Yun-Ting Cheng Clifford Frez Jonathon Hunacek Paolo Madonia Lorenzo Moncelsi Guochao (Jason) Sun Anthony Turner

Chao-Te Li Tashun Wei

Dan Marrone Nick Emerson Ryan Keenan Isaac Trumper Evan Mayer

RIT Rochester Institute of Technology

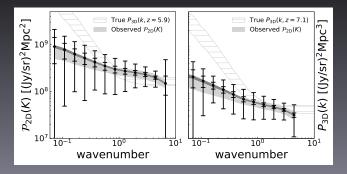
Mike Zemcov Victoria Butler Ben Vaughan Tess Caze-Cortes Caleb Greenburg

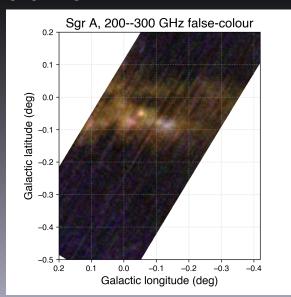
Samantha Berek Dongwoo Chung Dang Pham Baria Khan Lisa Nasu-Yu

supported in part by:

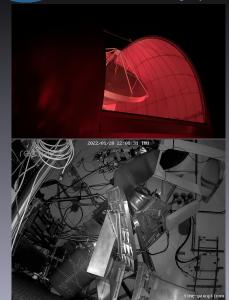
- conservative(-ish)
 instrumentation to ease development and analysis
- initial survey targeting 1.3 deg × 0.43 arcmin (180 × 1 beams) over 1000 hours
- engineering runs at ARO in winter 2019–20 and 2021–22
- expect full science operations to begin 2023

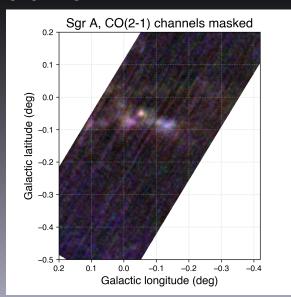
the Tomographic Ionised-carbon Mapping Experiment





Figure: Sun+21 (arXiv:2012.09160)

- conservative(-ish) instrumentation to ease development and analysis
- initial survey targeting 1.3 deg \times 0.43 arcmin (180 \times 1 beams) over 1000 hours
- engineering runs at ARO in winter 2019-20 and 2021-22
- expect full science operations to begin 2023


from 2022 engineering run w/ partially integrated instrument we show working spectral imaging using Galactic CO emission



from 2022 engineering run w/ partially integrated instrument we show working spectral imaging using Galactic CO emission

the Epoch of Reionisation Spectrometer (EoR-Spec) on FYST part of the CCAT-prime facility

Cosmic Web @ KITP, 2023/02/07

- the CCAT-prime observatory
 - a partnership between American and German institutions
 - Cornell, CATC (led by Waterloo), Köln, Bonn, MPIA, University of Chile. ...
- the Fred Young Submillimetre Telescope (FYST like 'feast')
 - site on Cerro Chajnantor at 5600 m elevation (40 m below summit/TAO, 540 m above ALMA/APEX)
 - extremely stable, low-emissivity, large-FoV system optimised for fast mapping speed across broad frequency range
- [C II] LIM at EoR is one of the key science programmes of CCATp

Figure: courtesy Vertex/CCATp

the Deep Spectroscopic Survey on FYST

will bring OoM improvements in sensitivity over current surveys (incl. TIME)

- 4000-hour programme in total
- two 4 deg² fields (E-COSMOS. E-CDFS)
- less conservative instrumentation allows for large detector counts over wider observing band
- high site and low emissivity aid the first steps down the path to wide-field/cosmological LIM

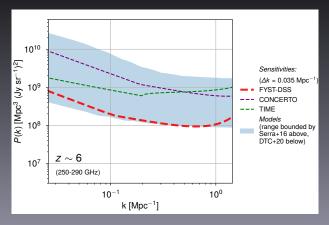
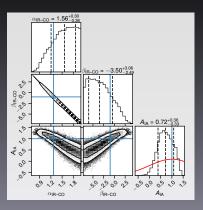
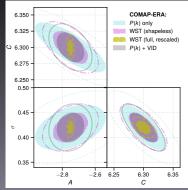
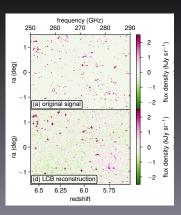




Figure: adapted from CCATp Collaboration+21 (arXiv:2107.10364)


my work tries to anticipate and implement LIM analyses

arXiv:2203.12581: cross-correlating LIM and WL data to measure correlated nuisances (incl. IA)

arXiv:2207.06383: exploration of wavelet scattering transform applications to LIM

arXiv:2209.07500: using covariance-based filtering to improve linear-scale LIM reconstruction

(22/36)

... which demands a framework for anticipating the signal

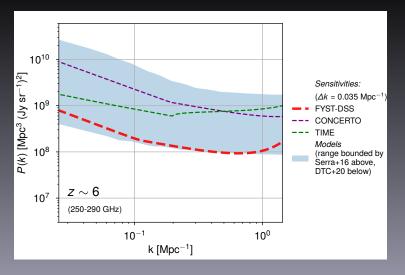
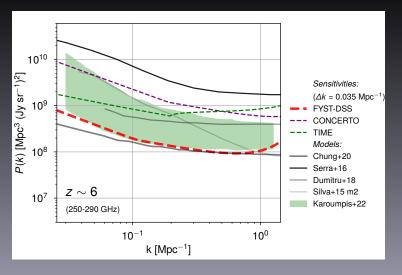
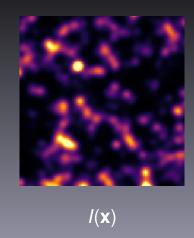
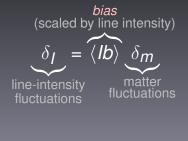
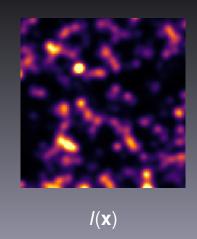
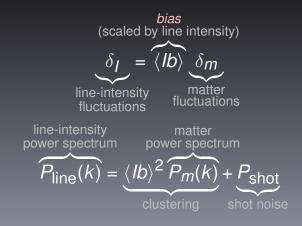


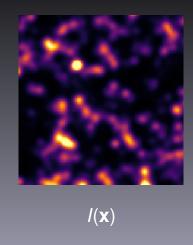
Figure: adapted from CCATp Collaboration+21 (arXiv:2107.10364)

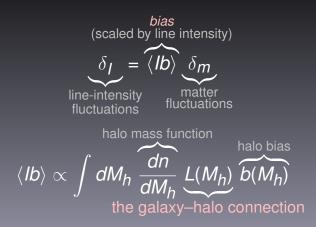
... which demands a framework for anticipating the signal


Figure: adapted from CCATp Collaboration+21 (arXiv:2107.10364)


the galaxy-halo connection drives LIM design and analysis




the galaxy-halo connection drives LIM design and analysis

the galaxy-halo connection drives LIM design and analysis

[C II]—SFR: empirically observed, tenuous physical connection

Photo: Lichen Liang (CITA)

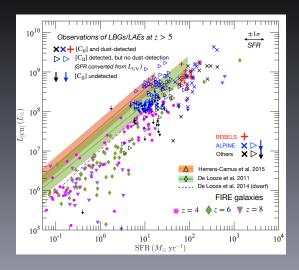


Figure: Liang+23 (incl DTC, arXiv:2301.04149)

[C II]-SFR: empirically observed, tenuous physical connection

Photo: Lichen Liang (CITA)

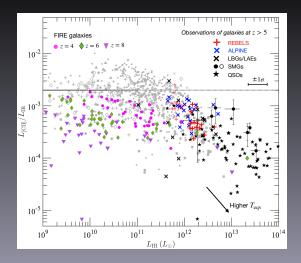


Figure: Liang+23 (incl DTC, arXiv:2301.04149)

Photo: Lichen Liang (CITA)

(30/36)

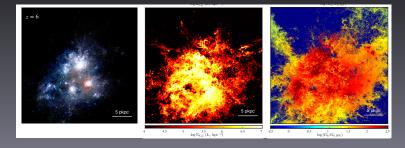


Figure: Liang+23 (incl DTC, arXiv:2301.04149)

Photo: Patrick Horlaville (McGill), Lichen Liang (CITA)

physical insight grounded on FIRE simulations and observational data:

$$L_{ ext{[C\,II]}} \propto f_{ ext{[C\,II]}} M_{ ext{gas}} Z_{ ext{gas}} \sim M_{ ext{H\,I}} Z_{ ext{gas}}$$

corresponding halo model:

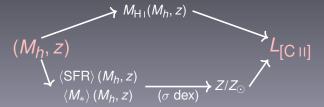


Photo: Patrick Horlaville (McGill), Lichen Liang (CITA)

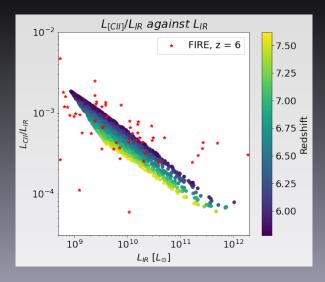


Figure: Horlaville+23 in prep (preliminary!)

Photo: Patrick Horlaville (McGill), Lichen Liang (CITA)

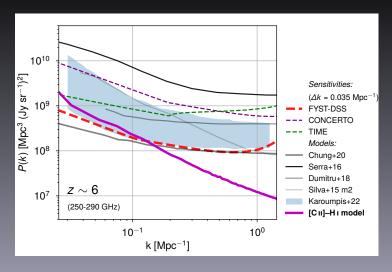


Figure: (preliminary!)

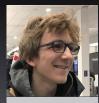


Photo: Patrick Horlaville (McGill), Lichen Liang (CITA)

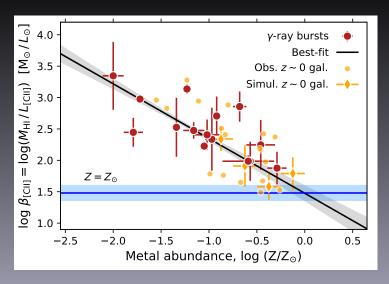


Figure: Heintz+21 (arXiv:2108.13442)

Photo: Patrick Horlaville (McGill), Lichen Liang (CITA)

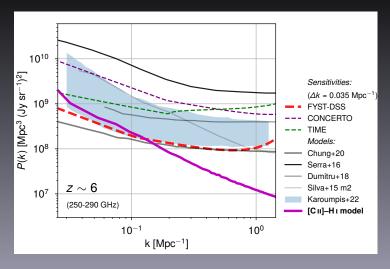


Figure: (preliminary!)

in summary

- line-intensity mapping will observe the multiscale cosmic web, surveying large-scale structure lit up by small-scale baryonic physics
- experimental progress in mm-wave LIM is picking up
 - TIME commissioning data cause for optimism for 2023 science start date
 - FYST construction proceeding, EoR-Spec survey and instrument development continuing
- getting the galaxy—halo connection right (as much as possible) is key to the theoretical outlook of [C II] LIM and requires interaction across astrophysicists working at all scales
 - pairing small-scale simulations with observational data and physical insights can inform halo models for even approximate cosmological simulations
 - cross-correlation between LIM and other LSS/Cosmic Web probes could be vital for producing interpretable scientific output

(36 / 36)

the galaxy-halo connection is only truly fully probed through multiple tracers

line-intensity fluctuations different line-intensity fluctuations
$$\delta_{T,1} = \langle Tb \rangle_1 \delta_m$$
 $\delta_{T,2} = \langle Tb \rangle_2 \delta_m$ $\delta_{n,gal} = b_{gal} \delta_m$ same matter fluctuations $\delta_{n,gal} = b_{gal} \delta_m$ still the same matter fluctuations $\delta_{n,gal} = b_{gal} \delta_m$ still the same matter fluctuations $\delta_{n,gal} = b_{gal} \delta_m$ still the same matter fluctuations $\delta_{n,gal} = b_{gal} \delta_m$ still the same matter fluctuations $\delta_{n,gal} = b_{gal} \delta_m$ still the same matter fluctuations $\delta_{n,gal} = b_{gal} \delta_m$ still the same matter fluctuations $\delta_{n,gal} = b_{gal} \delta_m$ still the same matter fluctuations $\delta_{n,gal} = b_{gal} \delta_m$ still the same matter fluctuations $\delta_{n,gal} = b_{gal} \delta_m$ still the same matter fluctuations $\delta_{n,gal} = b_{gal} \delta_m$ still the same matter fluctuations $\delta_{n,gal} = b_{gal} \delta_m$ still the same matter fluctuations $\delta_{n,gal} = b_{gal} \delta_m$ still the same matter fluctuations $\delta_{n,gal} = b_{gal} \delta_m$ still the same matter fluctuations $\delta_{n,gal} = b_{gal} \delta_m$ still the same matter fluctuations $\delta_{n,gal} = b_{gal} \delta_m$ still the same matter fluctuations $\delta_{n,gal} = b_{gal} \delta_m$ still the same matter fluctuations $\delta_{n,gal} = b_{gal} \delta_m$ still the same matter fluctuations $\delta_{n,gal} = b_{gal} \delta_m$ still the same matter fluctuations $\delta_{n,gal} = b_{gal} \delta_m$ still the same matter fluctuations $\delta_{n,gal} = b_{gal} \delta_m$ still the same matter fluctuations $\delta_{n,gal} = b_{gal} \delta_m$ still the same matter fluctuations $\delta_{n,gal} = b_{gal} \delta_m$ still the same matter fluctuations $\delta_{n,gal} = b_{gal} \delta_m$ still the same matter fluctuations $\delta_{n,gal} = b_{gal} \delta_m$ still the same matter fluctuations $\delta_{n,gal} = b_{gal} \delta_m$ still the same matter fluctuations $\delta_{n,gal} = b_{gal} \delta_m$ still the same matter fluctuations $\delta_{n,gal} = b_{gal} \delta_m$ still the same matter fluctuations $\delta_{n,gal} = b_{gal} \delta_m$ still the same matter fluctuations $\delta_{n,gal} = b_{gal} \delta_m$ still the same matter fluctuations $\delta_{n,gal} = b_{gal} \delta_m$ still the same matter fluctuations $\delta_{n,gal} = b_{gal} \delta_m$ still the same matter

linear covariance-based filtering

can use cross-correlations to look right through interloper emission

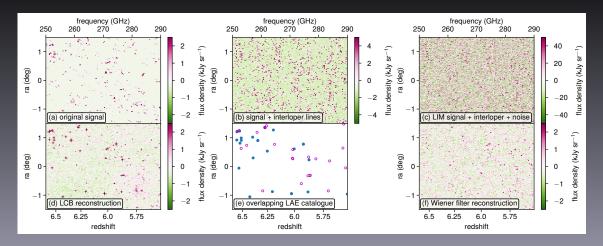


Figure: DTC23 (arXiv:2209.07500)

the future of cm/mm-wave LIM reasons for optimism?

- generalising CMB expertise and heritage towards spectroscopy
 - the work of developing ways to build and read out large focal planes has been done
 - continuum foregrounds have been mapped to death at these wavelengths
 - direct involvement and overlap between LIM and CMB
 - Oslo CMB+CO group on COMAP and (post-)Planck
 - CCAT-prime cooperation with Simons Observatory
- one arm of many reaching towards EoR
 - cross-correlations or joint analyses with 21 cm, JWST, ALMA, Roman, etc all possible

Cosmic Web @ KITP, 2023/02/07

(39/36)