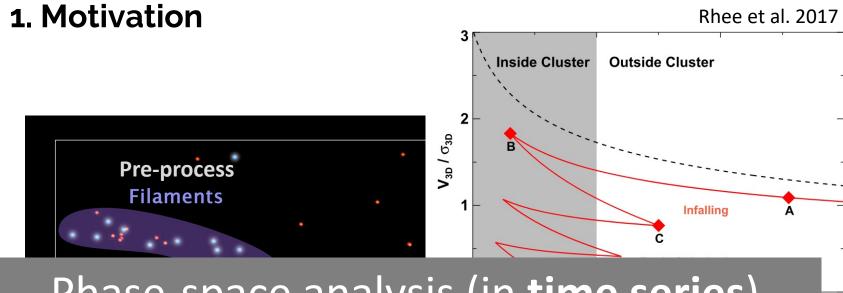
arXiv:2201.09540

KITP : Co-evolution of the Cosmic Web and Galaxies across Cosmic Time Conference @ UCSB

Tracking Halo Orbits and Their Mass Evolution around the Large-scale Filaments

Hannah Jhee¹, Hyunmi Song², Rory Smith^{3,4}, Jihye Shin³, Inkyu Park¹ and Clotilde Laigle⁵

Contents

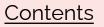

1. Motivation

2. Data and Method
 2.1. Simulation Data
 2.2. Structure Identification

3. Results

3.1. Trajectories in the Phase-space3.2. Virialization Process3.3. Mass Evolution3.4. Mass Segregation

4. Summary



Phase-space analysis (in **time series**) on halos crossing the filaments

Star-Forming Galaxies in Filaments and Clusters NASA / JPL-Caltech / D. Fadda (SSC-Caltech) Spitzer Space Telescope sig08-003 2. Data and Method

2.1. Simulation Data

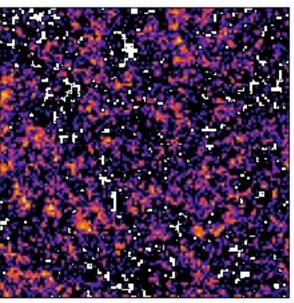
1. Motivation

2. Data and Method

2.1. Simulation Data 2.2. Structure Identification

3. Results

3.1. Trajectories in the Phase-space3.2. Virialization Process3.3. Mass Evolution3.4. Mass Segregation


4. Summary

N-Cluster Run (by Korean Astronomy and Space science Institute)

Code	Gadget-3 (Springel 2005)
Cosmological Parameters	$\Omega_{\Lambda} = 0.7$ $\Omega_{M} = 0.3$ $H_{0} = 68.4 \text{ km s}^{-1} \text{ Mpc}^{-1}$ $\sigma_{8} = 0.816$ n = 0.967
Box Size	120 Mpc
Mass Resolution	$1.072 \times 10^{9} M_{\odot}/h$
# of Initial Conditions	64

<u>Contents</u>

1. Motivation

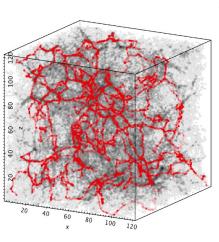
2. Data and Method 2.1. Simulation Data 2.2. Structure Identification

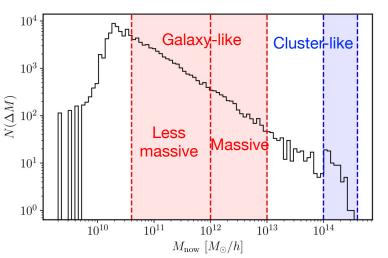
3. Results

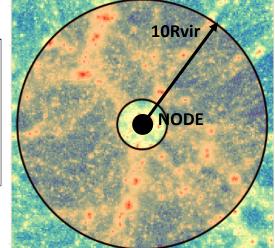
- 3.1. Trajectories in the Phase-space
- 3.2. Virialization Process
- 3.3. Mass Evolution
- 3.4. Mass Segregation

4. Summary

2. Data and Method


2.2. Structure Identification


AMIGA Halo Finder (Knollman&Knebe 2009)


- Halo finding algorithm using grid hierarchy constructed from density calculation
- Halos with $M/M_{\odot} < 4 \times 10^{10}$ are eliminated for halo structure stability
- Halos with $10^{13} < M/M_{\odot}$ are eliminated because they may correspond to galaxy groups or clusters

DisPerSE (Sousbie 2011)

- Extracts robust large-scale filamentary structures based on dark matter particle density distribution
- Run on particle data around cluster centers

3. Results 3.1. Trajectories in the Phase-space

<u>Contents</u>

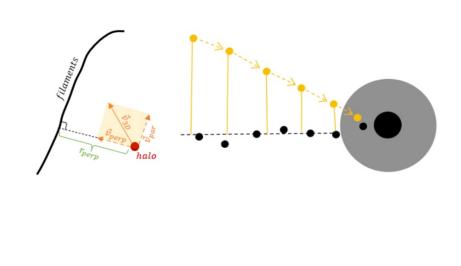
1. Motivation

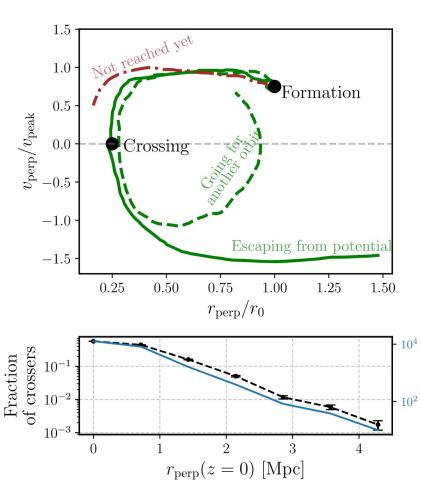
2. Data and Method 2.1. Simulation Data

2.2. Structure Identification

2.2. Structure identifica

3. Results


3.1. Trajectories in the Phase-space


- 3.2. Virialization Process
- 3.3. Mass Evolution
- 3.4. Mass Segregation

4. Summary

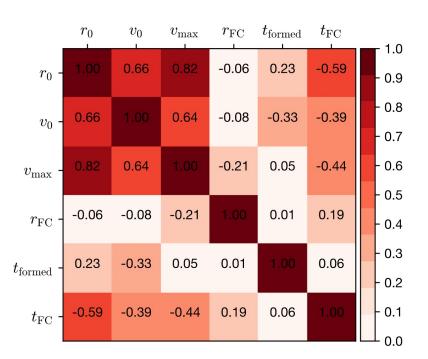
Perpendicular Method

- Tangential line to the filaments from a halo at z = 0
- Assumes the position of filament structures doesn't change severely
- Perpendicular velocity is positive when a halo is approaching to the filaments

3. Results

3.1. Trajectories in the Phase-space

e (First Crossing) t_{formed}



Parameters Defined

- Parameters representing a trajectory in the phasespace

Parameter	Description
<i>r</i> ₀	Initial r _{perp}
v_0	Initial v _{perp}
v _{max}	Maximum v_{perp} before the first crossing
r _{FC}	$r_{\rm perp}$ at the first crossing
t _{formed}	Time since formation
t _{FC}	Time since the first crossing

- Pearson Correlation Coefficients $r_{ij} = \frac{\sigma_{ij}^2}{\sigma_i \sigma_j}$
- Inner shells are more accelerated outwards than outer shells are (Sheth & van de Weygaert 2016)

<u>Contents</u>

1. Motivation

2. Data and Method 2.1. Simulation Data

2.2. Structure Identification

3. Results

3.1. Trajectories in the Phase-space

3.2. Virialization Process

- 3.3. Mass Evolution
- 3.4. Mass Segregation

4. Summary

3. Results 3.1. Trajectories in the Phase-space

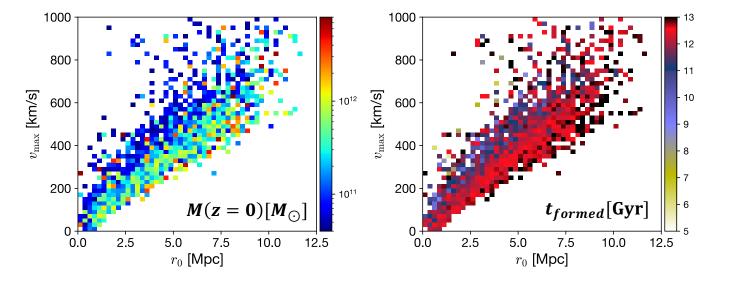
<u>Contents</u>

1. Motivation

2. Data and Method 2.1. Simulation Data

2.2. Structure Identification

3. Results


3.1. Trajectories in the Phase-space

3.2. Virialization Process

- 3.3. Mass Evolution
- 3.4. Mass Segregation

4. Summary

\mathfrak{E} r_0 - v_{max} Relation

- Massive halos tend to form earlier and have lower velocities for a given r_0 .
 - The density field at their formation time was not grown much.
 - They may have gone through a rapid growth phase in the cosmic history.

Contents

1. Motivation

- 2. Data and Method
 - 2.1. Simulation Data
 - 2.2. Structure Identification

3. Results

3.1. Trajectories in the Phase-space

3.2. Virialization Process

- 3.3. Mass Evolution
- 3.4. Mass Segregation

4. Summary

3. Results 3.2. Virialization of Halos -2.0 2-3 Gyr N=36739 3-4 Gyr N=35016 4-5 Gyr N=38163 5-6 Gyr N=30205 6-7 Gyr N=27064 7-12 Gyr N=21383 Phase-space Diagrams with t_{FC} Binning -2.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 2.5 $t_{\rm FC}$ [Gyr] radial position $r/r_{\rm vir}$ at z=00.20.40.60.81.25 1.50 1.75 2.00 2.2510 121000 $t_{\rm FC} < 1 {\rm Gyr}$ $1 \text{Gyr} < t_{\text{FC}} < 2.5 \text{Gyr}$ $2.5 \text{Gyr} < t_{\text{FC}} < 6 \text{Gyr}$ $t_{\rm FC} > 6 {\rm Gyr}$ 750 $v_{\rm perp}(z=0)~[{\rm km/s}]$ 5002500 -250-500-750-10000 0 0 0 $r_{perp}(z=0) \, [Mpc/h]$ $r_{perp}(z=0) [Mpc/h]$ $r_{perp}(z=0) [Mpc/h]$ $r_{perp}(z=0) [Mpc/h]$

- t_{FC} gradients in 1st~3rd panels vanish in $r_{perp} < 2Mpc$ region in the last panel -
- Still visible in $r_{perp} > 2Mpc$ region -

time since infall=0-12 Gyr

0-1 Gyr N=31666

1-2 Gyr N=31874

Contents

1. Motivation

- 2. Data and Method
 - 2.1. Simulation Data
 - 2.2. Structure Identification

3. Results

3.1. Trajectories in the Phase-space

3.2. Virialization Process

- 3.3. Mass Evolution
- 3.4. Mass Segregation

4. Summary

3. Results 3.2. Virialization of Halos -1.0 -2.0 2-3 Gyr N=36739 3-4 Gyr N=35016 4-5 Gyr N=38163 5-6 Gyr N=30205 6-7 Gyr N=27064 7-12 Gyr N=21383 Phase-space Diagrams with t_{FC} Binning -2.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 2.5 $t_{\rm FC}$ [Gyr] radial position $r/r_{\rm vir}$ at z=00.20.40.60.81.25 1.50 1.75 2.00 2.2510 121000 $t_{\rm FC} < 1 {\rm Gyr}$ $1 \text{Gyr} < t_{\text{FC}} < 2.5 \text{Gyr}$ $2.5 \text{Gyr} < t_{\text{FC}} < 6 \text{Gyr}$ $t_{\rm FC} > 6 {\rm Gyr}$ 750 $v_{\rm perp}(z=0)~[{\rm km/s}]$ 500Bound 250Fly-by 0 -250-500-750-10000 0 0 0 $r_{perp}(z=0) \, [Mpc/h]$ $r_{perp}(z=0) [Mpc/h]$ $r_{perp}(z=0) [Mpc/h]$ $r_{perp}(z=0) [Mpc/h]$

- t_{FC} gradients in 1st~3rd panels vanish in $r_{perp} < 2Mpc$ region in the last panel -
- Still visible in $r_{perp} > 2Mpc$ region -

time since infall=0-12 Gyr

0-1 Gyr N=31666

1-2 Gyr N=31874

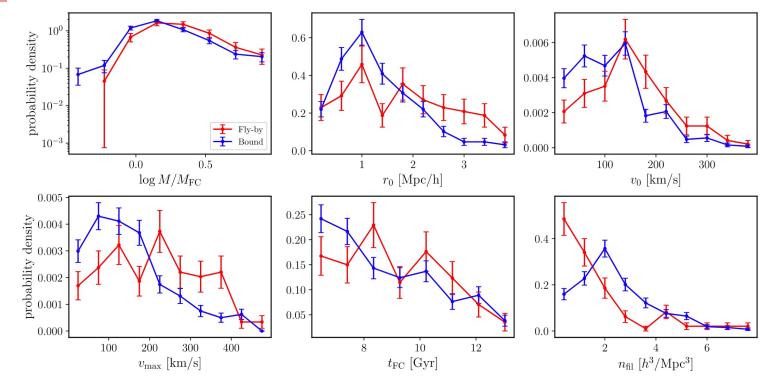
<u>Contents</u>

1. Motivation

2. Data and Method 2.1. Simulation Data 2.2. Structure Identification

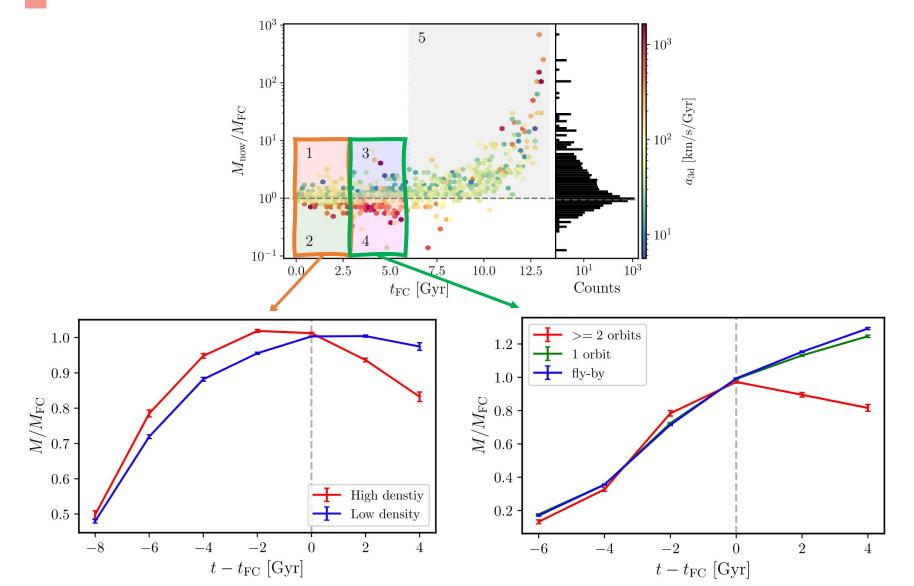
3. Results 3.1. Trajectories in the Phase-space

3.2. Virialization Process


3.3. Mass Evolution

3.4. Mass Segregation

4. Summary


3. Results **3.2. Virialization of Halos**

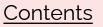
- Fly-bys are tend to be **ancient crossers**, **formed farther** from the filaments(thus higher velocities) and in the **lower density** environments.
- Mass evolution of bound objects may depend on environments.

3. Results 3.3. Mass Evolution of Halos

<u>Contents</u>

1. Motivation

2. Data and Method
 2.1. Simulation Data
 2.2. Structure Identification


3. Results

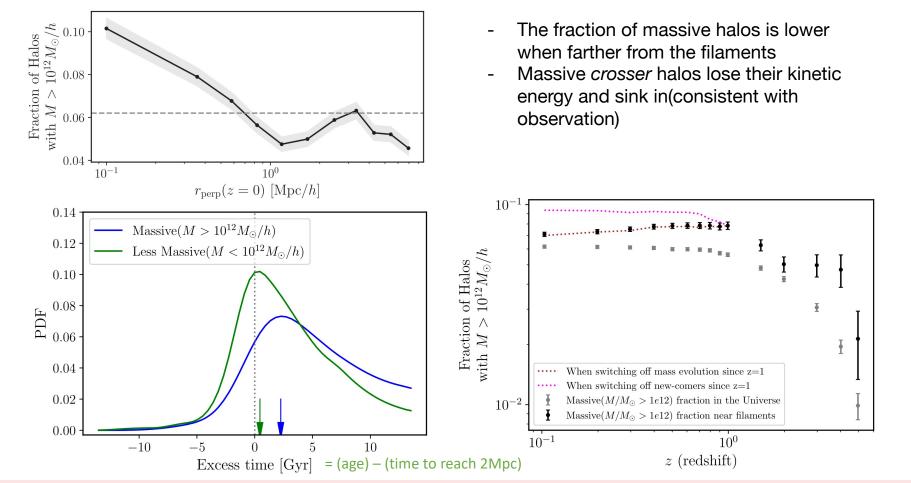
3.1. Trajectories in the Phase-space 3.2. Virialization Process

3.3. Mass Evolution

3.4. Mass Segregation

3. Results 3.4. Mass Segregation

1. Motivation



3.2. Virialization Process

- 3.3. Mass Evolution
- 3.4. Mass Segregation

4. Summary

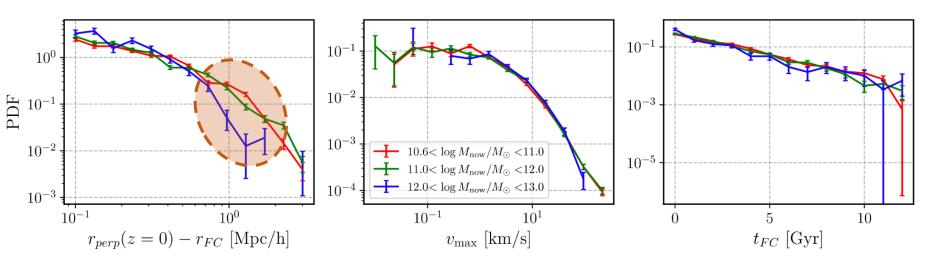
12/14

3. Results 3.4. Mass Segregation

<u>Contents</u>

1. Motivation

2. Data and Method
 2.1. Simulation Data
 2.2. Structure Identification


3. Results

3.1. Trajectories in the Phase-space3.2. Virialization Process

- 3.3. Mass Evolution
- 3.4. Mass Segregation

4. Summary

Dynamical Friction plays a role

- For crossers...because their mass segregation can be mixed up with their orbital motion
- Without the effect of velocity and time since infall, most massive halos are suppressed to stay closer to the filaments after the infall.

SUMMARY

<u>Contents</u>

1. Motivation

2. Data and Method
 2.1. Simulation Data
 2.2. Structure Identification

3. Results

3.1. Trajectories in the Phase-space3.2. Virialization Process3.3. Mass Evolution

3.4. Mass Segregation

- 1. Halos show a similar trajectory in perpendicular phase-space.
- 2. Halos are virialized in filament environments after at least 6 Gyr since the first pericenter crossing.
- 3. Halos grow in mass as they approach filaments, and will lose mass if the environment is harsh enough.
- 4. Mass segregation of halos around the filaments is mostly caused by massive halos approaching faster than less massive ones, and dynamical friction plays a role for crossers.

<u>Contents</u>

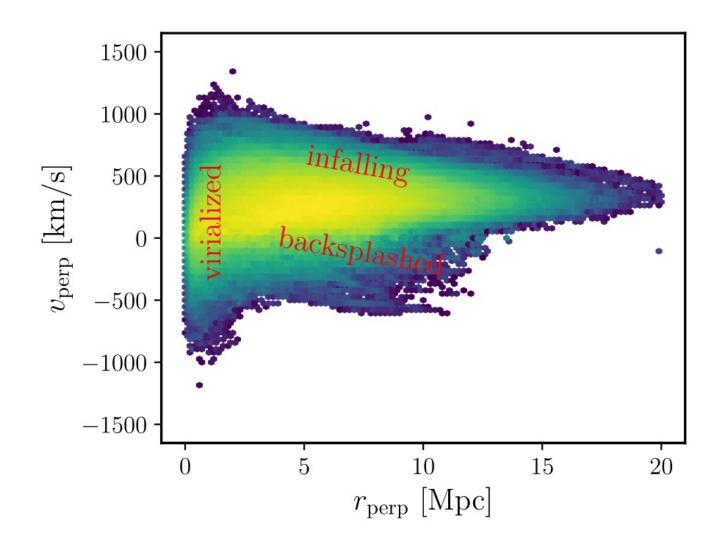
1. Motivation

2. Data and Method
 2.1. Simulation Data
 2.2. Structure Identification

3. Results
3.1. Trajectories in the Phase-space
3.2. Virialization Process
3.3. Mass Evolution
3.4. Mass Segregation

4. Summary

BACK UP

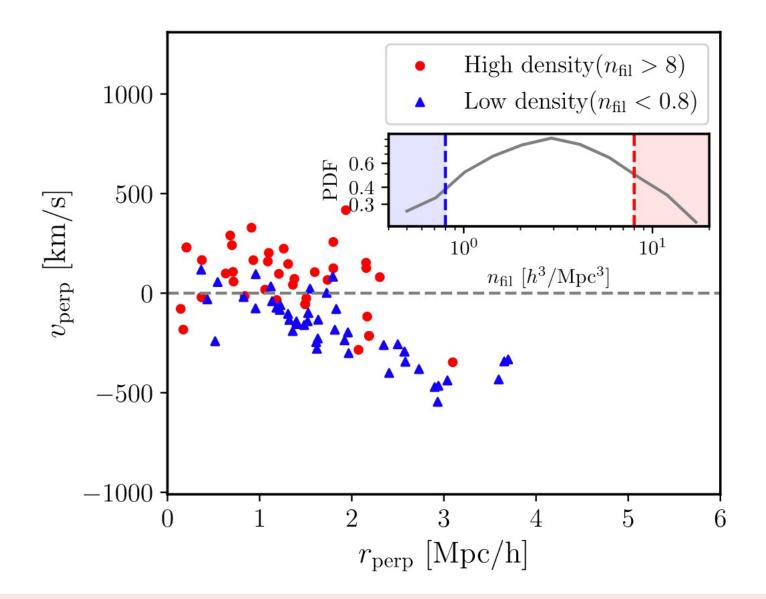

<u>Contents</u>

1. Motivation

2. Data and Method
 2.1. Simulation Data
 2.2. Structure Identification

3. Results

3.1. Trajectories in the Phase-space3.2. Virialization Process3.3. Mass Evolution3.4. Mass Segregation


<u>Contents</u>

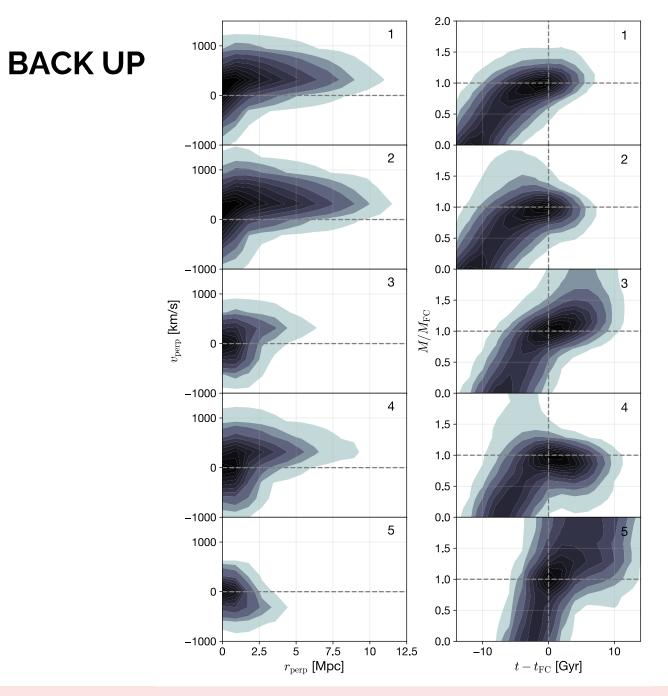
1. Motivation

2. Data and Method
 2.1. Simulation Data
 2.2. Structure Identification

3. Results

3.1. Trajectories in the Phase-space3.2. Virialization Process3.3. Mass Evolution3.4. Mass Segregation

1. Motivation

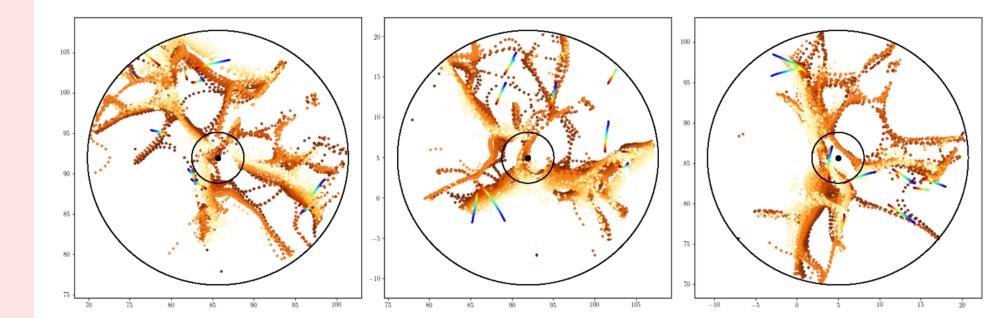

2. Data and Method
 2.1. Simulation Data
 2.2. Structure Identification

3. Results 3.1. Trajectories in the Phase-space

3.2. Virialization Process 3.3. Mass Evolution

3.4. Mass Segregation

4. Summary

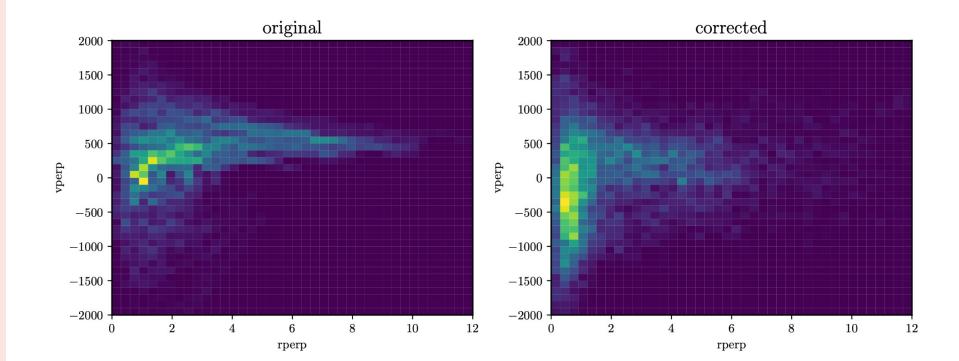

<u>Contents</u>

1. Motivation

2. Data and Method
 2.1. Simulation Data
 2.2. Structure Identification

3. Results

3.1. Trajectories in the Phase-space3.2. Virialization Process3.3. Mass Evolution3.4. Mass Segregation



<u>Contents</u>

1. Motivation

- Data and Method
 Simulation Data
 Structure Identification
- 3. Results3.1. Trajectories in the Phase-space3.2. Virialization Process
 - 3.3. Mass Evolution
 - 3.4. Mass Segregation

4. Summary

