
Why should we care 
 about the  

cosmic web?

1

a theoretical perspective



21. What is the cosmic web?                              according to data…

Cosmic web 

DisPerSE (Sousbie+2011)

HectoMAP Redshift Survey

• Wide : Field of View ~ 53 deg2 

• Deep : r ≤ 21.3, > 90% 

• Dense : 2000 redshift deg-2

It exists on many scales.

SDSS

walls
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31. What is the cosmic web?                                   according to @chatGPT

Plausible but …



 
 
The cosmic web is a dynamically 
relevant intermediate-density 
boundary between cosmology and 
galaxy formation.  

4

3 flows

shell crossing

multi flows

shell crossing

Hahn +14

Virialised halopartially collapsed  
filament

1. What is the cosmic web?                                   according to @cosmicweb23

When halo collapse, neighbouring filaments+walls are in place. 



 
 
The cosmic web is a dynamically 
relevant intermediate-density 
boundary between cosmology and 
galaxy formation.  

5

3 flows

shell crossing

multi flows

shell crossing

Hahn +14

Virialised halopartially collapsed  
filament

1. What is the cosmic web?                                   according to @cosmicweb23++

Since it exists on many scales 

The cosmic web is a dynamically 
relevant anisotropic (=spin 2) 
boundary between a given scale 
and a larger scale.  

We must consider peaks rigged = dressed by their sets of (wall + filament) saddle critical pts.



61. What is the cosmic web?    a  spin-2 two-point process

cosmic web = alignment of eigframes [ ∂2ψ̄
∂xi∂xj ]

pk

•tides are longer range (than density) when aligned with something

BKP96: alignment of shear tensor @ 2 peaks;  

- Predicts LSS in ICs (on large scales) 
         unexpected result in 96 

- Applicable on any scale 
         important for this talk

alignment high degree of constructive interference bridge→ →



71. What is the cosmic web?    a  spin-2 one-point process

cosmic web ≈ metric set by eigframe [ ∂2ρ
∂xi∂xj ]

sad

GRF

Cross correlation of peaks relative to a given saddle

z=0  CDM Λ

Correlation sphere

 of DM

Correlation

 zone of saddle

Shim+21

More recently, alignment w.r.t. (filament or wall) saddle eigen-frame = spin-2 one-point process.  

one should consider peaks dressed by neighbouring critical pts.



81. What is the cosmic web?    a  spin-2 one point process

- partial alignment will change (=bias) anisotropically the 
mean and variance of things     specific signature of CW →

cosmic web ≈ metric set by eigframe [ ∂2ρ
∂xi∂xj ]

sad

spin 0 pt constraint (=density)   isotropy (spherical collapse); →

+

Kaiser bias

without boost



9

without boost

1. Kaiser bias on cosmic web                                 

with boost

•partial alignment will change (=bias) anisotropically the mean 
and variance of things     specific signature of CW →

spin 0 pt constraint (=density)   isotropy (spherical collapse);  
spin 2  pt contraint (= CW)  anisotropy (e.g. Angular momentum,…);  

→
→



101. What is the cosmic web?    a  spin 2 point process definition

- tidal torque theory    
- excursion set theory 
- critical event theory 
- disc settling

•partial alignment will change (=bias) anisotropically the mean 
and variance of things    = specific signature of CW 

revisit

 BUT It really matters for baryons 

alignments funnel gas along CW : small scales inherit coherence and stability  

} Sometimes small for DM

cosmic web ≈ metric set by eigframe [ ∂2ρ
∂xi∂xj ]

sad
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Agertz, Renaud et al. (2021) 
Renaud, Agertz et al. (2021a,b)

CW drives secondary infall : 2 C. Pichon, D. Pogosyan, T. Kimm, A. Slyz, J. Devriendt and Y. Dubois

contrast, if this material comes in cold, star formation can be
fueled on a halo free-fall time. Cold-mode accretion should
also have an important impact on the properties (scale
length, scale height, rotational velocity) of galactic discs, if as
conjectured by Kereš et al. (2005), cold streams merge onto
disks “like streams of cars entering an expressway”, convert-
ing a significant fraction of their infall velocity to rotational
velocity. Dekel et al. (2009) argued along the same lines in
their analysis of the HORIZON-MareNostrum simulation: the
stream carrying the largest coherent flux with an impact pa-
rameter of a few kiloparsecs may determine the disc’s spin
and orientation. Powell et al. (2010) spectacularly confirmed
these conjectures by showing that indeed, the filaments con-
nect rather smoothly to the disc: they appear to join from dif-
ferent directions, coiling around one another and forming a
thin extended disc structure, their high velocities driving its
rotation.

The way angular momentum is advected through the
virial sphere as a function of time is expected to play a key
role in re-arranging the gas and dark matter within dark mat-
ter halos. The pioneer works of Peebles (1969); Doroshkevich
(1970); White (1984) addressed the issue of the original spin
up of collapsed halos, explaining its linear growth up to the
time the initial overdensity decouples from the expansion of
the Universe through the re-alignment of the primordial per-
turbation’s inertial tensor with the shear tensor. However, lit-
tle theoretical work has been devoted to analysing the out-
skirts of the Lagrangian patches associated with virialised
dark matter halos, which account for the later infall of gas
and dark matter onto the already formed halos. In this pa-
per, we quantify how significant this issue is and present a
consistent picture of the time evolution of angular momen-
tum accretion at the virial sphere based on our current the-
oretical understanding of the large scale structure dynamics.
More specifically, the paper presents a possible answer to the
conundrum of why cold gas flows in Λ-CDM universes are
consistent with thin disk formation. Indeed, as far as galactic
disc formation is concerned, the heart of the matter lies in un-
derstanding how and when gas is accreted through the virial
sphere onto the disc. In other words, what are the geometry
and temporal evolution of the gas accretion?

In the ’standard’ paradigm of disc formation, this ques-
tion was split in two. The dark matter and gas present in the
virialised halo both acquired angular momentum through
tidal torques in the pre-virialisation stage, i.e. until turn-
around (e.g White 1984). The gas was later shock-heated as
it collapsed, and secularly cooled and condensed into a disk
(Fall & Efstathiou 1980) having lost most of the connection
with its anisotropic cosmic past. In the modern cold mode
accretion picture which now seems to dominate all but the
most massive halos, these questions need to be re-addressed.
This paper presents a new scenario in which the coherency
in the disk build-up stems from the orderly motion of the fil-
amentary inflow of cold gas coming from the outskirts of the
collapsing galactic patch. The outline is as follows: in section
2, using hydrodynamical simulations, we report evidence
that filamentary flows advect an ever increasing amount of
angular momentum through the halo virial sphere at redshift
higher than 1.5. We also demonstrate that the orientation of
these flows is consistent, i.e. maintained over long periods of
time. Section 3 presents results obtained through simplified
pure dark matter simulations of the collapse of a Lagrangian

Figure 1. A typical galaxy residing in a high mass halo (M ∼
2 × 1012 M# at z = 3.8). The radius of the circle in the both pan-
els corresponds to Rvir = 79 kpc. Gas (left panel), and dark matter
(right panel) projected densities are plotted. Gas filaments are signif-
icantly thinner than their dark matter counterpart. Note the extent
and the coherence of the large scale gaseous filaments surrounding
that galaxy.
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θ

z=6.1→5.0

z=5.0→3.8

z=3.8→2.5

Figure 3. The covariances (thick line) between different redshifts
(as labeled) of the thresholded density maps on the virial sphere,
Rvir, together with the corresponding dispersion (inter-quartile, dot-
ted lines). The lower bound of the thresholded density is chosen
such that filamentary structures stand out, while the upper bound
is adopted to minimise the signal from the satellites (see the text,
Section 2). The orientation of filaments is temporally coherent, as is
qualitatively illustrated in Figure 2.

patch associated with a virialised halo as these have the merit
of better illustrating the dynamics of matter flows in the out-
skirts of the halo. Section 4 is devoted to the presentation of
the conjectured impact of this scenario on disk growth at var-
ious redshifts, conclusions and prospects.

2 HYDRODYNAMICAL EVIDENCE

Let us start by briefly reporting the relevant hydrody-
namical results we have obtained. We statistically anal-
ysed the advected specific angular momentum of both gas
and dark matter at the virial radius of dark haloes in the
HORIZON-MareNostrum cosmological simulation at redshift
6.1, 5.0, 3.8, 2.5 and 1.5 (see Figure 1, Details can be found in
Kimm et al. 2011).

The HORIZON-MareNostrum simulation (Ocvirk et al.
2008; Devriendt et al. 2010) was carried out using the Eule-
rian hydrodynamic code, RAMSES (Teyssier 2002), which uses
an Adaptive Mesh Refinement (AMR) technique. It followed
the evolution of a cubic cosmological volume of 50h−1 Mpc

≠

1. The impact of shocks in gaseous cosmic web

void

wall

filament

CGM

gas Dark Matter

Disks (re)form because LSS are large (dynamically young) 
 and (partially)  an-isotropic : 

they induce persistent angular momentum advection of gas along filaments which 
stratifies accordingly. 

tdyn ⇠ 1/
p
⇢



121. Impact of CW on non-linear dynamics is  non linear & top down

Power  
spectrum
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On galactic scales, the Shape of initial Pk is such that galaxies inherit stability from LSS 
via cold flows





2.1 Revisiting tidal torque theory subject to CW

Angular momentum = anti symmetric contraction of two tensors

- tidal torque theory    
- excursion set theory 
- critical event theory 
- disc settling

• saddle metric changes (=biases) anisotropically the mean and 
variance of things    = specific signature of CW 

revisit

Lk = ϵijkIklψ,lj
aligment between frame of saddle and separation vector to halo. 

Tidal torque theory reflects the mis alignment of two tensors on different scales  



2.1 Revisiting tidal torque theory subject to CW

filament
peak

pancake
filament

Tidal field

inertia

spin

in saddle mid plane away from saddle mid plane

spin

Tidal torque theory reflects the mis-alignment of two tensors on different scales  



2.1 Revisiting tidal torque theory subject to CW
Angular Momentum

vectors



spin //
to filament

perp.  along eφ

perp = 
along eφ

r ! �r

17

Angular Momentum 
vectors

flattened
filament

• point reflection symmetric
• vanish if no a-symmetry

Zeldovitch flow

2.1 Revisiting tidal torque theory subject to CW

saddle point



Geometry of the saddle provides a natural ‘metric’ (local frame as defined by 
Hessian @ saddle) relative to which dynamical evolution of DH is predicted.

Shifted
Press-Schechter

near saddle

Anisotropic
Tidal torque theory

M(R, z)

R

z

hcos ✓(R, z)i

Eliminate position ! hcos ✓i(M)

geometric split                     mass split

2.1 Revisiting tidal torque theory subject to CW



Lagrangian theory capture 
spin flip  

High mass patch

L / e�

Low mass patch

L / ez

Transition mass
associated 
with size 
of quadrant

2.1 Revisiting tidal torque theory subject to CW

ROI x8 smaller



2.1 Revisiting tidal torque theory subject to CW

Transition mass versus redshift 

horizon 4π

Only 2 ingredients: a) spin is spin one b) filaments flattened

Codis et al 12’ skeleton of LSS

x 8

 intrinsic alignments→





2.2 Revisiting (up-crossing) excursion set theory subject to CW

- tidal torque theory    
- excursion set theory  (Press Schechter) 
- critical event theory 
- disc settling 

revisit

Excursion set theory quantifies barrier crossing 

saddle point

P(�, @R�|Saddle)

• metric changes (=biases) anisotropically the mean and variance of 
Excursion    = specific signature of CW 

set of paths (=excursion) compatible with saddle



2.2 Revisiting (up-crossing) excursion set theory subject to CW

Halos with same mass can have different slope because of tides

slope (defines accretion rate)

slope



in frame of saddle

saddle

Extra degree of freedom, Q(θ,φ), provides a supplementary vector space

P(�, @R�|Saddle)

2.2 Typical mass subject to CW



in frame of saddle

saddle

P(�, @R�|Saddle)

2.2 typical accretion rate subject to CW



in frame of saddle

accretion rate is not
a function of mass and 
density alone  

cross product of normals

2.2 Revisiting (up-crossing) excursion set theory subject to CW

applies also to formation time, concentration (?), kinetic anisotropy…





2.3 Critical events:Galactic motivation

filament disconnect = cold gas inflow truncation

cosmic time

- tidal torque theory    
- excursion set theory 
- critical event theory 
- disc settling

• metric changes (=biases) anisotropically the mean 
 and variance of mergers    = specific signature of CW 

revisit



A theory of merger events in the large scale structures 7

Peak-filament 
crit. event
(halo merger)

Filament-wall 
crit. event

(filament merger)

Wall-void 
crit. event
(wall merger)

Figure 6. Illustration of critical events in a 3D random fields and their phys-
ical meaning.  symbols are peaks, ⇥ symbols are filament-type saddle
points (filament centres), ⌦ symbols are wall-type saddle points (wall cen-
tres) and # symbols are minima (void centres). Top: Peak-filament critical
events encode the merger of two halos and the disappearance of their shared
filament. After the merger, only one peak subsists and the filament disap-
pears. Middle: Filament-wall critical events encode the merger of two fila-
ments and the disappearance of their shared wall. After the merger, only one
filament subsists. Bottom: Wall-void critical events encode the merger of
two walls and the disappearance of their joint void (surrounded by the two
walls and the dotted lines). After the merger, only one wall-type saddle-
point subsists and the void has disappeared. Halo mergers are encoded
by peak-filament critical events, filament mergers. Alternatively, one could
have chosen to describe these events as resp. filament, wall and void disap-
pearances. [~ not referenced]

into odd- and even-derivative terms, one can write
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where " is the completely antisymmetric Levi-Civita tensor, ⇥H the
Heaviside function, and j = 1, 2, 3 for peak (P), filament (F ) and
wall (W) mergers respectively. From equation (18) the logarithmic
number counts @nj/@ logR /R

3 is scale invariant (since R? and
R̃ both scale like R), so the number of mergers per decade of scale
does not depend on scale. Note that equation (18) for a given value
of j is essentially the same as equation (16), modulo a choice of
null eigenvalue and the requirement that the eigenvalues are sorted.

In 3D, Codd and Cj,even have analytical expressions given by
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which can also be computed in arbitrary dimensions as shown in
Appendix B. From this we can compute the ratio of peak to filament
mergers rP/F = C2,even/C1,even. Interestingly, the event ratio is
independent of the spectral index of the field and is given by

rP/F =
24

p
3

29
p
2� 12

p
3
⇡ 2.05508, (21)

which is nothing but the ratio between the mean number of wall-
type saddles and peaks minus 1, a relationship which is valid in
arbitrary dimension. This equation shows that there are twice more
filament disappearing in filament merger events (F events) than in
halo merger events (P events). Similarly, we can compute rF/W
to deduce that there are twice more walls disappearing due to fil-
ament mergers (F events) than due to void mergers (W events).
Appendix B also presents these ratios in dimension 4 to 6.

2.4 3D differential event counts of a given height

Introducing �D(x�⌫) in the expectation of equation (18) allows us
to write the density of critical events as a function of height, hence
make the distinction between mergers of important critical points
and less significant ones.

For Gaussian random fields, the field only correlates with its
even derivatives (second in our case). Imposing the height of the
critical events we consider therefore only modifies the term Cj,even

while Codd is left unchanged, following
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D
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Interestingly, Cj,even(⌫) appears to have an analytical expression
once rotational invariants are used to evaluate the expectations. Fol-
lowing the formalism described first in (Pogosyan et al. 2009), we
introduce the variables

J1 = I1 , J2 = I
2

1 � 3I2 , (23)

J3 =
27

2
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9

2
I1I2 + I

3

1 , ⇣ =
⌫ + �J1p
1� �2

, (24)

that are linear combinations of the density field x and rotational in-
variants of its second derivatives namely the trace I1 = trH =

�1 + �2 + �3, minor I2 = 1/2((trH)
2
� trH · H) = �1�2 +

�2�3 + �3�1 and determinant I3 = detH = �1�2�3 of the Hes-
sian matrix H = (xij)i,j2{1,3,4}. The distribution of these vari-
ables is given by

P (⇣, J1, J2, J3) =
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where J3 is uniformly distributed between �J
3/2
2

and J
3/2
2

and J2

MNRAS 000, 000–000 (0000)

2.3 Synopsis of merger events
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What happens to neighbouring critical pts?
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Figure 3. Spherical averaging as a proxy for time evolution. Physically,
slopping saddles are on the slopes of large peaks which will swallow with
cosmic time neighbouring peaks and their filaments. In some sense, the
joint disappearance of peaks, filaments and walls, is a consequence of
the smoothing process, which washes out concurrently peaks, tunnels and
voids.

2.1 Counting critical events in multi-scale landscape

Following Hanami (2001), the number density of critical events in
position-scale space is given by

@
2
N

@r3@R
⌘ h�

(3)

D
(r� r0)�D(R�R0)i , (4)

where r0 is a (double) critical point in real space and R0 the scale
at which the two critical points merge. Special points where two
critical points merge as a function of R are called critical events
(the slopping saddles of Hanami), for example a maximum and a
filament-saddle. Equivalently, critical events can be defined as crit-
ical points where one of the eigenvalue of the hessian vanishes,
which is also equivalent to having a vanishing determinant.

Let us therefore first define the determinant of the hessian
d(�) ⌘ det(rr�) = �1�2�3, �1 < �2 < �3 are the eigenval-
ues of rr�. In the following, we will use @R to denote derivatives
with respect to R. Since critical events are found where d = 0 and
r� = 0, let us rewrite Equation (4) in terms of the properties of
the field, using the coordinate transformation from r, R to r�, d.
This involves the 4D Jacobian of the transformation1

J(d, �) =

�����
@Rd

~rd

@R
~r�

T ~r~r�

����� =

�����
@Rd

~rd

�R~r��
T ~r~r�

����� , (5)

using the fact that for a Gaussian filter

@R� = �R��, (6)

with � the Laplacian. The fully covariant formulation of the num-
ber density of critical event is then the following

@
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N

@r3@R
=

D
J �

(3)

D
(r�)�D(d)

E
. (7)

1 Note that the determinant can be developed along the first line or the first
column of the Jacobian matrix to find out – as shown by the simplifications
in the next section – that the final result does not depend on @Rd.

2.1.1 Expression in the frame of the Hessian

The Jacobian is by construction invariant under rotation, so we can
rewrite it in the frame of the eigenvalues without loss of generality.
Developing d into �

3

2x11x22x33, the Jacobian can be rewritten in
coordinate, assuming (arbitrarily) that direction 3 is the degenerate
one. Then

J(d, �)
�1�

4

2
�3

= |x11x22|

����
@Rx33 x33i

@Rxi xij

���� , (8)

= |x11x22|
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@Rx33 x133 x233 x333

@Rx1 x11 0 0
@Rx2 0 x22 0
@Rx3 0 0 0
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, (9)

= |x11x22|
2
|@Rx3||x333|, (10)

where the factorisation with |x11x22| along the first line in equa-
tion (8) is consequence of x33 being zero – which also nulls the
last component of equation (9), while equation (10) follows by ex-
panding the determinant over the last line of (9). Using equation (6)
again, we can rewrite the number density of slopping saddle at
height ⌫ as2
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|x11x22||x3ii||x333|�
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, (11)

[� its factorises in odd and even doesn’t it?] where R⇤ and R̃ are
the typical inter critical point separation and inter inflection point
separation defined in equation (A1). Indeed, the novelty of (12)
w.r.t. the classical BBKS formula is the weight |x3ii||x333| which
requires the knowledge of the statistics of the 3rd order derivative
of the field. Note that R is measured in units of R̃ ⇠

3

4
R⇤ (for

n ⇠ �2, see Appendix A). Let us call n = @N/@r
3 the volume

density of doubly critical points. We can forget about the explicit
dependency over r as the field is assumed to be stationary. Intro-
ducing �D(x � ⌫) in the expectation of equation (11) allows us to
write the density of doubly critical points
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,

The expectations in equation (12) can be evaluated with
the joint statistics of the field and its successive derivatives,
P(x, xi, xij , xijk) which involves 20 variables, see Appendix B.
Since the integrant is mute w.r.t. to x3ij for i 6= j and xijk for
i 6= 3 the marginalisation over these variable is straightforward.
When removing the absolute value in equation (12), the expecta-
tion can be evaluated symbolically and reads
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(13)
This corresponds to the alternate sum of critical events. [� does
this have a deep topological meaning cf genus? Via the topology
of the excursion set in in space-scale? ] It is plotted in Figure 4 as
a function of ⌫ for different values of ns. Note that @2

N/@r
3
@R

scale like 1/R4 but is also a function of R via ns through

3 + ns(R) = �
@ log �2

0

@ logR
, (14)

2 One factor of |x11x22| drops between equation (10) and (12) because
of the Dirac of d in equation (7).
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Figure 3. Spherical averaging as a proxy for time evolution. Physically,
slopping saddles are on the slopes of large peaks which will swallow with
cosmic time neighbouring peaks and their filaments. In some sense, the
joint disappearance of peaks, filaments and walls, is a consequence of
the smoothing process, which washes out concurrently peaks, tunnels and
voids.

2.1 Counting critical events in multi-scale landscape

Following Hanami (2001), the number density of critical events in
position-scale space is given by
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D
(r� r0)�D(R�R0)i , (4)

where r0 is a (double) critical point in real space and R0 the scale
at which the two critical points merge. Special points where two
critical points merge as a function of R are called critical events
(the slopping saddles of Hanami), for example a maximum and a
filament-saddle. Equivalently, critical events can be defined as crit-
ical points where one of the eigenvalue of the hessian vanishes,
which is also equivalent to having a vanishing determinant.

Let us therefore first define the determinant of the hessian
d(�) ⌘ det(rr�) = �1�2�3, �1 < �2 < �3 are the eigenval-
ues of rr�. In the following, we will use @R to denote derivatives
with respect to R. Since critical events are found where d = 0 and
r� = 0, let us rewrite Equation (4) in terms of the properties of
the field, using the coordinate transformation from r, R to r�, d.
This involves the 4D Jacobian of the transformation1

J(d, �) =
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T ~r~r�
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using the fact that for a Gaussian filter

@R� = �R��, (6)

with � the Laplacian. The fully covariant formulation of the num-
ber density of critical event is then the following
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=
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(r�)�D(d)
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. (7)

1 Note that the determinant can be developed along the first line or the first
column of the Jacobian matrix to find out – as shown by the simplifications
in the next section – that the final result does not depend on @Rd.

2.1.1 Expression in the frame of the Hessian

The Jacobian is by construction invariant under rotation, so we can
rewrite it in the frame of the eigenvalues without loss of generality.
Developing d into �

3

2x11x22x33, the Jacobian can be rewritten in
coordinate, assuming (arbitrarily) that direction 3 is the degenerate
one. Then
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|@Rx3||x333|, (10)

where the factorisation with |x11x22| along the first line in equa-
tion (8) is consequence of x33 being zero – which also nulls the
last component of equation (9), while equation (10) follows by ex-
panding the determinant over the last line of (9). Using equation (6)
again, we can rewrite the number density of slopping saddle at
height ⌫ as2
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[� its factorises in odd and even doesn’t it?] where R⇤ and R̃ are
the typical inter critical point separation and inter inflection point
separation defined in equation (A1). Indeed, the novelty of (12)
w.r.t. the classical BBKS formula is the weight |x3ii||x333| which
requires the knowledge of the statistics of the 3rd order derivative
of the field. Note that R is measured in units of R̃ ⇠

3

4
R⇤ (for

n ⇠ �2, see Appendix A). Let us call n = @N/@r
3 the volume

density of doubly critical points. We can forget about the explicit
dependency over r as the field is assumed to be stationary. Intro-
ducing �D(x � ⌫) in the expectation of equation (11) allows us to
write the density of doubly critical points
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The expectations in equation (12) can be evaluated with
the joint statistics of the field and its successive derivatives,
P(x, xi, xij , xijk) which involves 20 variables, see Appendix B.
Since the integrant is mute w.r.t. to x3ij for i 6= j and xijk for
i 6= 3 the marginalisation over these variable is straightforward.
When removing the absolute value in equation (12), the expecta-
tion can be evaluated symbolically and reads
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This corresponds to the alternate sum of critical events. [� does
this have a deep topological meaning cf genus? Via the topology
of the excursion set in in space-scale? ] It is plotted in Figure 4 as
a function of ⌫ for different values of ns. Note that @2

N/@r
3
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scale like 1/R4 but is also a function of R via ns through

3 + ns(R) = �
@ log �2

0

@ logR
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2 One factor of |x11x22| drops between equation (10) and (12) because
of the Dirac of d in equation (7).
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2.3 Critical event PDF: formal definition

A theory of merger events in the large scale structures 5

Figure 4. 3D landscape of a 2D field smoothed at a scale R. The density
field (blue to red map) is smoothed at increasing R. For each scale, the crit-
ical points (red lines: peaks, green lines: saddle points, blue lines: minima)
are found. At the tip of each branch a critical event is found ( : peak-
saddle critical events, ⇥: saddle-minima). Lines near the boundaries have
been hidden for the sake of clarity.

lowing the definition of section 2.2, critical events are found at
the space-smoothing location where two critical points of different
types (maximum, saddle points or minimum) merge. The nature
of a critical point (occurring where r� = 0) is characterised by
its index, that is to say the number of negative eigenvalues of the
density Hessian matrix at this point. Critical events can then be de-
fined as critical points for which one of the eigenvalues vanishes,
which is also equivalent to having a vanishing determinant. By def-
inition, only critical points whose indices differ by one can merge
(peak-filament type saddle point, filament-wall type saddles, wall
type saddle - void).

Let us therefore first define the determinant of the Hessian
D(�) ⌘ det(rr�) = �1�2�3, �1 < �2 < �3 being the or-
dered eigenvalues of the Hessian matrix rr�. In the following,
we will use @R to denote derivatives with respect to scale R. Since
critical events are found where D = 0 and r� = 0, let us rewrite
equation (8) in terms of the properties of the field, using the co-
ordinate transformation from r, R to r�, D. This involves the 4D
Jacobian of the transformation1

J(d,r�) =

����
@RD rD

@Rr�
T rr�

���� =
����

@RD rD

�Rrr
2
�
T rr�

���� , (9)

using the fact that for a Gaussian filter

@R� = �Rr
2
�, (10)

with r
2 the Laplacian operator. The fully covariant formulation of

the number density of critical events is then

@
4
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@r3@R
=

D
|J | �

(3)

D
(r�)�D(D)

E
. (11)

The expectation value in equation (11) can be evaluated using

1 Note that the determinant can be developed along the first line or the first
column of the Jacobian matrix to find out – as shown by the simplifications
in the next section – that the final result in our case does not depend on
@RD thanks to the zero determinant constraint detrr� = 0.

the joint distribution of the field and its successive derivatives up
to third order, P (x, xi, xij , xijk) which involves 20 variables, see
Appendix A for the PDF for Gaussian random fields. One difficulty
in evaluating equation (11) spans from �D(D). In practice, it can for
instance be dealt with numerically by ‘broadening’ the Dirac delta
function: this method is used for validation and when considering
two point statistics in the next section. Alternatively, we can go to
the Hessian’s eigenframe as described in the next section.

2.3.2 Expression in the frame of the Hessian

The Jacobian is by construction invariant under rotation, so we
can rewrite it in the frame of the eigenvalues (which will be de-
noted with tildas) without loss of generality. Developing D into
�
3

2 x̃11x̃22x̃33 and assuming (arbitrarily) that direction 3 is the de-
generate one, the Jacobian can be rewritten as follows

J(D, �)

�1�
4

2
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= |x̃11x̃22|

����
@Rx̃33 x̃33i
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, (13)

= |x̃11x̃22|
2
|@Rx̃3||x̃333|, (14)

where the factorisation with |x̃11x̃22| along the first line in equa-
tion (12) is a consequence of x̃33 being zero – which also nulls the
last component of equation (13). Using equation (10) again to re-
express the derivative w.r.t. smoothing in terms of the Laplacian of
the field, we can rewrite the number density of critical events as 2

@n
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2⇡
2
R

R̃2 R
3
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D��P
ix̃3ii

��|x̃333|�
(3)

D
(x̃i)|x̃11x̃22|�D(x̃33)

E
, (15)

where we introduced n = @
3
N/@r

3 the volume density of critical
events (that does not depend on the spatial location r as the field is
assumed to be stationary). Let us stress that the distribution of the
fields expressed in the frame of the Hessian matrix differs from the
original ones. The statistics of x and xi and xijk are left unchanged
and we therefore drop the tildes for the field and its first and third
derivatives . However, going from cartesian coordinates to the Hes-
sian eigenframe modifies the distribution of the second derivatives
that we choose here to order (such that the Doroshkevich formula
is recovered)

P̃ (x̃11, x̃22, x̃33) = 2⇡
2
(x̃33 � x̃22)(x̃22 � x̃11)(x̃33 � x̃11)⇥

P (x11= x̃11, x22= x̃22, x33= x̃33, x12=0, x23=0, x13=0),

where x̃11 < x̃22 < x̃33 are distributed according to P̃ and fields in
cartesian coordinates follow the distribution P . Note that the factor
2⇡

2 is due to the integration over the Euler angles. Equation (15)
therefore introduces a jacobian 2⇡

2
|x11x22(x11�x22)| when go-

ing from the Hessian eigenframe to cartesian coordinates and the
differential number count of critical events becomes

@n
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ix3ii

��|x333|�
(3)

D
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(3)

D
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E
, (16)

2 One factor of |x̃11x̃22| drops between equation (14) and (15) because
of the Dirac of D in equation (11).
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correlation coefficients between the field and its derivatives at the
same point

� = �
h���i

�0�2

, �̃ = �
hr� ·�r�i

�1�3

. (6)

These scales and scale ratios fully specify the correlations between
the field and its derivative at the same point. For power-law spectra
with Gaussian smoothing at the scale Rs, R0 = Rs

p
2/(n+ 3),

R⇤ = Rs

p
2/(n+ 5) and R̃ = Rs

p
2/(n+ 7) while � =p

(n+ 3)/(n+ 5) and �̃ =

p
(n+ 5)/(n+ 7).

2.2 Critical events definition

When studying the time evolution of the density field, the spher-
ical collapse model has shown that one can establish a mapping
between collapse time and overdensity – high overdensity regions
collapse earlier in the history of the Universe than underdense one.
At the same time, larger overdensities enclose more mass and will
hence give birth to more massive structures. These relations math-
ematically read

�(R) =
�c

�(Rs)D(z)
, M =

4⇡

3
⇢̄R

3

s, (7)

where Rs is a smoothing scale, �c = 1.69 is the critical overden-
sity, D(z) is the scaling factor of the linear matter perturbations
and ⇢̄ is the mean matter density of the Universe. From a theoreti-
cal perspective, the action of smoothing the density field � enables
to probe the time-evolution of spherical proto-halos by following
the density evolution of peaks as smoothing scale increases. This is
illustrated on Fig. 2.

Let us now define critical events – also called slopping saddle
in Hanami (2001) associated to mergers. These events are defined
in position-smoothing space and correspond to mergers of critical
points (peaks, saddle points and minima). This is illustrated for a
1D field on Fig. 3. Critical events are found at the tip of critical
point lines and represent the disappearance of a critical point into
another critical point of another kind (e.g. a maximum and a min-
imum in 1D, a maximum and a saddle point in 2 or 3D). They
encode locations where the topology of the field is changed by re-
moving a pair of critical points.

Let us illustrate the concept of critical events using an anal-
ogy with a mountainous landscape, the latter being restricted to
2D space, see Fig. 4 and 5. A mountainous landscape is made of
peaks analogous to proto-halos. Each pair of neighbour peaks is
linked together via a pass, analogous to a proto-filamentary struc-
ture. Following the ridge from one peak to another one is analogous
to following a filamentary structure between two proto-halos. On
each downhill side of a pass there are two valleys, which are analo-
gous to proto-walls in the cosmic web. With the action of time, the
mountains will erode until eventually no peak will subsist – this is
analogous to the smoothing operation. In the process, a disappear-
ing peak will see its height (the density) decrease with time. If the
peak is not prominent enough, it will eventually be smoothed to the
point where it no longer is a peak but a shoulder on another peak’s
slope. Just before the peak disappears, it is still linked to its neigh-
bour via a pass. When the peak disappears so does the pass – indeed
a pass is always located between two peaks ; when one disappears,
so does the pass. This particular event is what we defined as a crit-
ical event. It encodes the moment when two critical points (here a
peak and a saddle point) annihilate. This can also be interpreted as
the moment a peak disappears on the slope of its nearest neighbour

Figure 3. 2D landscape of a 1D field smoothed at a scale R. Solid lines
indicate maxima (red) and minima (blue). Critical point lines end at critical
events (black dots). The critical point lines are projected on the � = �1
plane (red and blue dashed lines). Vertical purple line indicate the projection
of critical events onto the � = �1 plane and illustrate that critical events
are found at the location where two critical points merge.

– the two peaks merged and the most prominent subsisted. Critical
events have hence a dual interpretation.

Since the primordial density field is a 3D field, the density
landscape is made of peaks (proto-halos), saddle-points (proto-
filaments and proto-walls) and minima (proto-voids). Critical
events record the merger of peaks into proto-filaments (PF criti-
cal events), of proto-filaments into proto-walls (FW critical events)
and of proto-walls into proto-voids (WV critical events).

This is illustrated on Fig. 6. PF critical events (top panel) en-
code the merger of two halos separated by a filament. After the
merger, the most prominent peak subsists, while the other proto-
halo and the proto-filament have annihilated. FW critical events
(center panel) encode the merger of two filaments separated by a
wall. After the merger, the most prominent filament subsists, while
the other proto-filament and the proto-wall have annihilated. WV
critical events (bottom panel) encode the merger of two walls sepa-
rated by a void. After the merger, the most prominent wall subsists,
while the other proto-wall and the proto-void have annihilated.

2.3 3D critical events number counts

In this section, we will present the derivation of the number count of
critical events in position-smoothing space in 3D. In section 2.3.1,
we present how one can express the critical event constrain as a
function of the local properties of the field and its derivatives. We
then express the condition in the frame of the Hessian of the field in
section 2.3.2 where it takes a simpler expression. In section 2.3.3,
we extend the previous formula to distinguish between different
critical event types (halo mergers, filament mergers, wall mergers).

2.3.1 General formulation

Following Hanami (2001), the number density of critical events in
position-scale space is given by

@
4
N

@r3@R
⌘ h�

(3)

D
(r � r0)�D(R�R0)i , (8)

where r0 is the position of a critical point (with a degenerate di-
rection) in real space and R0 its associated smoothing scale. Fol-
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Figure 3. Spherical averaging as a proxy for time evolution. Physically,
slopping saddles are on the slopes of large peaks which will swallow with
cosmic time neighbouring peaks and their filaments. In some sense, the
joint disappearance of peaks, filaments and walls, is a consequence of
the smoothing process, which washes out concurrently peaks, tunnels and
voids.

2.1 Counting critical events in multi-scale landscape

Following Hanami (2001), the number density of critical events in
position-scale space is given by

@
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@r3@R
⌘ h�

(3)

D
(r� r0)�D(R�R0)i , (4)

where r0 is a (double) critical point in real space and R0 the scale
at which the two critical points merge. Special points where two
critical points merge as a function of R are called critical events
(the slopping saddles of Hanami), for example a maximum and a
filament-saddle. Equivalently, critical events can be defined as crit-
ical points where one of the eigenvalue of the hessian vanishes,
which is also equivalent to having a vanishing determinant.

Let us therefore first define the determinant of the hessian
d(�) ⌘ det(rr�) = �1�2�3, �1 < �2 < �3 are the eigenval-
ues of rr�. In the following, we will use @R to denote derivatives
with respect to R. Since critical events are found where d = 0 and
r� = 0, let us rewrite Equation (4) in terms of the properties of
the field, using the coordinate transformation from r, R to r�, d.
This involves the 4D Jacobian of the transformation1

J(d, �) =
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~rd
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using the fact that for a Gaussian filter

@R� = �R��, (6)

with � the Laplacian. The fully covariant formulation of the num-
ber density of critical event is then the following

@
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=

D
J �

(3)

D
(r�)�D(d)

E
. (7)

1 Note that the determinant can be developed along the first line or the first
column of the Jacobian matrix to find out – as shown by the simplifications
in the next section – that the final result does not depend on @Rd.

2.1.1 Expression in the frame of the Hessian

The Jacobian is by construction invariant under rotation, so we can
rewrite it in the frame of the eigenvalues without loss of generality.
Developing d into �

3

2x11x22x33, the Jacobian can be rewritten in
coordinate, assuming (arbitrarily) that direction 3 is the degenerate
one. Then
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, (9)

= |x11x22|
2
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where the factorisation with |x11x22| along the first line in equa-
tion (8) is consequence of x33 being zero – which also nulls the
last component of equation (9), while equation (10) follows by ex-
panding the determinant over the last line of (9). Using equation (6)
again, we can rewrite the number density of slopping saddle at
height ⌫ as2
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[� its factorises in odd and even doesn’t it?] where R⇤ and R̃ are
the typical inter critical point separation and inter inflection point
separation defined in equation (A1). Indeed, the novelty of (12)
w.r.t. the classical BBKS formula is the weight |x3ii||x333| which
requires the knowledge of the statistics of the 3rd order derivative
of the field. Note that R is measured in units of R̃ ⇠
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4
R⇤ (for

n ⇠ �2, see Appendix A). Let us call n = @N/@r
3 the volume

density of doubly critical points. We can forget about the explicit
dependency over r as the field is assumed to be stationary. Intro-
ducing �D(x � ⌫) in the expectation of equation (11) allows us to
write the density of doubly critical points
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The expectations in equation (12) can be evaluated with
the joint statistics of the field and its successive derivatives,
P(x, xi, xij , xijk) which involves 20 variables, see Appendix B.
Since the integrant is mute w.r.t. to x3ij for i 6= j and xijk for
i 6= 3 the marginalisation over these variable is straightforward.
When removing the absolute value in equation (12), the expecta-
tion can be evaluated symbolically and reads
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This corresponds to the alternate sum of critical events. [� does
this have a deep topological meaning cf genus? Via the topology
of the excursion set in in space-scale? ] It is plotted in Figure 4 as
a function of ⌫ for different values of ns. Note that @2

N/@r
3
@R

scale like 1/R4 but is also a function of R via ns through

3 + ns(R) = �
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0
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, (14)

2 One factor of |x11x22| drops between equation (10) and (12) because
of the Dirac of d in equation (7).
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The theory of merging structures 3

Figure 3. Spherical averaging as a proxy for time evolution. Physically,
slopping saddles are on the slopes of large peaks which will swallow with
cosmic time neighbouring peaks and their filaments. In some sense, the
joint disappearance of peaks, filaments and walls, is a consequence of
the smoothing process, which washes out concurrently peaks, tunnels and
voids.

2.1 Counting critical events in multi-scale landscape

Following Hanami (2001), the number density of critical events in
position-scale space is given by
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where r0 is a (double) critical point in real space and R0 the scale
at which the two critical points merge. Special points where two
critical points merge as a function of R are called critical events
(the slopping saddles of Hanami), for example a maximum and a
filament-saddle. Equivalently, critical events can be defined as crit-
ical points where one of the eigenvalue of the hessian vanishes,
which is also equivalent to having a vanishing determinant.
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ues of rr�. In the following, we will use @R to denote derivatives
with respect to R. Since critical events are found where d = 0 and
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the field, using the coordinate transformation from r, R to r�, d.
This involves the 4D Jacobian of the transformation1
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using the fact that for a Gaussian filter

@R� = �R��, (6)

with � the Laplacian. The fully covariant formulation of the num-
ber density of critical event is then the following
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1 Note that the determinant can be developed along the first line or the first
column of the Jacobian matrix to find out – as shown by the simplifications
in the next section – that the final result does not depend on @Rd.
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The expectations in equation (12) can be evaluated with
the joint statistics of the field and its successive derivatives,
P(x, xi, xij , xijk) which involves 20 variables, see Appendix B.
Since the integrant is mute w.r.t. to x3ij for i 6= j and xijk for
i 6= 3 the marginalisation over these variable is straightforward.
When removing the absolute value in equation (12), the expecta-
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2.4 Critical events PDF: Derivation

✓ Invoque ergodicity 
✓ Change variable to (gradient, determinant)
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2.3 merger event function 

Peak merger

Void merger
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Figure 1. Representation of the smoothing of a 1D Gaussian field which
represents the density fluctuations in the primordial universe. The red lines
are maxima of the field, the blue lines are the minima. Green points are
critical events, where a minimum/maximum pair meets and annihilates it-
self. The purpose of my internship is to count how many green points are in
the vicinity of a red line going all the way to the largest smoothing (a.k.a.
today), and which can be shown to contribute to the mass growth of this
surviving halo. One important caveat I will have to deal with is the fact that
the green points are not distributed randomly: their position is impacted
by the presence of neighbouring red lines. This can be quantified through
two-point statistics.

3 RESULTS

CP2: CP: todo generate maps index minus one

4 DISCUSSION AND CONCLUSIONS

5 CONCLUSION

CP3: Critical event is like cond PS++ since it follows relative po-
sition and imposes peaks
Predict relative spread in AM by summing over vectors versus sum-
ming modulus use grad psi or impact parameter)
compute the PDF of satellite masses
Predict pdf of relative angle of successive mergers
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Figure 2. Visualisation of the action of gaussian smoothing on the critical
events of a 2D field. The various vertical lines represent the position of
the extrema (maxima in pink, minima in blue, saddles in green) as a one
smooths the field. The red and blue squares represent the corresponding
critical events. The gray cones shows the volume within some fraction of
the smoothing scale (here chosen arbitrarily to be 1.2 times the smoothing
scale) from a maximum line, which contain all the past physical history of a
given peak. This paper aims to characterise these cones (in particular their
opening angle) and the properties of the critical events within them so as
to compute major merger rates as a function of final halo mass. Note that
cones can overlap (as shown by black arrows) which is of special interest in
this context.

Figure 3. Cone of mass accumulation for one surviving peak. At each R
cone represents the boundary of top-hat filter, here taken as R = 2.2R with
the center tracking the real peak position. We can count 3 or 4 critical events
inside the cone. The average number should be 3.6. Notice that events avoid
the interior of the cone, and cluster at its boundary.

Figure 4. Typical density field around a critical event in 1D. From left to
right: 1. We see two distinct objects (in red), separated by a minimum (in
blue) in the density field. 2. The critical event occurs (in green), but the
density profile still shows two different objects (highlighted with dashed
lines). 3. The merger has completed and there remains only one object (in
red).

MNRAS 000, 000–000 (0000)

•number of critical event  
within “past lightcone” of peak defines 
 typical number of mergers  4∼

•Orientation of saddle frame at surrounding event  
defines a proxy for the angular momentum 
 of mergers. 
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Observation

Thin discs:  an incongruous structure in a stochastic universe?

One needs to form stars AND maintain them in the disc

A fragile object : with a significant axis ratio 

1/10

100



36Cosmological simulations produce thin discs

New Horizon Simulation (c) M Park 2020



372.4 Shape of Circum Galactic Medium 

Agertz, Renaud et al. (2021) 
Renaud, Agertz et al. (2021a,b)

Cosmic web sets up 
reservoir of free energy in CGM = the fuel for  thin disc emergence 

Tumlinson+ 17

Disc torqued by GCM



38Synopsis of thin disc emergence:

• Why do disc settle ? Because Q 1 

• But Why does Q 1?  Because tighter control loop ( ) via wake  

• But how does it impact settling? Because wake also stiffens coupling

→

→ tdyn ≪ 1

New Horizon

Ring toy model



391. Impact of CW on  homeostatic thin disc

Power  
spectrum
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Non-linear top-down mode coupling via cold flows

Wake driven 
self-regulation

On galactic scales, the Shape of initial Pk is such that galaxies inherit stability from LSS 
via gas inflow, which, in turn, sets up CGM engine/reservoir required to self-regulate thin discs 

More power: important impact

Hierarchical clustering

hierarchical growth


Spatial frequency
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2.4 Synopsis of thin disc emergence induced by CW
Tighter coupling

• Three components system coupled by gravitation.

•  A CGM reservoir fed by the CW  (top down causation) 

• Convergence towards marginal stability : acceleration of dynamical control-loop by wakes

• Tightening  of stellar disc by boosting of  torques, & increased dissipation.



41 2.4 Upshot of the various processes in the intra galactic medium

• supernovae
• Turbulence
————
• Minor merger
• accretion
• flybys

• Stellar formation
• Cooling
• Shocks
—————
• aligned  

accretion  

Free 

 energy 


reservoir in CGM


Destabilising effects Stabilising effects

Cosmic

perturbation 


 




Simulations

 Internal Structure  @ small scales: simulation & theory 

(c)Taysun Kimm 

Quid of the effect of wakes on injection scale?

State-of-the-art simulations illustrates the 
level of perturbation  
on smaller (molecular cloud) scales

Turbulent cascade

controlled by 

energy injection scale

Kolmogorov

cascade



43Tides and wakes 101

Simulations

Observations

Interstellar

Chandrasekhar polarisation

Gravitational Wake
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In a cold disc the tide itself is 
gravitating it self-amplifies!

Quasi circular trajectories: 
‘cold’ disc 

 No significant relative motion
                    to oppose gravitation
→



Order out of chaos: the emergence of homeostatic thin galactic discs 5

Q=1.1

Q=1.02

Figure 4. The stationary polarisation triggered by a a cloud with a Gaussian
surface density located at the origin in a shearing sheet disc with Q = 1.1
(top panel) and Q = 1.02 (bottom panel). The x (radial) and y (trans-
verse) axes are in units of the critical wavelength �crit = (2⇡)2G⌃/2.
The black (resp. red) contours values are 0.9 times the maximum (resp.
miminum) over-density multiplied by 0.25,0.5,0.75, and 1. The dashed line
corresponds to the zero contour. The extend and amplitude of the polarisa-
tion increases drastically with proximity to Q = 1. (Binney 2019, private
communication).

Qg . In parallel, the stronger the SF the larger the accumulated stel-
lar mass the lower the Q?. Since the Q numbers add geometrically,
the effective number is therefore dominated by the component clos-
est to one (the gas). Once the stellar disc is massive enough to dom-
inate this phase, it damps runaway instabilities within the gaseous
disc, and preserves the global structure. Conversely, the cold rotat-
ing gas maintains marginal stability which shortens the feedback
loop.

During the disc settling phase, the effective Q number be-
comes an attractor because gravitational polarisation near marginal
stability dresses fluctuations which yields a tighter feedback loop
corresponding to turbulence-driven star formation (lowering Q?)
on the one hand, and SN feedback and turbulence (increasing Qg)
on the other hand, allowing efficient stellar disc’s growth, whose
natural frequencies then detune from perturbations. This shorter
feedback loop drives Q closer to one. In principle the disc could
oscillate around any values of Q via positive and negative feed-
back coming from SN, turbulence, shot noise, disc mass and cold
gas inflow. In practice, Q ⇠ 1 is an attractor because it provides a
tighter control loop as it dresses the density fluctuations by a strong
gravitational wake so the dynamical time is significantly shorter
(Toomre & Kalnajs 1991). Hence Q cannot oscillate away from
1 by a lot. Conversely, it seems to avoid passing the threshold of
Q = 1 because at marginal stability the wake’s temporal and spa-
cial correlation’s length diverge3, which warrants the disc’ rapid
regulation, unless the kick is too strong (see Sec. 6).

3 Indeed, it has been argued (e.g. Melnick & Selman 2000) that star for-
mation and feedback operates through self-organised criticality in the ISM
which imply spatio-temporal power law correlations, apparent self-tuning
to a critical point and intermittency.

Let us be slightly more quantitative. The star formation in ram-
ses is implemented following the prescription4

⇢̇?(t) = ⌘SF(M,↵)
⇢cold

tdyn,dressed
,

= ⌘SF(M[Q],↵[Q])
�(Q)⇢cold

tdyn,bare
, (13)

where �(Q) is given by equation (12). In writing equation (13) we
assume that the wake impacts star formation on molecular cloud
scales. This is true in the star formation recipes such as those im-
plemented in Ramses since the code does not resolve lower scales.
It is also likely to be true in real galaxies where (dressed) poten-
tial perturbations on such scales will stir the cloud and trigger star
formation on smaller scales. In essence, gravitational perturbations
cascade down to the relevant scales for star formation. It follows
from equation (13) that the star formation rate will be strongly en-
hanced near marginal stability so long that a sufficient flux of cold
gas from the CGM exists to refurbish the consumed gas. Increased
star formation will contribute to increasing ⌃?(t) and decreasing
�?(t) momentarily, hence decreasing Qeff = (Q

�1

? +Q
�1

gas)
�1 via

a stronger stellar contribution, up to the point where the more mas-
sive stars explode in super-novae, induce more turbulence within
the gas, which in turn will increase �gas,turb, hence increase Qeff.
But assuming that the disc is dense enough so that tdyn,dressed > tcool

the key bring-home feature of this cycle is that it is globally driven
by the shortening of the dynamical time with proximity to marginal
stability. Hence one can define a characteristic relaxation timescale
⌧Q so that

d log(Q� 1)

dt
=� 1

⌧Q
, so �(t)=�0 exp

✓
t

⌧Q

◆
. (14)

We expect that ⌧Q / n tdyn where n � 1, while tdyn ⇠ 1/
p
M . As

found in the simulation, the more massive discs will settle earlier.
Critically, the control loop needs to remain closed, which in

turn requires that the disc operates with continuous infall of cold
coplanar gas, so as to maintain a kinematic cold source (to lower Q
via efficient star formation). This necessary reservoir of free energy
is typical of the active work required to maintain a given system
close to an unstable equilibrium point, such as a driven inverted
pendulum. The level of energy dissipation within the turbulent gas
component needs to match the energy input from that source so as
to maintain a stationary process5. Finally, the infalling gas must
impact the disc with some initial level of coplanarity (Pichon et al.
2011, see Sec. 6) so as to contribute positively to the realignment
process which we now describe.

3 RELAXING RINGS MODEL

Beyond the numerical evidence that convergence towards marginal
stability is equivalent to the observed scaling of the settled fraction
of discs versus mass and redshift, it is of interest to explain why
such convergence drives the galaxy towards a thinner disc.

In order to understand this relaxation, let us consider a set of

4 In practice the star formation efficiency ⌘SF, which depends only
on the turbulent Mach number, M, and the virial parameter ↵vir =
2Ekin/Egrav . Now, @M/@Q < 0 and @↵vir/@Q < 0, hence
@⌘SF/@Q < 0, so that colder discs will also form stars more efficiently.
5 It would be interesting to see it can be shown to correspond to an ex-
tremum of entropy production. At the very least, it allows for some order to
emerge out of disorder!

© 0000 RAS, MNRAS 000, 000–000

44Gravitational wake/polarisation/dressing

510 Chapter 6: Disk Dynamics and Spiral Structure

Figure 6.19 Evolution of a packet of leading waves in a Mestel disk with Q = 1.5 and
fd = 1/2 (equal contributions from the disk and the rigid halo to the flat circular-speed
curve). Contours represent fixed fractional excess surface densities; since the calculations
are based on linear perturbation theory, the amplitude normalization is arbitrary. Con-
tours in regions of depleted surface density are not shown. The time interval between
diagrams is one-half of a rotation period at corotation. ILR, CR, and OLR denote the
radii of the inner Lindblad resonance, the corotation resonance, and the outer Lindblad
resonance. From Toomre (1981), c© Cambridge University Press 1981. Reprinted by
permission of Cambridge University Press.

Toomre 81

Mass in  wake = mass in 
perturbation X 140 !!

Q~ 1.2

• colder disc means larger wake 
•colder disc means stronger wake 
•colder disc means shorter dynamical time
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Quasi circular Trajectories:  ‘cold’ disc 
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45On the importance of gravitational dressing
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An example of secular evolution
• In orbital space

J�

Jr

Jr

J�

• Long-term appearance of a dominant narrow resonant ridge.
17 / 47
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510 Chapter 6: Disk Dynamics and Spiral Structure

Figure 6.19 Evolution of a packet of leading waves in a Mestel disk with Q = 1.5 and
fd = 1/2 (equal contributions from the disk and the rigid halo to the flat circular-speed
curve). Contours represent fixed fractional excess surface densities; since the calculations
are based on linear perturbation theory, the amplitude normalization is arbitrary. Con-
tours in regions of depleted surface density are not shown. The time interval between
diagrams is one-half of a rotation period at corotation. ILR, CR, and OLR denote the
radii of the inner Lindblad resonance, the corotation resonance, and the outer Lindblad
resonance. From Toomre (1981), c© Cambridge University Press 1981. Reprinted by
permission of Cambridge University Press.

Mass in  wake = mass in 
perturbation X 140 

A&A proofs: manuscript no. LB_Thick

Fig. 1: Evolution of an epicyclic orbit (top panel) as one respectively
increases its radial action Jr (middle panel) or its vertical action Jz

(bottom panel). As expected, the radial (resp. vertical) excursions of the
orbit increase with increasing Jr (resp. Jz).

defined by the implicit relation

@ e↵

@R

�����
(Rg,0)
= 0 , (14)

so that Rg(J�) corresponds to the radius for which stars with an
angular momentum J� are on exactly circular orbits. In addition,
this circular orbit is described at the angular fequency ⌦� given
by

⌦2
�(Rg) =

1
Rg

@ 0

@R

�����
(Rg,0)
. (15)

In the neigborhourhood of circular orbits, the Hamiltonian from
equation (12) may be expanded as

H0 =
1
2


p

2
R
+p

2
z

�
+ e↵(Rg, 0)+

2

2
(R�Rg)2+

⌫2

2
z

2 , (16)

where the symmetry of the potential  0 w.r.t. the plane z=0 was
used. In equation (16), the epicyclic frequencies  and ⌫ were
introduced as

2(Rg) =
@ e↵

@R2

�����
(Rg,0)

; ⌫2(Rg) =
@2 e↵

@z2

�����
(Rg,0)
. (17)

In equation (16), one should note that the radial and vertical mo-
tions have been decoupled and correspond to harmonic librations.
Therefore, up to initial phases, there exist two amplitudes AR and
Az such that R(t)=Rg+AR cos(t) and z(t)=Az cos(⌫t). The two
corresponding actions Jr and Jz are then given by

Jr =
1
2
A

2
R

; Jz =
1
2
⌫A

2
z
. (18)

Therefore, (Jr, Jz)= (0, 0) corresponds to exactly circular orbits.
Increasing Jr (resp. Jz) tends to increase the amplitude of the
radial (resp. vertical) oscillations, corresponding to hotter or-
bits, see figure 1. One should also note that within the epicyclic
approximation, the intrinsic frequencies ⌦= (⌦�, , ⌫) only de-
pend on Rg and are assumed to be independent of Jr and Jz.
Such a degeneracy significantly simplifies the resonance condi-
tion �D(m1 ·⌦1�m2 ·⌦2) present in the Balescu-Lenard equa-
tion (2). The final step is now to construct an explicit map-
ping between the physical coordinates (R, �, z, pR, p�, pz) and

(✓R, ✓�, ✓z, Jr, Jz, J�) (Lynden-Bell & Kalnajs 1972; Palmer 1994;
Binney & Tremaine 2008) which at first order takes the form
8>>>>>><
>>>>>>:

R = Rg+AR cos(✓R) ,

� = ✓��
2⌦�


AR

Rg
sin(✓R) ,

z = Az cos(✓z) .

(19)

This mapping will be used to compute the Fourier transform
w.r.t. the angles as defined in equation (6). Finally, throughout the
calculations, it will be assumed that the disc’s quasi-stationary
DF takes initially the form of a quasi-isothermal DF (Binney &
McMillan 2011) given by

F(Rg, Jr, Jz) =
⌦�⌃

⇡�2
r

exp

� Jr

�2
r

� ⌫

2⇡�2
z

exp

� ⌫Jz

�2
z

�
, (20)

where the functions ⌃, ⌦�, , ⌫, �r and �z have to be evaluated at
Rg. Equation (20) involves ⌃ the projected active surface density
of the disc associated with the system’s density ⇢, such that
⌃(R)=

R
dz ⇢(R, z). It also involves �r (resp. �z), which quantifies

the radial (resp. vertical) velocity dispersion of the stars at a given
radius. Such a DF becomes the Schwarzschild DF in the epicyle
limit (see (4.153) in Binney & Tremaine 2008).

3.2. Thick WKB basis

FPC15, in the context of razor-thin discs, showed how one could
construct a biorthonormal basis of tightly wound potential and
density elements and use it to obtain explicit expressions for the
drift and di↵usion coe�cients of the Balescu-Lenard equation. In
the current paper, these results will be generalised to thick discs
by constructing their vertical components. Some of the upcoming
calculations will not be detailed as they can be found in FPC15,
and we will mainly focus on the new vertical component. In the
context of collisionless secular evolution, Fouvry et al. (2016b)
presents a similar generalisation of the WKB formalism to thick
discs: details on some of the upcoming calculations may be found
therein. Using the cylindrical coordinates (R, �, z), let us define
the basis elements

 [k�,kr ,R0,n](R, �, z) = A 
[k�,kr ,R0]
r (R, �) [kr ,n]

z
(z) . (21)

In equation (21), A is an amplitude which will be determined
later on to ensure the correct normalisation of the basis elements,
and  

[k�,kr ,R0]
r corresponds to the same in-plane dependence of

the razor-thin tightly wound basis elements introduced in FPC15,
which reads

 
[k�,kr ,R0]
r (R, �) = ei(k��+krR) BR0 (R) , (22)

where the radial window function BR0 is defined as

BR0 (R) =
1

(⇡�2)1/4 exp

� (R�R0)2

2�2

�
. (23)

The thickened basis elements from equation (21) are indexed by
four numbers: k� is an integer which quantifies the number of
azimuthal patterns of the basis elements, kr corresponds to the
radial frequency of the basis elements, while R0 is the radius
within the disc around which the window BR0 is centred. Finally,
in this thick context, a final integer index n�1 was introduced,
which numbers the vertical dependences, as detailed below. In
equation (23), a decoupling scale�was also introduced, which, as
explained in FPC15, ensures the biorthogonality of the basis. The
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Figure 1. Fits to Q(M?, z) for z = 2, 1, 0.4, 0.25. The fit is Q / (1 +

M0(z)/M?)↵(z) with M0 / 1/(1 + z) and ↵ / (1 + z)�1/3.

motion via deflections on giant molecular clouds. The correspond-
ing radial migration will also play an important role in their secular
evolution.

The epoch of cosmic environment settling allows secular res-
onant processes to take over to define the morphology of galaxies
(bar formation, radial migration, disk heating and thickening, etc.).
These discs are cold and therefore fragile dynamical systems for
which rotation provides an important reservoir of free energy, and
where orbital resonances play a key role. The availability of this
free energy leads to a strong amplification of certain stimuli, with
the net result that even a small disturbance can lead to disks evolv-
ing towards substantially distinct quasi-equilibria. These disks are
furthermore immersed in various sources of perturbations, ranging
from fluctuations coming from the cosmic environment, stochastic
cosmic infall, shot noise coming from the finite number and short
life span of giant molecular clouds in the interstellar medium, to
globular clusters and substructures in orbit around the galaxy. Spi-
ral arms and central bars provide other sources of coherent stimu-
lation. The cosmic history of galactic disks must therefore include
the common responses to all these various stimuli (internal and ex-
ternal).

Section 2 shows why and how disc converge towards marginal
stability, Section 3 explains how marginal stability stiffens hence
settles the disc, Section 4 explains how marginal stability is also a
confounding factor for joint thick/thin disc growth, while Section 5
wraps up.

2 CONVERGENCE TOWARD MARGINAL STABILITY

Let us first present numerical evidence of convergence toward
marginal stability extracted from NewHorizon, before showing
why such convergence with mass and redshift is effectively equiv-
alent to disc settling. here we want to also highlight why transition
mass scales like mass of non linearity.

Yohan will explain how measurements were done.

2.1 fits to Q

A fit to NewHorizon yields

Q(M?, z) =

✓
1 +

Mz(z)

M

◆↵(z)

,where ↵(z) =
0.55

3
p
1 + z

, (1)

and Mz =
7.5⇥ 10

8

(1 + z)0.92
M� , (2)

where the transition mass, Mz can be shown to match the mass
of non-linearity. Indeed, we have a redshift dependency of M?/M

which compensates three powers of 1 + z since to be corrected

M?

M
= 1.57 ⇥ 10

�7
(z + 1)

3
M

0.69
(z+1)0.3

? (3)

See also Agertz et al. (2015) Inoue et al. (2016) Oklopčić et al.
(2017) Mandelker et al. (2017) Ceverino et al. (2017) Krumholz
et al. (2018) Meng et al. (2019) Romeo et al. (2020) for a similar
finding.

2.2 Equivalence between settling fraction and marginality

Let us revisit the issue of disc settling based on Toomre’s criterion.
The goal is to show that i) the convergence of Q towards 1 that
drives the increase of f3 ii) In the best of worlds we should to show
it drives h/R = aspect ratio of the disc.

Dimensional analysis of a given disc yields

Q =
�

⇡G⌃
=

M

M?

�

v
. (4)

Let us call s = v/�, m? = logM?, m = logM , fb =

M?/M and iQ = Q
�1. Note that both fb and s are (increasing)

function of M?. The former because low mass discs are known to
be sub-maximal, while the latter because within the disc popula-
tion V/� increases with mass (see Appendix C). In terms of these
variables, equation (4) becomes simply

iQ = fb s . (5)

The number, Nc , of galaxies which have s > sc in the stellar mass
bin mk ⌘ logMk ±�/2 reads

N k
c = h⇥H(s� sc)⇧�(m? �mk)i (6)

=

mk+�/2Z

mk��/2

dm?

Z 1

sc

ds
d
2
n

dm?ds
. (7)

With Nc we can readily define the fraction of settled disc in that
mass bin as

f3(Mk) ⌘
N k

3

N k
1

, (8)

where the numerator corresponds the integral of d2n/dm?ds over
the dark shaded area on Fig 2, while the denominator corresponds
to the integral over the intermediate+dark shaded area. It clearly
follows that f3 < 1 and df3/dm? > 0 (at higher stellar mass,
the number counts have shifted up so more of them fall in the dark
region).

The simulation gives us access to either d
2
n/dm?ds or

d
2
n/dm?d iQ. From equation (4), we can relate one PDF to the

other through

@iQ

@s
= fb(m,m?) > 0 . (9)

Because iQ accumulates upwards towards 1 as a function of
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motion via deflections on giant molecular clouds. The correspond-
ing radial migration will also play an important role in their secular
evolution.

The epoch of cosmic environment settling allows secular res-
onant processes to take over to define the morphology of galaxies
(bar formation, radial migration, disk heating and thickening, etc.).
These discs are cold and therefore fragile dynamical systems for
which rotation provides an important reservoir of free energy, and
where orbital resonances play a key role. The availability of this
free energy leads to a strong amplification of certain stimuli, with
the net result that even a small disturbance can lead to disks evolv-
ing towards substantially distinct quasi-equilibria. These disks are
furthermore immersed in various sources of perturbations, ranging
from fluctuations coming from the cosmic environment, stochastic
cosmic infall, shot noise coming from the finite number and short
life span of giant molecular clouds in the interstellar medium, to
globular clusters and substructures in orbit around the galaxy. Spi-
ral arms and central bars provide other sources of coherent stimu-
lation. The cosmic history of galactic disks must therefore include
the common responses to all these various stimuli (internal and ex-
ternal).

Section 2 shows why and how disc converge towards marginal
stability, Section 3 explains how marginal stability stiffens hence
settles the disc, Section 4 explains how marginal stability is also a
confounding factor for joint thick/thin disc growth, while Section 5
wraps up.
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marginal stability extracted from NewHorizon, before showing
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alent to disc settling. here we want to also highlight why transition
mass scales like mass of non linearity.
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7

Figure 4. Decomposition of star particles into disordered and ordered (disc) components in an example galaxy at redshift
z = 0.7. The six panels on the left show the total and decomposed images of the galaxy. A threshold value of ✏ > 0.5 is used to
identify star particles that form the ordered component of the galaxy. The images are in the rest-frame r-band. The two panels
on the right show two component fits to the radial (d) and vertical (h) profiles of the galaxy.

on. Galaxies with a lower mass develop their disc much
more slowly. It takes half of the cosmic history for the
galaxies in the mass bin of 109 < M⇤/M� < 1010 to
reach fsettle ⇡ 0.2. Lower-mass galaxies struggle very
hard to develop a disc throughout the cosmic history.
The mass dependence of the epoch of disc settling has
recently been reported by Park et al. (2019) using the
same simulation. It appears to be in reasonable agree-
ment with observations (Kassin et al. 2012; Simons et al.
2017). The simulation underfits the observation in the
low mass bin roughly by a factor of two.

3.2. Driver and tracer of disc settling

The formation of discs and their settling process is
influenced by several internal and external processes.
E�cient localised star formation drives intense stellar
feedback (Kimm et al. 2015; Agertz & Kravtsov 2015)
which injects significant amounts of internal gas turbu-
lence and ejects gas from galaxies at velocities (Martizzi
et al. 2016) close to 100�200 km s�1. Hence, until the es-
cape velocity of the galaxy surpasses this typical value,
supernova-ejected gas can expand almost freely in the
interstellar medium and escape the galaxy, making it
di�cult for a coherent rotational gas flow to develop.
In addition, particularly at high redshift, external pro-

cesses like mergers and cold filamentary accretion act to

Figure 5. The fraction of galaxies with a settled disc,
as a function of redshift, adopting V/�(cold gas) > 3 as
the disc settling criterion (Genzel et al. 2011; Kassin et al.
2012). We show the NH galaxies (shades with solid circles)
binned in two mass ranges (orange: M⇤ � 1010 M�, blue:
109  M⇤/M� < 1010). The observational data (dashed
lines with star symbols) are the combination of observational
data points (Simons et al. 2017, R. Simons, private commu-
nication) following the same colour scheme.

 Fraction of galaxies with v/σ > than 3 and 1 resp.

Data Simulation

High mas
Low mass

 

Mock image construction 
 
Mock images of galaxies have been generated using the SKIRT code48. SKIRT calculates the              
effect of radiative transfer using the star particles and gas properties from the simulation,              
assuming a dust to metal ratio of 0.449,50. The images are created using three filters of JWST                 
(NIRCam F070W, F090W and F115W) and JWST spatial resolution (0.04 arcsec/pixel),           
assuming a hypothetical distance of 200 Mpc. 
 
Measurement of the disc component of galaxies 
 
We have used the circularity parameter ( e) to measure the contribution of the rotating disc               
component among star particles. The circularity parameter is defined as the specific angular             
momentum of each star particle on the galactic rotational axis normalized by that of a circular                
orbit at the same radius as the star particle in question 47. The galaxy rotational axis is defined                 
by the angular momentum vector of stars within the radius that contains 90 percent of the                
stellar mass. Therefore, a disc component would have a distribution of e with a peak at 1 (i.e.                  
ordered, purely circular orbits within the galactic plane), while a disordered, non-rotating            
(dispersion-dominated) component would have a peak around 0 (i.e. no rotation along the             
spin axis). We divide the stars in a galaxy into rotational (i.e. the disc) and disordered                
components using a threshold of e = 0.5 (with e > 0.5 denoting the disc component), and note                  
that our decomposition analysis does not depend strongly on the choice of this threshold (the               
result is the same for e=0.5-0.7). The disc fraction based on the mass measurements from the                
decomposition (see below), also shows a good correlation with the values of V/σ in individual               
galaxies. Finally, we note that the ‘disordered’ velocity components of galaxies at these             
epochs, which are driven by frequent interactions with companions, are not directly            
comparable to the ‘bulge’ components of local galaxies, which are composed of a             
‘steady-state’ collection of random stellar orbits (not dominated by ongoing interactions).           
This is also largely the reason for using the term ‘disordered’ rather than ‘bulge’ to describe                
these components in this study.  
 
We also performed radial and vertical profile fits to the r -band images of galaxies using two                
components. Radial fits allow a combination of an exponential disc and a power law profile               
with a free index, whereas vertical fits are based on the two exponential components. While               
a two-component decomposition may be simplistic, it provides reasonable fits for galaxies in             
our simulation, around the epochs at which disc settling takes places. 
 
Scaling relation for the  settled disc fraction 
 
As shown in Figure 4, the fraction of settled discs scales with both redshift and mass of the                  
hosts as f=0.7(M */10 10M ◉) 1/3/(1+ z ) . We can rephrase this double scaling as a function of a              
single power-law. In a hierarchical bottom up model, at any given redshift, there is a critical                
mass, M NL( z ), called the non-linear mass which determines that least massive objects have             
entered the non-linear regime of structure formation. Let us approximate the underlying            
power spectrum locally with a power-law as P(k,z )=A D 2( z )k n where D ( z ) is the linear growth               
factor, A a constant of normalization, and k the wave number. 
At the scale of non-linearity  R NL, the redshift-dependent cosmic variance equals unity: 

(R , ) (z)σ (R )  4π D (z) kk k W (kR )σ2
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2 2
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2 ∫
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Match between simulation and observation  as a function of both mass and redshift
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 Astrophys. J., 733, 101-130 (2011) 
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A simple toy model based on the theory of Lagrange Laplace gravitationally coupled rings
explains why discs with more massive gas component restore faster an alignment with their
stellar component.
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1 INTRODUCTION

These notes aim to explain how a toy model based on a proxy
involving gravitationally coupled rings can be used to understand
some of findings from NewHorizon’s simulation. In particular, we
want to understand why the rate of re-alignement should depend on
how massive the gaseous component is?

2 RELAXATING RINGS MODEL

In order to understand stellar gas disc misalignent, let us consider
a set of concentric gravitationally self-interacting rings depicted in
Fig 1. Each ring represents a set of orbits with a given set of actions
(i.e. orbital parameters), and are coupled together by gravity.

Since we are concerned by departure from a settled disc, we
will assume without loss of generality that the equation of motions
describing the different rings are linearised w.r.t. an unperturbed
co-planar configuration. After linearisation, the set of N coupled
oscillators will obey a matrix equation.

These equations of motions will then be decoupled by mov-
ing to the eigen-frame diagonalising the oscillators. This is best
described in the so-called Laplace Lagrange theory (Kocsis &
Tremaine 2011).

2.1 Laplace Lagrange theory

Let us assume that the stellar orbits with guiding center R in the
disc are nearly coplanar (✓ ⌧ 1) and nearly circular (e ⌧ 1). For
simplicity let us assume that we are considering the outer part of
the disc, so that the potential can be described as nearly Keplerian.
Defining the canonical variables1, p,q as

qi = �i✓i sin(�i) , pi = ��i✓i cos(�i) , (1)

1 so that x and y components of angular momentum obey Li,x = �iqi
and Li,y = �ipi

Figure 1. The relaxation of gravitationally self-interacting rings of stars and
gas (in red and blue resp.). The coupling can be linearized around the co-
planar configuration. The equations of motions governing the N oscillators
can be decoupled by moving to the eigen-frame.

with �i =
p
mi(GMRi)

1/4, the Hamiltonian describing the cou-
pling between the ring at radius Ri in that limit reads

H(p,q) =
1
2
pT ·A · p+

1
2
qT ·A · q , (2)

where

Aij = � Gmimj↵ij

max(Ri, Rj)�i�j
b3/2(↵ij) , if i 6= j (3)

Aii =
X

k 6=j

Gmimk↵ik

max(Ri, Rk)�2
i

b3/2(↵ik) , if i 6= j , (4)

given ↵ij = min(Ri, Rj)/max(Ri, Rj) and

b3/2(↵) =
2
⇡

Z ⇡

0

cosxdx

(1� 2↵ cosx+ ↵2)3/2
, (5)

=
(1 + ↵

2)E(↵)� (1� ↵
2)K(↵)

⇡↵(1� ↵2)2
, (6)
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with �i =
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mi(GMRi)

1/4, the Hamiltonian describing the cou-
pling between the ring at radius Ri in that limit reads

H(p,q) =
1
2
pT ·A · p+

1
2
qT ·A · q , (2)

where
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ABSTRACT

A simple toy model based on the theory of Lagrange Laplace gravitationally coupled rings
explains why discs with more massive gas component restore faster an alignment with their
stellar component.
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1 INTRODUCTION

These notes aim to explain how a toy model based on a proxy
involving gravitationally coupled rings can be used to understand
some of findings from NewHorizon’s simulation. In particular, we
want to understand why the rate of re-alignement should depend on
how massive the gaseous component is?

2 RELAXATING RINGS MODEL

In order to understand stellar gas disc misalignent, let us consider
a set of concentric gravitationally self-interacting rings depicted in
Fig 1. Each ring represents a set of orbits with a given set of actions
(i.e. orbital parameters), and are coupled together by gravity.

Since we are concerned by departure from a settled disc, we
will assume without loss of generality that the equation of motions
describing the different rings are linearised w.r.t. an unperturbed
co-planar configuration. After linearisation, the set of N coupled
oscillators will obey a matrix equation.

These equations of motions will then be decoupled by mov-
ing to the eigen-frame diagonalising the oscillators. This is best
described in the so-called Laplace Lagrange theory (Kocsis &
Tremaine 2011).

2.1 Laplace Lagrange theory

Let us assume that the stellar orbits with guiding center R in the
disc are nearly coplanar (✓ ⌧ 1) and nearly circular (e ⌧ 1). For
simplicity let us assume that we are considering the outer part of
the disc, so that the potential can be described as nearly Keplerian.
Defining the canonical variables1, p,q as

qi = �i✓i sin(�i) , pi = ��i✓i cos(�i) , (1)

1 so that x and y components of angular momentum obey Li,x = �iqi
and Li,y = �ipi

Figure 1. The relaxation of gravitationally self-interacting rings of stars and
gas (in red and blue resp.). The coupling can be linearized around the co-
planar configuration. The equations of motions governing the N oscillators
can be decoupled by moving to the eigen-frame.

with �i =
p
mi(GMRi)

1/4, the Hamiltonian describing the cou-
pling between the ring at radius Ri in that limit reads

H(p,q) =
1
2
pT ·A · p+

1
2
qT ·A · q , (2)

where

Aij = � Gmimj↵ij

max(Ri, Rj)�i�j
b3/2(↵ij) , if i 6= j (3)

Aii =
X

k 6=j

Gmimk↵ik

max(Ri, Rk)�2
i

b3/2(↵ik) , if i 6= j , (4)

given ↵ij = min(Ri, Rj)/max(Ri, Rj) and

b3/2(↵) =
2
⇡

Z ⇡

0

cosxdx

(1� 2↵ cosx+ ↵2)3/2
, (5)

=
(1 + ↵

2)E(↵)� (1� ↵
2)K(↵)

⇡↵(1� ↵2)2
, (6)
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SF, the more SN the hotter the gas the larger Qg . In parallel, the
stronger the SF the larger the accumulated stellar mass the lower the
Q?. Since the Q numbers add geometrically, the effective number
is therefore dominated by the component closest to one (the gas).
Once the stellar disc is massive enough to dominate this phase, it
damps runaway instabilities within the gaseous disc, and preserves
the global structure. Conversely, the cold rotating gas maintains
marginal stability which shortens the feedback loop.

This suggests that the maximum entropy production principle
in multiple component systems could be viewed as a process which
selects linear stability threshold.

a pb we have is that we need negative diffusion if we want a
settling process which is difficult if it has to be the RMS of fluctu-
ations of the potential. In principle the disc could oscillate around
any values of Q via positive and negative feedback coming from
SN, turbulence, shot noise, disc mass and cold gas inflow. In prac-
tice, Q ⇠ 1 is an attractor because it provides a tighter control loop
as it dresses the density fluctuations by a strong gravitational wake
so the dynamical time is significantly shorter. Hence Q cannot os-
cillate away from 1 by a lot.

3 RELAXATING RINGS MODEL

Beyond the numerical evidence that convergence towards marginal
stability is equivalent to the observed scaling of the settled fraction
of discs versus mass and redshift, it is of interest to explain why
such convergence drives the galaxy towards a thinner disc.

In order to understand this relaxation, let us consider a set of
concentric gravitationally self-interacting rings depicted in Fig 3.
Each ring represents a set of orbits with a given set of actions, and
are coupled together by gravity. Since we are concerned by depar-
ture from a settled disc, we can assume without loss of generality
that the equation of motions describing the different rings are lin-
earised w.r.t. an unperturbed co-planar configuration. After lineari-
sation, the set of N coupled oscillators obey a matrix equation. The
equations of motions governing the oscillators can be decoupled by
moving to the eigen-frame. This is best described in the so-called
Laplace Lagrange theory (Kocsis & Tremaine 2011).

3.1 Laplace Lagrange theory

Let us assume that the stellar orbits with guiding center R in the
disc are nearly coplanar (✓ ⌧ 1) and nearly circular (e ⌧ 1).
For simplicity let us assume that we are considering the outer part
of the disc, so that the potential can be described as nearly Keple-
rian. Defining the canonical variables2, p,q as qi = �i✓i sin(�i),
pi = ��i✓i cos(�i), with �i =

p
mi(GMRi)

1/4, the Hamilto-
nian describing the coupling between the ring in that limit reads

H(p,q) =
1

2
pT ·A · p+

1

2
qT ·A · q , (10)

where

Aij = � Gmimj↵ij

max(Ri, Rj)�i�j
b3/2(↵ij) , if i 6= j (11)

Aii =

X

k 6=j

Gmimk↵ik

max(Ri, Rk)�
2

i

b3/2(↵ik) , if i 6= j , (12)

2 so that x and y components of angular momentum obey Li,x = �iqi
and Li,y = �ipi

Figure 3. The relaxation of gravitationally self-interacting rings. Top panel:
a schematic representation of rings. Each ring is coupled to the other by
the fluctuating potential, which is dressed by the wakes that these pertur-
bations trigger in the disc. Once the disc starts to settle, the coupling can
be linearized around the co-planar configuration. The equations of motions
governing the N oscillators can be decoupled by moving to the eigen-frame.
The secular growth of the gravitational susceptibility driven by the conver-
gence toward Q ⇠ 1 will induce a stiffening of the restoring force hence
damping of all eigen-oscillations. Bottom panel: the effect of damping of
one of the eigenmodes is well captured by the WKB approximation (blue
dashed line). Since the rings’ oscillations will be a linear combination of
such eigen-modes, they will all damp accordingly, globally inducing the
settling.

given ↵ij = min(Ri, Rj)/max(Ri, Rj) and

b3/2(↵) =
2

⇡

Z ⇡

0

cosxdx

(1� 2↵ cosx+ ↵2)3/2
, (13)

=
(1 + ↵

2
)E(↵)� (1� ↵

2
)K(↵)

⇡↵(1� ↵2)2
, (14)

with K and E the elliptic functions of the first and second type
resp. If we move to a frame which diagonalise the positive semi-
definite symmetric matrix A, in that frame, Hamilton’s equation
yield

¨̂qi + !
2

i q̂i = ⇠̂i , (15)

where !i is the i
th eigenvalue and ⇠̂i is the external stochastic spe-

cific force applied on the ring projected on the corresponding eigen-
vector.

The net effect of the cosmic convergence towards Q ⇠ 1 and
disc growth will be that the effective mass of each ring gets boosted
by the gravitational polarisation that it triggers within the unper-
turbed disc, so that in equation (15), one should consider that !i(t)

becomes a slowly growing function of cosmic time, while ⇠̂i(t)

now only reflects the slowly varying component of the fluctuating
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force field. The WKB solution to equation (18) then reads

q̂i(t)=

X

±

Z 1

�1

⇠̂i(t
0
)p

!i(t)!i(t
0)

exp

✓
±ı

Z t

t0
!i(⌧)d⌧

◆
dt

0
. (16)

As !i(t) grows the amplitudes of the fluctuations of all q̂i(t) de-
creases which cosmic time, reflecting ring alignement (8i , ✓i !
0). Hence the secular growth of the gravitational susceptibility
driven by the convergence toward Q ⇠ 1 will induce a stiffen-
ing of the restoring force between rings, and therefore damping of
all eigen-oscillations. Since the rings’ oscillations will be a linear
combination of such eigen-modes, they will all damp accordingly,
globally inducing the settling.

3.2 Tightly wound solution

It is in fact possible to push the limit of the N ring model in the con-
tinuum limit, which provides an alternative but equivalent formu-
lation of the setting process, while accounting for azimuthal varia-
tions.

Hunter & Toomre (1969) have shown that each (m, k) mode,
û exp(�ı!t+ ı

R r
k(r

0
)dr

0
+ım✓), of the radial WKB approxi-

mation3 of tightly wound vertical displacement above and below
the disc, u(r, ✓, t), obeys the dispersion relation

(! �m⌦)
2
= ⌫

2
+ 2⇡G⌃k . (17)

An important feature of this dispersion relation corresponds to the
positive sign in from of the surface density ⌃, which in contrast the
dispersion relation for in-plane self-gravitating spiral waves high-
lights the fact that the higher the (effective, dressing included) ⌃
the larger !. In equation (17), ⌫ and ⌦ are respectively the vertical
and azimuthal frequency of the disc, while k and m are the radial
and azimuthal frequencies. Let us now seek temporal secular WKB
solution to the time dependent forced evolution equation

@
2
û

@2t
+ !

2
(t)û(t) = f̂(t) , (18)

where the left hand side reflect some stochastic specific force,
f̂(t) = ık ̂(t) corresponding to the external forcing on this dis-
placement. Here the potential  accounts for all (slowly varying
component of the) forcing (flybys, SN and turbulence induced fluc-
tuations). discuss here time decoupling between frequency of forc-
ing secular time, and timescale associated with radial WKB wave.
The WKB solution to equation (18) once again reads4

û(t) =

X

±

Z 1

�1

f̂(t
0
)p

!(t)!(t0)
exp

✓
±ı

Z t

t0
!(⌧)d⌧

◆
dt

0
, (19)

where !(k,m, ⌧) is a solution to the dispersion relation, equa-
tion (17):

!(⌧) = m⌦+

p
⌫2 + 2⇡G⌃(⌧)k , (20)

which implies that as the effective surface density ⌃(⌧) increases
(both because the disc becomes more massive and because it gets
closer to marginal stability) and the amplitude of the stochastic

3 Please note that we will consider two WKB approximations here: one
related to the spatial frequency of the wave and later one related to the
temporal variation of the frequencies of the wave
4 the corresponding asymptotic solution being û(t) ⇠ f̂(t)/!2(t)

forcing decreases (because the cosmic environment quieten and be-
comes out of sync with the frequencies of the system) the wave be-
comes stiffer, and the amplitude of the out of plane oscillation de-
creases (since !(t) increases and f(t) decreases in equation (18)).
This fate is true for each (m, k) mode independently. Through non-
linearities, the high k modes will diffuse away within the disc, so
that the injected energy by the stochastic external forcing does not
accumulate. The net effect will be disc settling driven by three com-
plementary processes: quieter environment, convergence towards
marginal stability and increased stellar disc mass.

Note that an adiabatic argument allows us to claim that if the
variation induced by the convergence towards marginal stability is
slow enough the vertical action Jz = Ez/!z(t) will be conserved,
which implies that as the vertical frequency grows, the energy of
the vertical oscillations, Ez , will decrease. This argument does not
capture the impact of the decrease of the fluctuation’s amplitude
with cosmic time. there is a sign pb here

3.3 Stellar-Gas disc damping

Let us finally study a double sets of rings corresponding to the stel-
lar and gaseous disc respectively, to understand within the frame-
work of the linearised Laplace Lagrange theory how the two discs
re-orient with respect to each other, and how the gaseous disc al-
lows the stellar disc to settle. We aim here to account for the fact
that the latter is subject to stochastic forcing by SN explosions and
dissipation through shocks between rings. Such processes will al-
low it to remove entropy from the stellar disc.

Let us therefore consider the dynamics of the set of coupled
gas +star eigenmodes for the stars, and the gas components, which
amplitude we will write q?, and qg respectively. We will consider
that each eigen mode has its own natural frequency, !? and !g

resp, a coupling term, !?g and a driving, ⇠ and damping ⌘ term
specific to the gas component. is it legitimate to only have one drag
in the eigenframe? The amplitude of each mode then obeys the set
of coupled equations

q̈? + !
2

?q? + !
2

?gqg = 0 ,

q̈g + !
2

g q̂g + !
2

?gq? + ⌘q̇g = ⇠ , (21)

Solving for equation (21), each stellar eigenmode will obey

q?(t) = �
X

!2S4

!
2

g?

Z t

�1
exp ((t� ⌧)!) ⇠ (⌧) d⌧

⌘ (3!2 + !
2
?) + 2!

�
2!2 + !2

g + !
2
?

� , (22)

where the frequencies, !, are one of four complex conjugate solu-
tions of the implicit equation5

S4={!
�� �!2

+ !
2

?

� �
! (⌘ + !) + !

2

g

�
= !

4

g?}, (23)

which will have both a damped component, and an oscillatory one.
Figure 4 illustrates the damping of two modes when one increases
the drag on the gas component and shows the frequencies which
are roots of S4. As expected, the roots acquire a larger and larger
negative real part, and the lighter gas disc will drag the stellar disc
towards itself as it settles. This is made more explicit in the next
subsection for displacement waves above and below equilibrium.

5 note how S4 reduces as it should to ! = ±!? and ! = ±!g when both
the friction and the coupling is nul.
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Link to Mandelbrot Set (Veritassium 2021)
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Why finite thickness? Chemistry of emergence

Auto-catalysis of the cold component  
(via wakes) converts kinetic evolution  
into a logistic differential equation.  
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Gas = cold stellar component

Logistic  ODE (cf Ecology, Chaos, Covid,  Innovation etc..)
cf: logistic map
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control parameter

= Simplest quadratic model for self -regulation 

= Taylor expansion of effective  production rate

Let us write down effective (closed loop) production rate for cold stellar component
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absurd but not a given

APPENDIX A: NEW

APPENDIX B: OPEN RING MODE

D-: Let us consider an open system obeying Vlazov’s equation with
a first order source term

@F

@t
+ {H,F} = se , (B1)

Solving equation (B1) perturbatively, with F = F0 + f , a formal
solution read

f(J1,w1, t1)=

Z
dJ2dw2dt2G(J1,w1|J2,w2, t1�t2)se(J2,w2, t2) ,

(B2)
where the (Green) propagator obeys:

G(J1,w1|J2,w2, ⌧) =

Z

B

d!

2⇡
e
�i!⌧

X

k1k2

i e
i(k1·w1�k2·w2)

(! � k1 ·⌦1)
⇥

 
�
k1
k2

(2⇡)3
�D(J1�J2) +

k1 ·rJ1F

(! � k2 ·⌦2)Dk1k2(J1,J2,!)

!
, (B3)

and following Heyvaerts (2010), we defined

1

Dk1k2(J1,J2,!)
=

X

↵,�

 
↵
k1
(J1)

�
"
�1

(!)
�↵�

 
�⇤
k2

(J2) , (B4)

with

"
↵�

(!) = �
↵� � (2⇡)

3
X

k1

Z
dJ1 

↵⇤
k1

(J1) 
�
k1
(J1)

k1 ·rJ1F

! � k1 ·⌦1

·

The first term in the brace of (B3) represents the balistic displace-
ment of the perturbation (each harmonic phase-mixing at its own
frequency while keeping actions fixed) while the last term its dress-
ing.

this works only for perturbations following the unperturbed
orbits of the system. Let us integrate over rings to get the open set
of ring equation.

APPENDIX C: ORBITAL DIFFUSION

this will possibly go away unless we write open secular diffusion
Let us first consider an isolated stellar self-gravitating disc embed-
ded in a dark halo and its fluctuating cosmic environment and per-
turbed by supernovae feedback, turbulence and GMC driven shot
noise. We will consider the impact of dissipative processes and
the input from the cosmic environment later. Let us further assume

that the gravitational background  0, associated with its Hamilto-
nian H0, is stationary and integrable12, so as to remap the physical
coordinates (x,v) to the (orbit labelling) angle-action coordinates
(✓,J) (Goldstein 1950; Born 1960; Binney & Tremaine 2008). In
a cosmic context, we will later allow for a secular evolution of H0,
in order to account for the growth of the disc. Along the (assumed)
unperturbed motions, the actions J are conserved, while the angles
✓ are 2⇡�periodic. One can then introduce the intrinsic frequen-
cies of the system ⌦ as

⌦ = ✓̇ =
@H0

@J
. (C1)

Since the disc is assumed to be in a quasi-stationary state, it can
be described by a distribution function (DF) f(J , ✓, t), with the
normalisation convention

R
dxdvf=Mtot, where Mtot is the total

active mass of the system. Environmental and internal source of
stochastic source of perturbations will drive distorsion of the orbital
structure of the stars on secular timescales via so called quasi-linear
theory, which derivation can be sketched as follows. Let us expand
this DF into a slowly varying component, F (I, t) and a rapidly
varying one, �f(I, ✓(t)) as follows

f = F (I, t) + �f(I, ✓(t)) , subject to
@�f

@t
� @F

@t
, (C2)

and insert this expansion into Boltzmann’s equation

@f

@t
+ {H0 + � , f} = 0 , (C3)

where { } stands for Poisson bracket. Let us now angle-average
this equation so as to produce two sets of equation for F and �f

@F

@t
= �h[�f, � ]i , and

@�f

@t
+ {H0, �f}+ {� , F} = 0 .

(C4)
Inserting the second equation into the first, and a bit of algebra
(Weinberg 2001; Fouvry et al. 2015) allows us to recast into an
anisotropic diffusion equation of the form

@F

@t
=

@

@J
·
X

m

mDm(J)m· @F
@J

�
, (C5)

where the index m2Z3 corresponds to the Fourier coefficients as-
sociated with the Fourier transform w.r.t. the angles ✓. In equa-
tion (C5), the diffusion coefficients Dm(J) are given by

Dm(J) =
1

2

X

p,q

 
(p)
m  

(q)⇤
m


[I�cM]

�1· bC·[I�cM]
�1

�

pq

. (C6)

C1 Orbital diffusion coefficient

In equation (C6), the response matrix cM and the cross-power per-
turbations bC are functions of actions and temporal frequencies
! which should be evaluated at the resonant frequency m·⌦.
Here I stands for the identity matrix. Equation (C6) for the dif-
fusion coefficients involves potential basis elements  (p), which
are introduced following Kalnajs matrix method (Kalnajs 1976).
Indeed, to solve the non-local Poisson’s equation, one introduces

12 We note that in the thickened geometry, integrability is not warranted by
symmetry, so that we are effectively assuming that the disc is thin enough
so that it can be approximated to be integrable; see Weinberg (2015) for a
discussion.
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Fig. 1: Evolution of an epicyclic orbit (top panel) as one respectively
increases its radial action Jr (middle panel) or its vertical action Jz

(bottom panel). As expected, the radial (resp. vertical) excursions of the
orbit increase with increasing Jr (resp. Jz).

defined by the implicit relation

@ e↵

@R

�����
(Rg,0)
= 0 , (14)

so that Rg(J�) corresponds to the radius for which stars with an
angular momentum J� are on exactly circular orbits. In addition,
this circular orbit is described at the angular fequency ⌦� given
by

⌦2
�(Rg) =

1
Rg

@ 0

@R

�����
(Rg,0)
. (15)

In the neigborhourhood of circular orbits, the Hamiltonian from
equation (12) may be expanded as

H0 =
1
2


p

2
R
+p

2
z

�
+ e↵(Rg, 0)+

2

2
(R�Rg)2+

⌫2

2
z

2 , (16)

where the symmetry of the potential  0 w.r.t. the plane z=0 was
used. In equation (16), the epicyclic frequencies  and ⌫ were
introduced as

2(Rg) =
@ e↵

@R2

�����
(Rg,0)

; ⌫2(Rg) =
@2 e↵

@z2

�����
(Rg,0)
. (17)

In equation (16), one should note that the radial and vertical mo-
tions have been decoupled and correspond to harmonic librations.
Therefore, up to initial phases, there exist two amplitudes AR and
Az such that R(t)=Rg+AR cos(t) and z(t)=Az cos(⌫t). The two
corresponding actions Jr and Jz are then given by

Jr =
1
2
A

2
R

; Jz =
1
2
⌫A

2
z
. (18)

Therefore, (Jr, Jz)= (0, 0) corresponds to exactly circular orbits.
Increasing Jr (resp. Jz) tends to increase the amplitude of the
radial (resp. vertical) oscillations, corresponding to hotter or-
bits, see figure 1. One should also note that within the epicyclic
approximation, the intrinsic frequencies ⌦= (⌦�, , ⌫) only de-
pend on Rg and are assumed to be independent of Jr and Jz.
Such a degeneracy significantly simplifies the resonance condi-
tion �D(m1 ·⌦1�m2 ·⌦2) present in the Balescu-Lenard equa-
tion (2). The final step is now to construct an explicit map-
ping between the physical coordinates (R, �, z, pR, p�, pz) and

(✓R, ✓�, ✓z, Jr, Jz, J�) (Lynden-Bell & Kalnajs 1972; Palmer 1994;
Binney & Tremaine 2008) which at first order takes the form
8>>>>>><
>>>>>>:

R = Rg+AR cos(✓R) ,

� = ✓��
2⌦�


AR

Rg
sin(✓R) ,

z = Az cos(✓z) .

(19)

This mapping will be used to compute the Fourier transform
w.r.t. the angles as defined in equation (6). Finally, throughout the
calculations, it will be assumed that the disc’s quasi-stationary
DF takes initially the form of a quasi-isothermal DF (Binney &
McMillan 2011) given by

F(Rg, Jr, Jz) =
⌦�⌃

⇡�2
r

exp

� Jr

�2
r

� ⌫

2⇡�2
z

exp

� ⌫Jz

�2
z

�
, (20)

where the functions ⌃, ⌦�, , ⌫, �r and �z have to be evaluated at
Rg. Equation (20) involves ⌃ the projected active surface density
of the disc associated with the system’s density ⇢, such that
⌃(R)=

R
dz ⇢(R, z). It also involves �r (resp. �z), which quantifies

the radial (resp. vertical) velocity dispersion of the stars at a given
radius. Such a DF becomes the Schwarzschild DF in the epicyle
limit (see (4.153) in Binney & Tremaine 2008).

3.2. Thick WKB basis

FPC15, in the context of razor-thin discs, showed how one could
construct a biorthonormal basis of tightly wound potential and
density elements and use it to obtain explicit expressions for the
drift and di↵usion coe�cients of the Balescu-Lenard equation. In
the current paper, these results will be generalised to thick discs
by constructing their vertical components. Some of the upcoming
calculations will not be detailed as they can be found in FPC15,
and we will mainly focus on the new vertical component. In the
context of collisionless secular evolution, Fouvry et al. (2016b)
presents a similar generalisation of the WKB formalism to thick
discs: details on some of the upcoming calculations may be found
therein. Using the cylindrical coordinates (R, �, z), let us define
the basis elements

 [k�,kr ,R0,n](R, �, z) = A 
[k�,kr ,R0]
r (R, �) [kr ,n]

z
(z) . (21)

In equation (21), A is an amplitude which will be determined
later on to ensure the correct normalisation of the basis elements,
and  

[k�,kr ,R0]
r corresponds to the same in-plane dependence of

the razor-thin tightly wound basis elements introduced in FPC15,
which reads

 
[k�,kr ,R0]
r (R, �) = ei(k��+krR) BR0 (R) , (22)

where the radial window function BR0 is defined as

BR0 (R) =
1

(⇡�2)1/4 exp

� (R�R0)2

2�2

�
. (23)

The thickened basis elements from equation (21) are indexed by
four numbers: k� is an integer which quantifies the number of
azimuthal patterns of the basis elements, kr corresponds to the
radial frequency of the basis elements, while R0 is the radius
within the disc around which the window BR0 is centred. Finally,
in this thick context, a final integer index n�1 was introduced,
which numbers the vertical dependences, as detailed below. In
equation (23), a decoupling scale�was also introduced, which, as
explained in FPC15, ensures the biorthogonality of the basis. The
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APPENDIX A: NEW

APPENDIX B: OPEN RING MODE

D-: Let us consider an open system obeying Vlazov’s equation with
a first order source term

@F

@t
+ {H,F} = se , (B1)

Solving equation (B1) perturbatively, with F = F0 + f , a formal
solution read

f(J1,w1, t1)=

Z
dJ2dw2dt2G(J1,w1|J2,w2, t1�t2)se(J2,w2, t2) ,

(B2)
where the (Green) propagator obeys:

G(J1,w1|J2,w2, ⌧) =

Z

B

d!

2⇡
e
�i!⌧

X

k1k2

i e
i(k1·w1�k2·w2)

(! � k1 ·⌦1)
⇥

 
�
k1
k2

(2⇡)3
�D(J1�J2) +

k1 ·rJ1F

(! � k2 ·⌦2)Dk1k2(J1,J2,!)

!
, (B3)

and following Heyvaerts (2010), we defined

1

Dk1k2(J1,J2,!)
=

X

↵,�

 
↵
k1
(J1)

�
"
�1

(!)
�↵�

 
�⇤
k2

(J2) , (B4)

with

"
↵�

(!) = �
↵� � (2⇡)

3
X

k1

Z
dJ1 

↵⇤
k1

(J1) 
�
k1
(J1)

k1 ·rJ1F

! � k1 ·⌦1

·

The first term in the brace of (B3) represents the balistic displace-
ment of the perturbation (each harmonic phase-mixing at its own
frequency while keeping actions fixed) while the last term its dress-
ing.

this works only for perturbations following the unperturbed
orbits of the system. Let us integrate over rings to get the open set
of ring equation.

APPENDIX C: ORBITAL DIFFUSION

this will possibly go away unless we write open secular diffusion
Let us first consider an isolated stellar self-gravitating disc embed-
ded in a dark halo and its fluctuating cosmic environment and per-
turbed by supernovae feedback, turbulence and GMC driven shot
noise. We will consider the impact of dissipative processes and
the input from the cosmic environment later. Let us further assume

that the gravitational background  0, associated with its Hamilto-
nian H0, is stationary and integrable12, so as to remap the physical
coordinates (x,v) to the (orbit labelling) angle-action coordinates
(✓,J) (Goldstein 1950; Born 1960; Binney & Tremaine 2008). In
a cosmic context, we will later allow for a secular evolution of H0,
in order to account for the growth of the disc. Along the (assumed)
unperturbed motions, the actions J are conserved, while the angles
✓ are 2⇡�periodic. One can then introduce the intrinsic frequen-
cies of the system ⌦ as

⌦ = ✓̇ =
@H0

@J
. (C1)

Since the disc is assumed to be in a quasi-stationary state, it can
be described by a distribution function (DF) f(J , ✓, t), with the
normalisation convention

R
dxdvf=Mtot, where Mtot is the total

active mass of the system. Environmental and internal source of
stochastic source of perturbations will drive distorsion of the orbital
structure of the stars on secular timescales via so called quasi-linear
theory, which derivation can be sketched as follows. Let us expand
this DF into a slowly varying component, F (I, t) and a rapidly
varying one, �f(I, ✓(t)) as follows

f = F (I, t) + �f(I, ✓(t)) , subject to
@�f

@t
� @F

@t
, (C2)

and insert this expansion into Boltzmann’s equation

@f

@t
+ {H0 + � , f} = 0 , (C3)

where { } stands for Poisson bracket. Let us now angle-average
this equation so as to produce two sets of equation for F and �f

@F

@t
= �h[�f, � ]i , and

@�f

@t
+ {H0, �f}+ {� , F} = 0 .

(C4)
Inserting the second equation into the first, and a bit of algebra
(Weinberg 2001; Fouvry et al. 2015) allows us to recast into an
anisotropic diffusion equation of the form

@F

@t
=

@

@J
·
X

m

mDm(J)m· @F
@J

�
, (C5)

where the index m2Z3 corresponds to the Fourier coefficients as-
sociated with the Fourier transform w.r.t. the angles ✓. In equa-
tion (C5), the diffusion coefficients Dm(J) are given by

Dm(J) =
1

2

X

p,q

 
(p)
m  

(q)⇤
m


[I�cM]

�1· bC·[I�cM]
�1

�

pq

. (C6)

C1 Orbital diffusion coefficient

In equation (C6), the response matrix cM and the cross-power per-
turbations bC are functions of actions and temporal frequencies
! which should be evaluated at the resonant frequency m·⌦.
Here I stands for the identity matrix. Equation (C6) for the dif-
fusion coefficients involves potential basis elements  (p), which
are introduced following Kalnajs matrix method (Kalnajs 1976).
Indeed, to solve the non-local Poisson’s equation, one introduces

12 We note that in the thickened geometry, integrability is not warranted by
symmetry, so that we are effectively assuming that the disc is thin enough
so that it can be approximated to be integrable; see Weinberg (2015) for a
discussion.
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solution read
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The first term in the brace of (B3) represents the balistic displace-
ment of the perturbation (each harmonic phase-mixing at its own
frequency while keeping actions fixed) while the last term its dress-
ing.

this works only for perturbations following the unperturbed
orbits of the system. Let us integrate over rings to get the open set
of ring equation.
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this will possibly go away unless we write open secular diffusion
Let us first consider an isolated stellar self-gravitating disc embed-
ded in a dark halo and its fluctuating cosmic environment and per-
turbed by supernovae feedback, turbulence and GMC driven shot
noise. We will consider the impact of dissipative processes and
the input from the cosmic environment later. Let us further assume

that the gravitational background  0, associated with its Hamilto-
nian H0, is stationary and integrable12, so as to remap the physical
coordinates (x,v) to the (orbit labelling) angle-action coordinates
(✓,J) (Goldstein 1950; Born 1960; Binney & Tremaine 2008). In
a cosmic context, we will later allow for a secular evolution of H0,
in order to account for the growth of the disc. Along the (assumed)
unperturbed motions, the actions J are conserved, while the angles
✓ are 2⇡�periodic. One can then introduce the intrinsic frequen-
cies of the system ⌦ as

⌦ = ✓̇ =
@H0

@J
. (C1)

Since the disc is assumed to be in a quasi-stationary state, it can
be described by a distribution function (DF) f(J , ✓, t), with the
normalisation convention

R
dxdvf=Mtot, where Mtot is the total

active mass of the system. Environmental and internal source of
stochastic source of perturbations will drive distorsion of the orbital
structure of the stars on secular timescales via so called quasi-linear
theory, which derivation can be sketched as follows. Let us expand
this DF into a slowly varying component, F (I, t) and a rapidly
varying one, �f(I, ✓(t)) as follows

f = F (I, t) + �f(I, ✓(t)) , subject to
@�f
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� @F
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, (C2)

and insert this expansion into Boltzmann’s equation
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+ {H0 + � , f} = 0 , (C3)

where { } stands for Poisson bracket. Let us now angle-average
this equation so as to produce two sets of equation for F and �f

@F
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= �h[�f, � ]i , and
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+ {H0, �f}+ {� , F} = 0 .

(C4)
Inserting the second equation into the first, and a bit of algebra
(Weinberg 2001; Fouvry et al. 2015) allows us to recast into an
anisotropic diffusion equation of the form
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where the index m2Z3 corresponds to the Fourier coefficients as-
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In equation (C6), the response matrix cM and the cross-power per-
turbations bC are functions of actions and temporal frequencies
! which should be evaluated at the resonant frequency m·⌦.
Here I stands for the identity matrix. Equation (C6) for the dif-
fusion coefficients involves potential basis elements  (p), which
are introduced following Kalnajs matrix method (Kalnajs 1976).
Indeed, to solve the non-local Poisson’s equation, one introduces

12 We note that in the thickened geometry, integrability is not warranted by
symmetry, so that we are effectively assuming that the disc is thin enough
so that it can be approximated to be integrable; see Weinberg (2015) for a
discussion.
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55Emergence cf: self-steering Bike on slope of increasing steepness
 Disc resilience is direct analog of self-steering bike on slope of increasing steepness. 
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 Pumps free energy from gravity to self-regulate more and more efficiently 

 casper + gyroscopic effect

remarkably, 
the bike’s analog  
spontaneously emerges 
thanks to the CW!



Conclusion:

We should care 
 about the  

cosmic web!

cosmic web = metric set by eigframe [ ∂2ρ
∂xi∂xj ]

sad



Merci !





591. Impact of CW on non-linear dynamics is top down
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• Galaxy property driven by the past lightcone of tidal tensor  ’s 
   non-linear evolution impacted by scale-coupling/differential time delays   
 
 
 
 
 
 
 

@2 /@xi@xj

hfNL(IC)i 6= fNL(hICi)

hfNL(IC)i✓,� 6= fNL(hICi✓,�)

@2 /@xi@xj

Spherical collapse does not capture filamentary/wall tides...   

Proto halo will be impacted by 
all components of  Tidal tensor

(not just trace, also
eigenvectors+other minors)

over past light cone

1. What is the cosmic web?    a fruitful theoretical spin

Different scales
Different environments



The skeleton tree formalism
Can we build a merger-tree like structure from the initial conditions?

⇒ Yes! Study the topological structure of the ICs at different scales (Hanami 2001)
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Context:	skeleton	tree

Extend Hanami '01 to other critical events 

a low-pass filter makes a ridge which runs along the direction of

increasing R in the landscape. The threshold level of collapse can

be interpreted metaphorically as an ‘ocean surface’ which makes a

‘shoreline’ and some ‘lakes’ and ‘islands’ in the landscape. A

‘cape’ on the shoreline of dc can be identified as a bound object at

dc. Then, we can count the number of the bound objects of the scale

of R to resolve the capes at this resolution scale R in the landscape.

As the level of the ocean surface of dc is decreasing with the

evolution of the universe, the shoreline moves further out. This

means that the bound objects continuously grow in scale.

However, if ‘islands’ or ‘lakes’ appear in the landscape, they

confuse the identification of ‘capes’ as specifically bound objects.

As an example, consider an island on the seaward side of a cape on

a shoreline. (In this case, in fact, we have another cape at the

seaward side of the island; there are two capes which can be

counted as the bound objects of ‘clouds’.) In these situations, the

‘cloud’ of the island cape contains the smaller ‘cloud’ of the cape

on the shore. These problems appear when we use general filters,

except in the case of a Gaussian filter. Bond et al. (1991) have

shown the filter dependency of the landscape (see their figs 1 and

2), in which they use a sharp k-space filter and a Gaussian filter. In

the case of the sharp k-space filter, the ridges cannot decrease

monotonically as the resolution scale R increases. On the other

hand, in the case of the Gaussian filter, the ridge decreases

monotonically as the resolution scale R increases. In Bond et al.

(1991), this feature of the filtered field was described as there being

no ‘lake’ of finite extent, and the ocean shoreline having no bays in

the landscape. Another property of the Gaussian filtering is that the

variance also monotonically decreases with increasing R. In

general, this picture is also valid in a 3D random field. With the

help of this feature, we can distinguish a merger from accretion in

the landscape produced from initial fluctuation fields.

2.3 Definition of monotonic accretion and merging in the

landscape

In order to understand the monotonic evolution of the field

smoothed with a Gaussian filter of the resolution scale R, we

rewrite the derivative of the field as

›Fðr;RÞ
›R

¼ R72Fðr;RÞ: ð6Þ

This is identical to a diffusion equation of the variables (R 2, r ). For

all critical points of 72F , 0 ð72F . 0Þ like peaks (holes), it

guarantees the monotonically decreasing (increasing) as the scale

increasing as

›Fðr;RÞ
›R

, 0;
›Fðr;RÞ

›R
. 0

! "

: ð7Þ

This monotonicity of the peak smoothing also guarantees that the

peak runs continuously on the ridge to the shore cape without

the appearance of an island in the landscape. It is reasonable for

the smoothing and merging of peaks to be defined as the

continuous accretion growth and the merging events of bound

objects. If we have islands in the landscape with filters other than

Gaussian, however, we cannot distinguish merging from accretion

without there being confusion as to the scale identification of

related bound objects. Fortunately, we can exclude this problem as

long as we use the Gaussian filter, which guarantees the absence of

‘islands’ in the landscape as shown above. This is the reason why

we use a Gaussian filter in this paper.

A ridge in the landscape, then, represents the continuous

accretion growth of a bound object. On the other hand, some ridges

terminate on the slopes of neighbouring ridges. The vanishing

point of the ridge on the slope of the neighbouring ridge can be

defined as a type of critical point. We call it a sloping saddle, since

it is a saddle point on the slope of the neighbouring peak. The

sloping saddle can represent the reasonable feature of a bound

object that loses its identity in the merging process, associated with

a tree structure in which the branches of the ridges are nested at the

joints of the sloping saddles. Then, we can translate the topology in

the landscape to the tree structure that we call a skeleton tree,

which consists of the accretion branches and the merger joint

picked up with the sloping saddles.

2.4 Skeleton tree picture

Wewill describe the steps by which we abstract from the landscape

Figure 1. The schematic presentation of the abstracting steps from the

smoothed fluctuation field to the skeleton tree picture. (a) Schematic

representation of the landscape. The symbols ( and # mean the peak and

the sloping saddle, respectively. The trajectory of a peak smoothed with the

filter makes a ridge. A ridge terminates at a sloping saddle at (Rc,dc) which
is associated with a ridge of the neighbouring peak through the resolution

scale interval from Rc to the background scale Rl. (b) The critical points and

the ridges are picked up as the abstract tree of the field around a sloping

saddle. (c) The tree is presented by the reordering in (R,d ) space. The hatched
area means the merger. (d) The graphical representation of the smoothing

peaks with the merger and the accretion in the skeleton tree formalism.
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ABSTRACT
The cosmological bound objects were considered to form from the local maxima of
cosmological density fluctuations; often assumed to be Gaussian random fields. In
order to study the statistics of the objects with hierarchical merging, we propose the
skeleton tree formalism, which can analytically distinguish the episodic merging and
the continuous accretion in the mass growth processes. The distinction was not clear
in extended Press-Schechter (PS) formalism. The skeleton tree formalism is a natural
extension of the peak theory which is an alternative formalism for the statistics of
the bound objects. The fluctuation field smoothing with Gaussian filter produces the
landscape with adding the extra-dimension of the filter resolution scale to the spatial
coordinate of the original fluctuation. In the landscape, some smoothing peaks are
nesting into the neighboring peaks at a type of critical points called sloping saddles
appears, which can be interpreted as merging events of the objects in the context of
the hierarchical structure formation. The topological properties of the landscape can
be abstracted in skeleton trees, which consist of line process of the smoothing peaks
and the point process of the sloping saddles. According to this abstract topological
picture, in this paper, we present the concept and the basic results of the skeleton tree
formalism to describe (1) the distinction between the accretion and the merger in the
hierarchical structure formation from various initial random Gaussian fields; (2) the
instantaneous number density of the sloping saddles which gives the instantaneous
scale function of the objects with the destruction and reformation in the mergers; (3)
the rates of the destruction, the reformation, and the relative accretion growth; (4)
the self-consistency of the formalism for the statistics of the mass growth processes of
the objects; (5) the mean growth history of the objects at the fixed mass.

Key words: galaxies:clustering – galaxies:formation – cosmology:theory – dark mat-
ter

1 INTRODUCTION

Hierarchical clustering scenario, including the cold dark
matter (CDM) model, may be the most established one
for reconstructing various observational properties in the
cosmological structure from the galaxies to the clusters of
galaxies. Press & Schechter (1974) firstly proposed an ana-
lytical formalism which derives the number density of bound
virialized objects of the mass at any given epoch, with the
assumption that the primordial density fluctuations is ran-
dom Gaussian field. The mass function predicted by the PS
theory shows reasonably the good agreement with N-body
simulations even if it has more low mass objects (e.g. Lacey
& Cole 1994). To reconstruct the observational properties
in theoretical galaxy formation scenario, there are also ap-
proaches which study the history of the mass growth for
bound objects and the characteristic times (e.g. Lacey &

Silk 1991; Kauffmann, White & Guiderdoni 1993; Cole et
al. 1994). Most of them were based on the extended PS for-
malism, which was proposed by Bower (1991) and Bond et
al. (1991). It can derive the number density of objects of a
certain mass at a given time subject to a larger object at a
later time. Using the formalism, Lacey & Cole (1993; LC)
calculated the “merger” rate.

The PS formalism, however, has a limitation for de-
scribing the history of the mass growth about the individual
objects. The “merging process” described with the PS ap-
proach in LC, cannot be interpreted as the same meaning of
the merger in astronomical sense, in which the objects lose
their identity. In the mass growth history for the astronom-
ical objects, the continuous accretion onto a bound object
without the loss of identity has different meanings from the
mass accumulation with the loss of the identity in the ma-
jor merger. The formalism based with the PS approach can-

c© 1999 RAS

2001
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Figure 10. PDF of the critical events as a function of height in a scale
invariant GRF as labelled. The left bundle corresponds to void mergers, the
middle bundle to filaments mergers and the right bundle to peak mergers.
The plain curve corresponds to the theory while the error bars correspond
to the error on the mean extracted from 160 simulations. The grey lines are
the results obtained for a ⇤CDM power spectrum initially smoothed over a
scale of 2.5Mpc/h. The top panel shows the residuals for ns = �2. The
detection algorithm is still quite acurate in 3D.
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Figure 11. PDF of the critical events as a function of height in a scale invari-
ant GRF in 2D with spectral index ns = �1. The left curve corresponds
to filament mergers and the right curve to peak mergers. The plain curve
correspond to the theory while the error bars correspond to the error on the
mean extracted from 200 simulations. The top panel shows the residuals.
The agreement between the analytic prediction and the measurements re-
flects the accuracy of the algorithm presented in Appendix C in identifying
critical events.

sented on Fig. 11 and show that the agreement between theory and
measurements is of the order of the percent. Once again, no system-
atic deviation of the measurements is noted. The results in 2 and 3D
confirm the analytical formula derived in section 2.4 and illustrate
the accuracy of the detection algorithm presented in Appendix C.
Interestingly, since the algorithm has been designed to make no as-
sumption on the number of dimensions, it is expected to work as
well in d dimensions.

4.3 Two point statistics

Let us now estimate the two-point statistics of critical events. Let
us write formally A and B any two subsets of critical events. Their

correlation function can be numerically estimated using

⇠AB(s) =
hABi

f

p
hARAihBRBi

, (40)

where RA and RB are uniformly distributed random points with
1/f times the number of points as A and B respectively. We have
additionally checked that common estimators, such as the Landy-
Szalay estimator yield similar results. This is further discussed in
Appendix E, which shows that both estimators yield similar results
at scales of interest to our analysis (s = r/Rs ' 1) In the following
of the paper, we have used the estimator of equation (40). For each
cube in the simulation, we select all critical events in a thick slice of
smoothing scales (�R/R = 0.3). We then select two subsamples,
the first is selected at an overdensity ⌫ = 1 with kind j and the
second at ⌫ = 0.7 with kind k (j, k 2 {P,F ,W}). The correlation
functions are then given by the number of pairs at distance s = r/R

in all cubes using equation (40). The pair counting was done using
a dual-tree algorithm, as described in Moore et al. (2001)5.

Figure 12 shows the measured correlation functions in 2D
for a power law power spectrum with spectral index ns = �1

(top panel) and in 3D with a ⇤CDM power spectrum smoothed
at scales between 1 and 20Mpc/h (bottom panel). In both cases
the PF correlation function (peak merger to filament merger cor-
relation) peaks at r ⇡ 1.5Rs while the PP correlation function
(peak merger autocorrelation) peaks at r ⇡ 2.5Rs. This indicates
that each halo merger is more likely to be followed by a filament
merger compared to another halo merger. Interestingly, peak merg-
ers are also more likely to be followed by void mergers. Indeed, a
halo merger induces a topological defect, as it leads to a resulting
over-connected halo. The defect is quickly corrected by a filament
merger, decreasing the local connectivity of the halo back towards
the cosmic average. Doing so another topological defect appears as
a void becomes under-connected as one of its walls disappeared.
This last defect is then corrected by a last void merger that makes
the under-connected void disappear. On average, critical events ap-
pear so that the global ratio of peak-to-filament, filament-to-walls
and wall-to-void stays constant as smoothing increases, so that the
global connectivity is preserved. The link between critical events
and global connectivity of the cosmic web is further discussed in
section 5.2.

5 APPLICATIONS AND DISCUSSION

The scope of application of the present formalism is obviously very
wide. Rather than attempting to cover it all, only a few examples
will be presented, while a more thorough investigation is left for
future work.

In a cosmic framework, we will first translate the one point
statistics presented in the previous section into merger rates as a
function of mass and redshift. We will explain how mergers of fil-
aments need to match that of peaks in order to preserve the con-
nectivity of peaks. We will show how conditional merger counts in
the vicinity of a filament explains how the environment drives as-
sembly bias. We will show how the critical events can be used to
compress the initial cosmological condition into a very finite set of
points as a mean to predict the properties of galaxies emerging from
these conditions using machine learning tools. Finally, we will dis-
cuss applications to other fields of research in cosmology (intensity
maps, weak lensing, void statistics) and beyond.

5 See the scipy doc for more information.

MNRAS 000, 000–000 (0000)

Valida0on:	2D	event	counts

A theory of merger events in the large scale structures 5

Figure 4. 3D landscape of a 2D field smoothed at a scale R. The density
field (blue to red map) is smoothed at increasing R. For each scale, the crit-
ical points (red lines: peaks, green lines: saddle points, blue lines: minima)
are found. At the tip of each branch a critical event is found ( : peak-
saddle critical events, ⇥: saddle-minima). Lines near the boundaries have
been hidden for the sake of clarity.

lowing the definition of section 2.2, critical events are found at
the space-smoothing location where two critical points of different
types (maximum, saddle points or minimum) merge. The nature
of a critical point (occurring where r� = 0) is characterised by
its index, that is to say the number of negative eigenvalues of the
density Hessian matrix at this point. Critical events can then be de-
fined as critical points for which one of the eigenvalues vanishes,
which is also equivalent to having a vanishing determinant. By def-
inition, only critical points whose indices differ by one can merge
(peak-filament type saddle point, filament-wall type saddles, wall
type saddle - void).

Let us therefore first define the determinant of the Hessian
D(�) ⌘ det(rr�) = �1�2�3, �1 < �2 < �3 being the or-
dered eigenvalues of the Hessian matrix rr�. In the following,
we will use @R to denote derivatives with respect to scale R. Since
critical events are found where D = 0 and r� = 0, let us rewrite
equation (8) in terms of the properties of the field, using the co-
ordinate transformation from r, R to r�, D. This involves the 4D
Jacobian of the transformation1

J(d,r�) =

����
@RD rD

@Rr�
T rr�

���� =
����

@RD rD

�Rrr
2
�
T rr�

���� , (9)

using the fact that for a Gaussian filter

@R� = �Rr
2
�, (10)

with r
2 the Laplacian operator. The fully covariant formulation of

the number density of critical events is then

@
4
N

@r3@R
=

D
|J | �

(3)

D
(r�)�D(D)

E
. (11)

The expectation value in equation (11) can be evaluated using

1 Note that the determinant can be developed along the first line or the first
column of the Jacobian matrix to find out – as shown by the simplifications
in the next section – that the final result in our case does not depend on
@RD thanks to the zero determinant constraint detrr� = 0.

the joint distribution of the field and its successive derivatives up
to third order, P (x, xi, xij , xijk) which involves 20 variables, see
Appendix A for the PDF for Gaussian random fields. One difficulty
in evaluating equation (11) spans from �D(D). In practice, it can for
instance be dealt with numerically by ‘broadening’ the Dirac delta
function: this method is used for validation and when considering
two point statistics in the next section. Alternatively, we can go to
the Hessian’s eigenframe as described in the next section.

2.3.2 Expression in the frame of the Hessian

The Jacobian is by construction invariant under rotation, so we
can rewrite it in the frame of the eigenvalues (which will be de-
noted with tildas) without loss of generality. Developing D into
�
3

2 x̃11x̃22x̃33 and assuming (arbitrarily) that direction 3 is the de-
generate one, the Jacobian can be rewritten as follows

J(D, �)

�1�
4

2
�3

= |x̃11x̃22|

����
@Rx̃33 x̃33i

@Rx̃i x̃ij

���� , (12)

= |x̃11x̃22|

��������

@Rx̃33 x̃133 x̃233 x̃333

@Rx̃1 x̃11 0 0

@Rx̃2 0 x̃22 0

@Rx̃3 0 0 0

��������
, (13)

= |x̃11x̃22|
2
|@Rx̃3||x̃333|, (14)

where the factorisation with |x̃11x̃22| along the first line in equa-
tion (12) is a consequence of x̃33 being zero – which also nulls the
last component of equation (13). Using equation (10) again to re-
express the derivative w.r.t. smoothing in terms of the Laplacian of
the field, we can rewrite the number density of critical events as 2

@n

@R
=

2⇡
2
R

R̃2 R
3
⇤

D��P
ix̃3ii

��|x̃333|�
(3)

D
(x̃i)|x̃11x̃22|�D(x̃33)

E
, (15)

where we introduced n = @
3
N/@r

3 the volume density of critical
events (that does not depend on the spatial location r as the field is
assumed to be stationary). Let us stress that the distribution of the
fields expressed in the frame of the Hessian matrix differs from the
original ones. The statistics of x and xi and xijk are left unchanged
and we therefore drop the tildes for the field and its first and third
derivatives . However, going from cartesian coordinates to the Hes-
sian eigenframe modifies the distribution of the second derivatives
that we choose here to order (such that the Doroshkevich formula
is recovered)

P̃ (x̃11, x̃22, x̃33) = 2⇡
2
(x̃33 � x̃22)(x̃22 � x̃11)(x̃33 � x̃11)⇥

P (x11= x̃11, x22= x̃22, x33= x̃33, x12=0, x23=0, x13=0),

where x̃11 < x̃22 < x̃33 are distributed according to P̃ and fields in
cartesian coordinates follow the distribution P . Note that the factor
2⇡

2 is due to the integration over the Euler angles. Equation (15)
therefore introduces a jacobian 2⇡

2
|x11x22(x11�x22)| when go-

ing from the Hessian eigenframe to cartesian coordinates and the
differential number count of critical events becomes

@n

@R
=

2⇡
2
R

R̃2 R
3
⇤

D��P
ix3ii

��|x333|�
(3)

D
(xi)|x11x22|

2
⇥

|x11�x22|�D(x33)�
(3)

D
(xi 6=k)

E
, (16)

2 One factor of |x̃11x̃22| drops between equation (14) and (15) because
of the Dirac of D in equation (11).
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Figure 10. PDF of the critical events as a function of height in a scale
invariant GRF as labelled. The left bundle corresponds to void mergers, the
middle bundle to filaments mergers and the right bundle to peak mergers.
The plain curve corresponds to the theory while the error bars correspond
to the error on the mean extracted from 160 simulations. The grey lines are
the results obtained for a ⇤CDM power spectrum initially smoothed over a
scale of 2.5Mpc/h. The top panel shows the residuals for ns = �2. The
detection algorithm is still quite acurate in 3D.

Figure 11. PDF of the critical events as a function of height in a scale invari-
ant GRF in 2D with spectral index ns = �1. The left curve corresponds
to filament mergers and the right curve to peak mergers. The plain curve
correspond to the theory while the error bars correspond to the error on the
mean extracted from 200 simulations. The top panel shows the residuals.
The agreement between the analytic prediction and the measurements re-
flects the accuracy of the algorithm presented in Appendix C in identifying
critical events.

sented on Fig. 11 and show that the agreement between theory and
measurements is of the order of the percent. Once again, no system-
atic deviation of the measurements is noted. The results in 2 and 3D
confirm the analytical formula derived in section 2.4 and illustrate
the accuracy of the detection algorithm presented in Appendix C.
Interestingly, since the algorithm has been designed to make no as-
sumption on the number of dimensions, it is expected to work as
well in d dimensions.

4.3 Two point statistics

Let us now estimate the two-point statistics of critical events. Let
us write formally A and B any two subsets of critical events. Their

correlation function can be numerically estimated using

⇠AB(s) =
hABi

f

p
hARAihBRBi

, (40)

where RA and RB are uniformly distributed random points with
1/f times the number of points as A and B respectively. We have
additionally checked that common estimators, such as the Landy-
Szalay estimator yield similar results. This is further discussed in
Appendix E, which shows that both estimators yield similar results
at scales of interest to our analysis (s = r/Rs ' 1) In the following
of the paper, we have used the estimator of equation (40). For each
cube in the simulation, we select all critical events in a thick slice of
smoothing scales (�R/R = 0.3). We then select two subsamples,
the first is selected at an overdensity ⌫ = 1 with kind j and the
second at ⌫ = 0.7 with kind k (j, k 2 {P,F ,W}). The correlation
functions are then given by the number of pairs at distance s = r/R

in all cubes using equation (40). The pair counting was done using
a dual-tree algorithm, as described in Moore et al. (2001)5.

Figure 12 shows the measured correlation functions in 2D
for a power law power spectrum with spectral index ns = �1

(top panel) and in 3D with a ⇤CDM power spectrum smoothed
at scales between 1 and 20Mpc/h (bottom panel). In both cases
the PF correlation function (peak merger to filament merger cor-
relation) peaks at r ⇡ 1.5Rs while the PP correlation function
(peak merger autocorrelation) peaks at r ⇡ 2.5Rs. This indicates
that each halo merger is more likely to be followed by a filament
merger compared to another halo merger. Interestingly, peak merg-
ers are also more likely to be followed by void mergers. Indeed, a
halo merger induces a topological defect, as it leads to a resulting
over-connected halo. The defect is quickly corrected by a filament
merger, decreasing the local connectivity of the halo back towards
the cosmic average. Doing so another topological defect appears as
a void becomes under-connected as one of its walls disappeared.
This last defect is then corrected by a last void merger that makes
the under-connected void disappear. On average, critical events ap-
pear so that the global ratio of peak-to-filament, filament-to-walls
and wall-to-void stays constant as smoothing increases, so that the
global connectivity is preserved. The link between critical events
and global connectivity of the cosmic web is further discussed in
section 5.2.

5 APPLICATIONS AND DISCUSSION

The scope of application of the present formalism is obviously very
wide. Rather than attempting to cover it all, only a few examples
will be presented, while a more thorough investigation is left for
future work.

In a cosmic framework, we will first translate the one point
statistics presented in the previous section into merger rates as a
function of mass and redshift. We will explain how mergers of fil-
aments need to match that of peaks in order to preserve the con-
nectivity of peaks. We will show how conditional merger counts in
the vicinity of a filament explains how the environment drives as-
sembly bias. We will show how the critical events can be used to
compress the initial cosmological condition into a very finite set of
points as a mean to predict the properties of galaxies emerging from
these conditions using machine learning tools. Finally, we will dis-
cuss applications to other fields of research in cosmology (intensity
maps, weak lensing, void statistics) and beyond.

5 See the scipy doc for more information.
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Figure 12. Top: Correlation functions between critical events P,F in 2D
at fixed smoothing scale. Bottom: Correlation functions between critical
events P,F ,W in 3D at fixed smoothing scale. Pairs of critical events
have been selected at ⌫ = 0.7 and ⌫ = 1.0. The correlation function of
halo-merger with filament-merger, ⇠PF , peaks at r ⇠ 1.5Rs while the
halo-merger autocorrelation functions ⇠FF peaks at r ⇠ 2Rs. This shows
that halo-mergers are more likely to be followed by filament-mergers. The
data have been filtered using a Savgol filter. Errorbars have been estimated
assuming a Poisson noise on the sample.

5.1 Merger rates in M, z space

[� Sandrine/Dmitri will polish this?] [� motivation: distin-
guish minor major merger ratios?]

The skeleton tree formalism over which the present paper is
built present some resemblance to Extended Press Schechter theory
(EPS) and excursion set theories, but with noticeable differences.
Let us highlight the advantages and limitations of the present for-
malism. In its original form, excursion set theory Bond et al. (1991)
assumes that the steps involved in averaging over larger and larger
scales are fully uncorrelated, hence ignores the correlation of the
field on various scales.

It is straightforward to change variable from R to M (=
4

3
⇡⇢̄R

3) and from ⌫ to z using the spherical collapse condition

�⌫ = � =
�c

D(z)
where �c =

3

20
(12⇡)

2/3
= 1.69, (41)

[~ we should generalize this for filamentary collapse condi-
tion] [~ we need to discuss the relation between spherical col-
lapse mass and smoothing scale for a Gaussian filter] so that for

Figure 13. PDF of the critical events as a function of log mass for different
values of the effective power index ns as labelled. The three bundles are the
same as in ??. [� preliminary]

condition c (peak, saddle, void) we have6

@
2
n

@ logM@z

���
c
=

@
2
n

@R@⌫

���
c

@R

@ logM

@⌫

@z
= �

@
2
n

@R@⌫

���
c

�cR

3D(z)2

dD

dz
,

(42)
where equation (42) is evaluated at ⌫(R, z) = �c/�0(R)D(z) via
equations (2) and (41).

From equations (18) and (42), we are in a position to count
how many (peak, filament, void) mergers occur early or late in the
accretion history of a certain mass or within some mass range, via
straightforward integration. This also allows us to quantify the rate
of small mergers within some time sequence.

For instance, equation (42) yields the number of expected
mergers involving satellite of mass M at redshift z if a type of
merger condition is imposed. Note that for collapsing filaments and
walls the �c threshold should be different (Pogosyan et al. 1998).

Figure 13 shows the merger rate of peaks, filaments and voids
as a function of the mass of non linearity.

5.1.1 Rare event limit

For the large ⌫ limit, ?? yields

@
2
n

@ logM@z

���
c
/

⌫
2

M
exp

✓
�

⌫
2

2(1�
5

9
�2)

◆
, (43)

[� check] so that the merger rate scale like M
ns/3, with an expo-

nential cut off in M
(ns+3)/3 given that ⌫2

/ �
�2

0
/ R

ns+3
/

M
(ns+3)/3. Note that the cutoff is 1/(1� 5

9
�
2
) faster than for the

Press Schechter mass function. [� check]

5.2 Consistency with cosmic connectivity evolution

The properties of the initial random field was shown recently
(Codis et al. 2018) to control to a large extent the connectivity of
dark halos, as defined by the number of connected filaments (lo-
cally and globally) at a given cosmic time. The upshot of this work
is that the packing of peaks (imposed by their exclusion zone) and
saddles implies that 3-4 filaments typically dominate locally. In-
terestingly, the rate of filament disappearing must match the peak
merger rates, in order to preserve this number. Beyond numerology,

6 Note that dD/dz = �Df/(1+z) with f ⌘ d logD/d log a ⇠ ⌦0.6
m .
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Figure 4. 3D landscape of a 2D field smoothed at a scale R. The density
field (blue to red map) is smoothed at increasing R. For each scale, the crit-
ical points (red lines: peaks, green lines: saddle points, blue lines: minima)
are found. At the tip of each branch a critical event is found ( : peak-
saddle critical events, ⇥: saddle-minima). Lines near the boundaries have
been hidden for the sake of clarity.

lowing the definition of section 2.2, critical events are found at
the space-smoothing location where two critical points of different
types (maximum, saddle points or minimum) merge. The nature
of a critical point (occurring where r� = 0) is characterised by
its index, that is to say the number of negative eigenvalues of the
density Hessian matrix at this point. Critical events can then be de-
fined as critical points for which one of the eigenvalues vanishes,
which is also equivalent to having a vanishing determinant. By def-
inition, only critical points whose indices differ by one can merge
(peak-filament type saddle point, filament-wall type saddles, wall
type saddle - void).

Let us therefore first define the determinant of the Hessian
D(�) ⌘ det(rr�) = �1�2�3, �1 < �2 < �3 being the or-
dered eigenvalues of the Hessian matrix rr�. In the following,
we will use @R to denote derivatives with respect to scale R. Since
critical events are found where D = 0 and r� = 0, let us rewrite
equation (8) in terms of the properties of the field, using the co-
ordinate transformation from r, R to r�, D. This involves the 4D
Jacobian of the transformation1

J(d,r�) =

����
@RD rD

@Rr�
T rr�

���� =
����

@RD rD

�Rrr
2
�
T rr�

���� , (9)

using the fact that for a Gaussian filter

@R� = �Rr
2
�, (10)

with r
2 the Laplacian operator. The fully covariant formulation of

the number density of critical events is then

@
4
N

@r3@R
=

D
|J | �

(3)

D
(r�)�D(D)

E
. (11)

The expectation value in equation (11) can be evaluated using

1 Note that the determinant can be developed along the first line or the first
column of the Jacobian matrix to find out – as shown by the simplifications
in the next section – that the final result in our case does not depend on
@RD thanks to the zero determinant constraint detrr� = 0.

the joint distribution of the field and its successive derivatives up
to third order, P (x, xi, xij , xijk) which involves 20 variables, see
Appendix A for the PDF for Gaussian random fields. One difficulty
in evaluating equation (11) spans from �D(D). In practice, it can for
instance be dealt with numerically by ‘broadening’ the Dirac delta
function: this method is used for validation and when considering
two point statistics in the next section. Alternatively, we can go to
the Hessian’s eigenframe as described in the next section.

2.3.2 Expression in the frame of the Hessian

The Jacobian is by construction invariant under rotation, so we
can rewrite it in the frame of the eigenvalues (which will be de-
noted with tildas) without loss of generality. Developing D into
�
3

2 x̃11x̃22x̃33 and assuming (arbitrarily) that direction 3 is the de-
generate one, the Jacobian can be rewritten as follows

J(D, �)

�1�
4

2
�3

= |x̃11x̃22|

����
@Rx̃33 x̃33i

@Rx̃i x̃ij

���� , (12)

= |x̃11x̃22|

��������

@Rx̃33 x̃133 x̃233 x̃333

@Rx̃1 x̃11 0 0

@Rx̃2 0 x̃22 0

@Rx̃3 0 0 0

��������
, (13)

= |x̃11x̃22|
2
|@Rx̃3||x̃333|, (14)

where the factorisation with |x̃11x̃22| along the first line in equa-
tion (12) is a consequence of x̃33 being zero – which also nulls the
last component of equation (13). Using equation (10) again to re-
express the derivative w.r.t. smoothing in terms of the Laplacian of
the field, we can rewrite the number density of critical events as 2

@n

@R
=

2⇡
2
R

R̃2 R
3
⇤

D��P
ix̃3ii

��|x̃333|�
(3)

D
(x̃i)|x̃11x̃22|�D(x̃33)

E
, (15)

where we introduced n = @
3
N/@r

3 the volume density of critical
events (that does not depend on the spatial location r as the field is
assumed to be stationary). Let us stress that the distribution of the
fields expressed in the frame of the Hessian matrix differs from the
original ones. The statistics of x and xi and xijk are left unchanged
and we therefore drop the tildes for the field and its first and third
derivatives . However, going from cartesian coordinates to the Hes-
sian eigenframe modifies the distribution of the second derivatives
that we choose here to order (such that the Doroshkevich formula
is recovered)

P̃ (x̃11, x̃22, x̃33) = 2⇡
2
(x̃33 � x̃22)(x̃22 � x̃11)(x̃33 � x̃11)⇥

P (x11= x̃11, x22= x̃22, x33= x̃33, x12=0, x23=0, x13=0),

where x̃11 < x̃22 < x̃33 are distributed according to P̃ and fields in
cartesian coordinates follow the distribution P . Note that the factor
2⇡

2 is due to the integration over the Euler angles. Equation (15)
therefore introduces a jacobian 2⇡

2
|x11x22(x11�x22)| when go-

ing from the Hessian eigenframe to cartesian coordinates and the
differential number count of critical events becomes

@n

@R
=

2⇡
2
R

R̃2 R
3
⇤

D��P
ix3ii

��|x333|�
(3)

D
(xi)|x11x22|

2
⇥

|x11�x22|�D(x33)�
(3)

D
(xi 6=k)

E
, (16)

2 One factor of |x̃11x̃22| drops between equation (14) and (15) because
of the Dirac of D in equation (11).
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Figure 6. PDF of the critical events as a function of log mass for different
values of the effective power index ns as labelled. The three bundles are the
same as in Figure 5. [� preliminary]

or late in the accretion history of a certain mass or within some
mass range, via straightforward integration. This also allows us to
quantify the rate of small mergers within some time sequence.

For instance, equation (25) together with equation (12) yield
the number of expected mergers involving satellite of mass M

at redshift z if a peak-saddle condition is imposed within equa-
tion (12), or a filament merger of mass M at redshift z if a saddle-
saddle condition is imposed, or a wall merger if a saddle-void con-
dition is imposed. Note that for collapsing filaments and walls the
�c threshold should be different (Pogosyan et al. 1998).

Figure 6 shows the merger rate of peaks, filaments and voids
as a function of the mass of non linearity.

2.2.1 Rare event limit

For the large ⌫ limit, equation (13) yields
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so that the merger rate scale like Mns/3, with an exponential cut off
in M

(ns+3)/3 given that ⌫2
/ �

�2

0
/ R

ns+3
/ M

(ns+3)/3. Note
that the cutoff is 1/(1 �

5

9
�
2) faster than for the Press Schechter

mass function. [� check]

2.3 Clustering of critical events in R, r space

From the joint two-point count of critical events, their clustering,
⇠(s) can be defined as

1 + ⇠(s) =
hcond(x)cond(y)i

hcond(x)i2
, (27)

with

s ⌘

⇣
rx � ryp
RxRy

,
Ry

Rx

⌘
, (28)

the event separation between x(0) and y(s). Evaluating the expec-
tation in equation (27) requires full knowledge of the joint statistics
of the field P(x, xi, xij , xijk, y, yi, yij , yijk) (involving 40 vari-
ables). Note that we cannot generally assume that the orientation of
the two slopping saddle are aligned w.r.t. the vector separation, so
the covariant version of cond(x) is given by the argument of the
expectation in equation (7).

Equation (27) can be amended to account for the nature of the

Figure 7. clustering

critical event, which allows us to compute the auto-correlation of
peak merger on the one hand, and the cross correlation of peak and
filament merger on the other hand as

1+⇠p=
hcondp(x)condp(y)i

hcondp(x)i2
, 1+⇠f =

hcondf (x)condp(y)i
hcondf (x)ihcondp(x)i

,

with new conditions obeying condp(x) ⌘ cond(x)⇥(�Trx(2)

ij )⇥

⇥(detx(2)

ij ) and condf (x) ⌘ cond(x) ⇥(Trx(2)

ij )⇥(detx(2)

ij ).
The ratio of these two correlations is a measure of the relative
‘proximity’ of the two events. [� do the factors of R give us
a scaling for free?] Since this ratio is small, it means the rate at
which filaments disappear matches the merger rate, so that the typ-
ical number of filament per halo remains constant through cosmic
time. [� to check :-)]

The height of the event may also be added in the definition of
condp(x) and condf (x) via an extra �D(x� ⌫), so as to compute
proximity as a function of peak rareness. We expect the relative
clustering ⇠f/⇠p to decrease with peak height, to match the fact
that the connectivity of halos increases with peak height.

This is illustrated in Figure 7 which shows the

2.4 Impact of cosmic evolution

For the edgeworth expansion joint statistics of the field at x,
P(x, xi, xij , xijk), involving the hierarchy of cumulents. [� ici
il faut reflechir a comment relier les 2 temps du probleme, celui
associe au lissage versus celui associe aux non gaussianites.]

P(x) = PG(x)

 
1 +

1X

k=3

�
k�2 hHk(x)i

�2k�2
·Hk(x)

!
, (29)

where Hk is a vector of orthogonal polynomials w.r.t. to the Ker-
nel PG obeying Hk = (�1)k@k

PG/@x
k
/PG while at tree order

in PT, hHk(x)i/�
2k�2 is independent of � below k = 6. By in-

spection, expectation of this PDF will only involve �, �̃ and �(z).
[� check -1] From the PDF (29), the cosmic evolution of the rate
of void of volume V merging during time interval �z can be re-
expressed via equation (25) as
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���
G
+ �(z)
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n

@V@z

���
NG

, (30)

where the first term reflects cosmic evolution while the second term
reflects clustering.

2.5 Conditional merger rates in vicinity of larger tides

From this equation, we will also compute the conditional counts,
subject to a given large scale critical point at some distance s from
the running point:

hcond(x)�D(yi)| det yij |i (31)

This requires full knowledge of the joint statistics of the field at
x(0) and y(s), P(x, xi, xij , xijk, y, yi, yij) (involving 30 vari-
ables). The correlations of the PDF involves the covariance of the
field and its derivatives computed at two smoothing scales, R and
Rc corresponding to the proxy for the timeline of the halos on the
one hand and the large scale structure on the other hand. We can
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The theory of merging structures 3

Figure 3. Spherical averaging as a proxy for time evolution. Physically,
slopping saddles are on the slopes of large peaks which will swallow with
cosmic time neighbouring peaks and their filaments. In some sense, the
joint disappearance of peaks, filaments and walls, is a consequence of
the smoothing process, which washes out concurrently peaks, tunnels and
voids.

2.1 Counting critical events in multi-scale landscape

Following Hanami (2001), the number density of critical events in
position-scale space is given by

@
2
N

@r3@R
⌘ h�

(3)

D
(r� r0)�D(R�R0)i , (4)

where r0 is a (double) critical point in real space and R0 the scale
at which the two critical points merge. Special points where two
critical points merge as a function of R are called critical events
(the slopping saddles of Hanami), for example a maximum and a
filament-saddle. Equivalently, critical events can be defined as crit-
ical points where one of the eigenvalue of the hessian vanishes,
which is also equivalent to having a vanishing determinant.

Let us therefore first define the determinant of the hessian
d(�) ⌘ det(rr�) = �1�2�3, �1 < �2 < �3 are the eigenval-
ues of rr�. In the following, we will use @R to denote derivatives
with respect to R. Since critical events are found where d = 0 and
r� = 0, let us rewrite Equation (4) in terms of the properties of
the field, using the coordinate transformation from r, R to r�, d.
This involves the 4D Jacobian of the transformation1

J(d, �) =

�����
@Rd

~rd

@R
~r�

T ~r~r�

����� =

�����
@Rd

~rd

�R~r��
T ~r~r�

����� , (5)

using the fact that for a Gaussian filter

@R� = �R��, (6)

with � the Laplacian. The fully covariant formulation of the num-
ber density of critical event is then the following

@
2
N

@r3@R
=

D
J �

(3)

D
(r�)�D(d)

E
. (7)

1 Note that the determinant can be developed along the first line or the first
column of the Jacobian matrix to find out – as shown by the simplifications
in the next section – that the final result does not depend on @Rd.

2.1.1 Expression in the frame of the Hessian

The Jacobian is by construction invariant under rotation, so we can
rewrite it in the frame of the eigenvalues without loss of generality.
Developing d into �

3

2x11x22x33, the Jacobian can be rewritten in
coordinate, assuming (arbitrarily) that direction 3 is the degenerate
one. Then

J(d, �)
�1�

4

2
�3

= |x11x22|

����
@Rx33 x33i

@Rxi xij

���� , (8)

= |x11x22|

��������

@Rx33 x133 x233 x333

@Rx1 x11 0 0
@Rx2 0 x22 0
@Rx3 0 0 0

��������
, (9)

= |x11x22|
2
|@Rx3||x333|, (10)

where the factorisation with |x11x22| along the first line in equa-
tion (8) is consequence of x33 being zero – which also nulls the
last component of equation (9), while equation (10) follows by ex-
panding the determinant over the last line of (9). Using equation (6)
again, we can rewrite the number density of slopping saddle at
height ⌫ as2

@
4
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@r3@R
=

R

R̃

D
|x11x22||x3ii||x333|�

(3)

D
(xi)�D(x33)

E

R3
⇤R̃

, (11)

[� its factorises in odd and even doesn’t it?] where R⇤ and R̃ are
the typical inter critical point separation and inter inflection point
separation defined in equation (A1). Indeed, the novelty of (12)
w.r.t. the classical BBKS formula is the weight |x3ii||x333| which
requires the knowledge of the statistics of the 3rd order derivative
of the field. Note that R is measured in units of R̃ ⇠

3

4
R⇤ (for

n ⇠ �2, see Appendix A). Let us call n = @N/@r
3 the volume

density of doubly critical points. We can forget about the explicit
dependency over r as the field is assumed to be stationary. Intro-
ducing �D(x � ⌫) in the expectation of equation (11) allows us to
write the density of doubly critical points

@
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=

@
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@r3@R@⌫
, (12)

=
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D
|x11x22||x3ii||x333|�

(3)

D
(xi)�D(x33)�D(x� ⌫)

E

R3
⇤R̃

,

The expectations in equation (12) can be evaluated with
the joint statistics of the field and its successive derivatives,
P(x, xi, xij , xijk) which involves 20 variables, see Appendix B.
Since the integrant is mute w.r.t. to x3ij for i 6= j and xijk for
i 6= 3 the marginalisation over these variable is straightforward.
When removing the absolute value in equation (12), the expecta-
tion can be evaluated symbolically and reads

@
2
n

@R@⌫

���
±
=

3
p
3(1��̃

2)(25�4+30�2(2⌫2
�1)�27)R

20
p
10⇡5/2(9� 5�2)5/2R3

⇤R̃2
e
� 9⌫2

2(9�5�2) .

(13)
This corresponds to the alternate sum of critical events. [� does
this have a deep topological meaning cf genus? Via the topology
of the excursion set in in space-scale? ] It is plotted in Figure 4 as
a function of ⌫ for different values of ns. Note that @2

N/@r
3
@R

scale like 1/R4 but is also a function of R via ns through

3 + ns(R) = �
@ log �2

0

@ logR
, (14)

2 One factor of |x11x22| drops between equation (10) and (12) because
of the Dirac of d in equation (7).
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Figure 3. Spherical averaging as a proxy for time evolution. Physically,
slopping saddles are on the slopes of large peaks which will swallow with
cosmic time neighbouring peaks and their filaments. In some sense, the
joint disappearance of peaks, filaments and walls, is a consequence of
the smoothing process, which washes out concurrently peaks, tunnels and
voids.

2.1 Counting critical events in multi-scale landscape

Following Hanami (2001), the number density of critical events in
position-scale space is given by
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(3)

D
(r� r0)�D(R�R0)i , (4)

where r0 is a (double) critical point in real space and R0 the scale
at which the two critical points merge. Special points where two
critical points merge as a function of R are called critical events
(the slopping saddles of Hanami), for example a maximum and a
filament-saddle. Equivalently, critical events can be defined as crit-
ical points where one of the eigenvalue of the hessian vanishes,
which is also equivalent to having a vanishing determinant.

Let us therefore first define the determinant of the hessian
d(�) ⌘ det(rr�) = �1�2�3, �1 < �2 < �3 are the eigenval-
ues of rr�. In the following, we will use @R to denote derivatives
with respect to R. Since critical events are found where d = 0 and
r� = 0, let us rewrite Equation (4) in terms of the properties of
the field, using the coordinate transformation from r, R to r�, d.
This involves the 4D Jacobian of the transformation1

J(d, �) =
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@Rd
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~r�

T ~r~r�

����� =
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����� , (5)

using the fact that for a Gaussian filter

@R� = �R��, (6)

with � the Laplacian. The fully covariant formulation of the num-
ber density of critical event is then the following
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=
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(r�)�D(d)
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. (7)

1 Note that the determinant can be developed along the first line or the first
column of the Jacobian matrix to find out – as shown by the simplifications
in the next section – that the final result does not depend on @Rd.

2.1.1 Expression in the frame of the Hessian

The Jacobian is by construction invariant under rotation, so we can
rewrite it in the frame of the eigenvalues without loss of generality.
Developing d into �

3

2x11x22x33, the Jacobian can be rewritten in
coordinate, assuming (arbitrarily) that direction 3 is the degenerate
one. Then
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where the factorisation with |x11x22| along the first line in equa-
tion (8) is consequence of x33 being zero – which also nulls the
last component of equation (9), while equation (10) follows by ex-
panding the determinant over the last line of (9). Using equation (6)
again, we can rewrite the number density of slopping saddle at
height ⌫ as2
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[� its factorises in odd and even doesn’t it?] where R⇤ and R̃ are
the typical inter critical point separation and inter inflection point
separation defined in equation (A1). Indeed, the novelty of (12)
w.r.t. the classical BBKS formula is the weight |x3ii||x333| which
requires the knowledge of the statistics of the 3rd order derivative
of the field. Note that R is measured in units of R̃ ⇠

3

4
R⇤ (for

n ⇠ �2, see Appendix A). Let us call n = @N/@r
3 the volume

density of doubly critical points. We can forget about the explicit
dependency over r as the field is assumed to be stationary. Intro-
ducing �D(x � ⌫) in the expectation of equation (11) allows us to
write the density of doubly critical points
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The expectations in equation (12) can be evaluated with
the joint statistics of the field and its successive derivatives,
P(x, xi, xij , xijk) which involves 20 variables, see Appendix B.
Since the integrant is mute w.r.t. to x3ij for i 6= j and xijk for
i 6= 3 the marginalisation over these variable is straightforward.
When removing the absolute value in equation (12), the expecta-
tion can be evaluated symbolically and reads
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This corresponds to the alternate sum of critical events. [� does
this have a deep topological meaning cf genus? Via the topology
of the excursion set in in space-scale? ] It is plotted in Figure 4 as
a function of ⌫ for different values of ns. Note that @2
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3
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scale like 1/R4 but is also a function of R via ns through
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2 One factor of |x11x22| drops between equation (10) and (12) because
of the Dirac of d in equation (7).
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Figure 3. Spherical averaging as a proxy for time evolution. Physically,
slopping saddles are on the slopes of large peaks which will swallow with
cosmic time neighbouring peaks and their filaments. In some sense, the
joint disappearance of peaks, filaments and walls, is a consequence of
the smoothing process, which washes out concurrently peaks, tunnels and
voids.

2.1 Counting critical events in multi-scale landscape

Following Hanami (2001), the number density of critical events in
position-scale space is given by
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where r0 is a (double) critical point in real space and R0 the scale
at which the two critical points merge. Special points where two
critical points merge as a function of R are called critical events
(the slopping saddles of Hanami), for example a maximum and a
filament-saddle. Equivalently, critical events can be defined as crit-
ical points where one of the eigenvalue of the hessian vanishes,
which is also equivalent to having a vanishing determinant.

Let us therefore first define the determinant of the hessian
d(�) ⌘ det(rr�) = �1�2�3, �1 < �2 < �3 are the eigenval-
ues of rr�. In the following, we will use @R to denote derivatives
with respect to R. Since critical events are found where d = 0 and
r� = 0, let us rewrite Equation (4) in terms of the properties of
the field, using the coordinate transformation from r, R to r�, d.
This involves the 4D Jacobian of the transformation1

J(d, �) =
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T ~r~r�
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using the fact that for a Gaussian filter
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with � the Laplacian. The fully covariant formulation of the num-
ber density of critical event is then the following
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1 Note that the determinant can be developed along the first line or the first
column of the Jacobian matrix to find out – as shown by the simplifications
in the next section – that the final result does not depend on @Rd.

2.1.1 Expression in the frame of the Hessian

The Jacobian is by construction invariant under rotation, so we can
rewrite it in the frame of the eigenvalues without loss of generality.
Developing d into �

3

2x11x22x33, the Jacobian can be rewritten in
coordinate, assuming (arbitrarily) that direction 3 is the degenerate
one. Then
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where the factorisation with |x11x22| along the first line in equa-
tion (8) is consequence of x33 being zero – which also nulls the
last component of equation (9), while equation (10) follows by ex-
panding the determinant over the last line of (9). Using equation (6)
again, we can rewrite the number density of slopping saddle at
height ⌫ as2
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[� its factorises in odd and even doesn’t it?] where R⇤ and R̃ are
the typical inter critical point separation and inter inflection point
separation defined in equation (A1). Indeed, the novelty of (12)
w.r.t. the classical BBKS formula is the weight |x3ii||x333| which
requires the knowledge of the statistics of the 3rd order derivative
of the field. Note that R is measured in units of R̃ ⇠
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R⇤ (for

n ⇠ �2, see Appendix A). Let us call n = @N/@r
3 the volume

density of doubly critical points. We can forget about the explicit
dependency over r as the field is assumed to be stationary. Intro-
ducing �D(x � ⌫) in the expectation of equation (11) allows us to
write the density of doubly critical points
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The expectations in equation (12) can be evaluated with
the joint statistics of the field and its successive derivatives,
P(x, xi, xij , xijk) which involves 20 variables, see Appendix B.
Since the integrant is mute w.r.t. to x3ij for i 6= j and xijk for
i 6= 3 the marginalisation over these variable is straightforward.
When removing the absolute value in equation (12), the expecta-
tion can be evaluated symbolically and reads
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This corresponds to the alternate sum of critical events. [� does
this have a deep topological meaning cf genus? Via the topology
of the excursion set in in space-scale? ] It is plotted in Figure 4 as
a function of ⌫ for different values of ns. Note that @2
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scale like 1/R4 but is also a function of R via ns through
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2 One factor of |x11x22| drops between equation (10) and (12) because
of the Dirac of d in equation (7).
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Figure 3. Spherical averaging as a proxy for time evolution. Physically,
slopping saddles are on the slopes of large peaks which will swallow with
cosmic time neighbouring peaks and their filaments. In some sense, the
joint disappearance of peaks, filaments and walls, is a consequence of
the smoothing process, which washes out concurrently peaks, tunnels and
voids.

2.1 Counting critical events in multi-scale landscape

Following Hanami (2001), the number density of critical events in
position-scale space is given by
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where r0 is a (double) critical point in real space and R0 the scale
at which the two critical points merge. Special points where two
critical points merge as a function of R are called critical events
(the slopping saddles of Hanami), for example a maximum and a
filament-saddle. Equivalently, critical events can be defined as crit-
ical points where one of the eigenvalue of the hessian vanishes,
which is also equivalent to having a vanishing determinant.

Let us therefore first define the determinant of the hessian
d(�) ⌘ det(rr�) = �1�2�3, �1 < �2 < �3 are the eigenval-
ues of rr�. In the following, we will use @R to denote derivatives
with respect to R. Since critical events are found where d = 0 and
r� = 0, let us rewrite Equation (4) in terms of the properties of
the field, using the coordinate transformation from r, R to r�, d.
This involves the 4D Jacobian of the transformation1
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1 Note that the determinant can be developed along the first line or the first
column of the Jacobian matrix to find out – as shown by the simplifications
in the next section – that the final result does not depend on @Rd.
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tion (8) is consequence of x33 being zero – which also nulls the
last component of equation (9), while equation (10) follows by ex-
panding the determinant over the last line of (9). Using equation (6)
again, we can rewrite the number density of slopping saddle at
height ⌫ as2

@
4
N

@r3@R
=

R

R̃

D
|x11x22||x3ii||x333|�

(3)

D
(xi)�D(x33)

E

R3
⇤R̃

, (11)

[� its factorises in odd and even doesn’t it?] where R⇤ and R̃ are
the typical inter critical point separation and inter inflection point
separation defined in equation (A1). Indeed, the novelty of (12)
w.r.t. the classical BBKS formula is the weight |x3ii||x333| which
requires the knowledge of the statistics of the 3rd order derivative
of the field. Note that R is measured in units of R̃ ⇠
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R⇤ (for

n ⇠ �2, see Appendix A). Let us call n = @N/@r
3 the volume

density of doubly critical points. We can forget about the explicit
dependency over r as the field is assumed to be stationary. Intro-
ducing �D(x � ⌫) in the expectation of equation (11) allows us to
write the density of doubly critical points
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The expectations in equation (12) can be evaluated with
the joint statistics of the field and its successive derivatives,
P(x, xi, xij , xijk) which involves 20 variables, see Appendix B.
Since the integrant is mute w.r.t. to x3ij for i 6= j and xijk for
i 6= 3 the marginalisation over these variable is straightforward.
When removing the absolute value in equation (12), the expecta-
tion can be evaluated symbolically and reads
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This corresponds to the alternate sum of critical events. [� does
this have a deep topological meaning cf genus? Via the topology
of the excursion set in in space-scale? ] It is plotted in Figure 4 as
a function of ⌫ for different values of ns. Note that @2

N/@r
3
@R

scale like 1/R4 but is also a function of R via ns through
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, (14)

2 One factor of |x11x22| drops between equation (10) and (12) because
of the Dirac of d in equation (7).
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Figure 3. Spherical averaging as a proxy for time evolution. Physically,
slopping saddles are on the slopes of large peaks which will swallow with
cosmic time neighbouring peaks and their filaments. In some sense, the
joint disappearance of peaks, filaments and walls, is a consequence of
the smoothing process, which washes out concurrently peaks, tunnels and
voids.

2.1 Counting critical events in multi-scale landscape

Following Hanami (2001), the number density of critical events in
position-scale space is given by
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where r0 is a (double) critical point in real space and R0 the scale
at which the two critical points merge. Special points where two
critical points merge as a function of R are called critical events
(the slopping saddles of Hanami), for example a maximum and a
filament-saddle. Equivalently, critical events can be defined as crit-
ical points where one of the eigenvalue of the hessian vanishes,
which is also equivalent to having a vanishing determinant.

Let us therefore first define the determinant of the hessian
d(�) ⌘ det(rr�) = �1�2�3, �1 < �2 < �3 are the eigenval-
ues of rr�. In the following, we will use @R to denote derivatives
with respect to R. Since critical events are found where d = 0 and
r� = 0, let us rewrite Equation (4) in terms of the properties of
the field, using the coordinate transformation from r, R to r�, d.
This involves the 4D Jacobian of the transformation1
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1 Note that the determinant can be developed along the first line or the first
column of the Jacobian matrix to find out – as shown by the simplifications
in the next section – that the final result does not depend on @Rd.
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where the factorisation with |x11x22| along the first line in equa-
tion (8) is consequence of x33 being zero – which also nulls the
last component of equation (9), while equation (10) follows by ex-
panding the determinant over the last line of (9). Using equation (6)
again, we can rewrite the number density of slopping saddle at
height ⌫ as2
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[� its factorises in odd and even doesn’t it?] where R⇤ and R̃ are
the typical inter critical point separation and inter inflection point
separation defined in equation (A1). Indeed, the novelty of (12)
w.r.t. the classical BBKS formula is the weight |x3ii||x333| which
requires the knowledge of the statistics of the 3rd order derivative
of the field. Note that R is measured in units of R̃ ⇠
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R⇤ (for

n ⇠ �2, see Appendix A). Let us call n = @N/@r
3 the volume

density of doubly critical points. We can forget about the explicit
dependency over r as the field is assumed to be stationary. Intro-
ducing �D(x � ⌫) in the expectation of equation (11) allows us to
write the density of doubly critical points

@
2
n

@R@⌫
=

@
5
N

@r3@R@⌫
, (12)

=
R

R̃

D
|x11x22||x3ii||x333|�

(3)

D
(xi)�D(x33)�D(x� ⌫)

E

R3
⇤R̃

,

The expectations in equation (12) can be evaluated with
the joint statistics of the field and its successive derivatives,
P(x, xi, xij , xijk) which involves 20 variables, see Appendix B.
Since the integrant is mute w.r.t. to x3ij for i 6= j and xijk for
i 6= 3 the marginalisation over these variable is straightforward.
When removing the absolute value in equation (12), the expecta-
tion can be evaluated symbolically and reads
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This corresponds to the alternate sum of critical events. [� does
this have a deep topological meaning cf genus? Via the topology
of the excursion set in in space-scale? ] It is plotted in Figure 4 as
a function of ⌫ for different values of ns. Note that @2
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scale like 1/R4 but is also a function of R via ns through
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2 One factor of |x11x22| drops between equation (10) and (12) because
of the Dirac of d in equation (7).
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Figure 3. Spherical averaging as a proxy for time evolution. Physically,
slopping saddles are on the slopes of large peaks which will swallow with
cosmic time neighbouring peaks and their filaments. In some sense, the
joint disappearance of peaks, filaments and walls, is a consequence of
the smoothing process, which washes out concurrently peaks, tunnels and
voids.

2.1 Counting critical events in multi-scale landscape

Following Hanami (2001), the number density of critical events in
position-scale space is given by
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where r0 is a (double) critical point in real space and R0 the scale
at which the two critical points merge. Special points where two
critical points merge as a function of R are called critical events
(the slopping saddles of Hanami), for example a maximum and a
filament-saddle. Equivalently, critical events can be defined as crit-
ical points where one of the eigenvalue of the hessian vanishes,
which is also equivalent to having a vanishing determinant.

Let us therefore first define the determinant of the hessian
d(�) ⌘ det(rr�) = �1�2�3, �1 < �2 < �3 are the eigenval-
ues of rr�. In the following, we will use @R to denote derivatives
with respect to R. Since critical events are found where d = 0 and
r� = 0, let us rewrite Equation (4) in terms of the properties of
the field, using the coordinate transformation from r, R to r�, d.
This involves the 4D Jacobian of the transformation1
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1 Note that the determinant can be developed along the first line or the first
column of the Jacobian matrix to find out – as shown by the simplifications
in the next section – that the final result does not depend on @Rd.

2.1.1 Expression in the frame of the Hessian

The Jacobian is by construction invariant under rotation, so we can
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where the factorisation with |x11x22| along the first line in equa-
tion (8) is consequence of x33 being zero – which also nulls the
last component of equation (9), while equation (10) follows by ex-
panding the determinant over the last line of (9). Using equation (6)
again, we can rewrite the number density of slopping saddle at
height ⌫ as2
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[� its factorises in odd and even doesn’t it?] where R⇤ and R̃ are
the typical inter critical point separation and inter inflection point
separation defined in equation (A1). Indeed, the novelty of (12)
w.r.t. the classical BBKS formula is the weight |x3ii||x333| which
requires the knowledge of the statistics of the 3rd order derivative
of the field. Note that R is measured in units of R̃ ⇠

3
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R⇤ (for

n ⇠ �2, see Appendix A). Let us call n = @N/@r
3 the volume

density of doubly critical points. We can forget about the explicit
dependency over r as the field is assumed to be stationary. Intro-
ducing �D(x � ⌫) in the expectation of equation (11) allows us to
write the density of doubly critical points
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The expectations in equation (12) can be evaluated with
the joint statistics of the field and its successive derivatives,
P(x, xi, xij , xijk) which involves 20 variables, see Appendix B.
Since the integrant is mute w.r.t. to x3ij for i 6= j and xijk for
i 6= 3 the marginalisation over these variable is straightforward.
When removing the absolute value in equation (12), the expecta-
tion can be evaluated symbolically and reads
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This corresponds to the alternate sum of critical events. [� does
this have a deep topological meaning cf genus? Via the topology
of the excursion set in in space-scale? ] It is plotted in Figure 4 as
a function of ⌫ for different values of ns. Note that @2
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scale like 1/R4 but is also a function of R via ns through
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2 One factor of |x11x22| drops between equation (10) and (12) because
of the Dirac of d in equation (7).
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Figure 3. Spherical averaging as a proxy for time evolution. Physically,
slopping saddles are on the slopes of large peaks which will swallow with
cosmic time neighbouring peaks and their filaments. In some sense, the
joint disappearance of peaks, filaments and walls, is a consequence of
the smoothing process, which washes out concurrently peaks, tunnels and
voids.

2.1 Counting critical events in multi-scale landscape

Following Hanami (2001), the number density of critical events in
position-scale space is given by

@
2
N

@r3@R
⌘ h�

(3)

D
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where r0 is a (double) critical point in real space and R0 the scale
at which the two critical points merge. Special points where two
critical points merge as a function of R are called critical events
(the slopping saddles of Hanami), for example a maximum and a
filament-saddle. Equivalently, critical events can be defined as crit-
ical points where one of the eigenvalue of the hessian vanishes,
which is also equivalent to having a vanishing determinant.

Let us therefore first define the determinant of the hessian
d(�) ⌘ det(rr�) = �1�2�3, �1 < �2 < �3 are the eigenval-
ues of rr�. In the following, we will use @R to denote derivatives
with respect to R. Since critical events are found where d = 0 and
r� = 0, let us rewrite Equation (4) in terms of the properties of
the field, using the coordinate transformation from r, R to r�, d.
This involves the 4D Jacobian of the transformation1

J(d, �) =
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using the fact that for a Gaussian filter
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with � the Laplacian. The fully covariant formulation of the num-
ber density of critical event is then the following
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1 Note that the determinant can be developed along the first line or the first
column of the Jacobian matrix to find out – as shown by the simplifications
in the next section – that the final result does not depend on @Rd.

2.1.1 Expression in the frame of the Hessian

The Jacobian is by construction invariant under rotation, so we can
rewrite it in the frame of the eigenvalues without loss of generality.
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where the factorisation with |x11x22| along the first line in equa-
tion (8) is consequence of x33 being zero – which also nulls the
last component of equation (9), while equation (10) follows by ex-
panding the determinant over the last line of (9). Using equation (6)
again, we can rewrite the number density of slopping saddle at
height ⌫ as2
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[� its factorises in odd and even doesn’t it?] where R⇤ and R̃ are
the typical inter critical point separation and inter inflection point
separation defined in equation (A1). Indeed, the novelty of (12)
w.r.t. the classical BBKS formula is the weight |x3ii||x333| which
requires the knowledge of the statistics of the 3rd order derivative
of the field. Note that R is measured in units of R̃ ⇠
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n ⇠ �2, see Appendix A). Let us call n = @N/@r
3 the volume

density of doubly critical points. We can forget about the explicit
dependency over r as the field is assumed to be stationary. Intro-
ducing �D(x � ⌫) in the expectation of equation (11) allows us to
write the density of doubly critical points
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The expectations in equation (12) can be evaluated with
the joint statistics of the field and its successive derivatives,
P(x, xi, xij , xijk) which involves 20 variables, see Appendix B.
Since the integrant is mute w.r.t. to x3ij for i 6= j and xijk for
i 6= 3 the marginalisation over these variable is straightforward.
When removing the absolute value in equation (12), the expecta-
tion can be evaluated symbolically and reads
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This corresponds to the alternate sum of critical events. [� does
this have a deep topological meaning cf genus? Via the topology
of the excursion set in in space-scale? ] It is plotted in Figure 4 as
a function of ⌫ for different values of ns. Note that @2
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scale like 1/R4 but is also a function of R via ns through
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2 One factor of |x11x22| drops between equation (10) and (12) because
of the Dirac of d in equation (7).
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Figure 3. Spherical averaging as a proxy for time evolution. Physically,
slopping saddles are on the slopes of large peaks which will swallow with
cosmic time neighbouring peaks and their filaments. In some sense, the
joint disappearance of peaks, filaments and walls, is a consequence of
the smoothing process, which washes out concurrently peaks, tunnels and
voids.

2.1 Counting critical events in multi-scale landscape

Following Hanami (2001), the number density of critical events in
position-scale space is given by
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where r0 is a (double) critical point in real space and R0 the scale
at which the two critical points merge. Special points where two
critical points merge as a function of R are called critical events
(the slopping saddles of Hanami), for example a maximum and a
filament-saddle. Equivalently, critical events can be defined as crit-
ical points where one of the eigenvalue of the hessian vanishes,
which is also equivalent to having a vanishing determinant.

Let us therefore first define the determinant of the hessian
d(�) ⌘ det(rr�) = �1�2�3, �1 < �2 < �3 are the eigenval-
ues of rr�. In the following, we will use @R to denote derivatives
with respect to R. Since critical events are found where d = 0 and
r� = 0, let us rewrite Equation (4) in terms of the properties of
the field, using the coordinate transformation from r, R to r�, d.
This involves the 4D Jacobian of the transformation1
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1 Note that the determinant can be developed along the first line or the first
column of the Jacobian matrix to find out – as shown by the simplifications
in the next section – that the final result does not depend on @Rd.
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where the factorisation with |x11x22| along the first line in equa-
tion (8) is consequence of x33 being zero – which also nulls the
last component of equation (9), while equation (10) follows by ex-
panding the determinant over the last line of (9). Using equation (6)
again, we can rewrite the number density of slopping saddle at
height ⌫ as2
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the typical inter critical point separation and inter inflection point
separation defined in equation (A1). Indeed, the novelty of (12)
w.r.t. the classical BBKS formula is the weight |x3ii||x333| which
requires the knowledge of the statistics of the 3rd order derivative
of the field. Note that R is measured in units of R̃ ⇠
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density of doubly critical points. We can forget about the explicit
dependency over r as the field is assumed to be stationary. Intro-
ducing �D(x � ⌫) in the expectation of equation (11) allows us to
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The expectations in equation (12) can be evaluated with
the joint statistics of the field and its successive derivatives,
P(x, xi, xij , xijk) which involves 20 variables, see Appendix B.
Since the integrant is mute w.r.t. to x3ij for i 6= j and xijk for
i 6= 3 the marginalisation over these variable is straightforward.
When removing the absolute value in equation (12), the expecta-
tion can be evaluated symbolically and reads
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Figure 3. Spherical averaging as a proxy for time evolution. Physically,
slopping saddles are on the slopes of large peaks which will swallow with
cosmic time neighbouring peaks and their filaments. In some sense, the
joint disappearance of peaks, filaments and walls, is a consequence of
the smoothing process, which washes out concurrently peaks, tunnels and
voids.

2.1 Counting critical events in multi-scale landscape

Following Hanami (2001), the number density of critical events in
position-scale space is given by
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@r3@R
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(3)

D
(r� r0)�D(R�R0)i , (4)

where r0 is a (double) critical point in real space and R0 the scale
at which the two critical points merge. Special points where two
critical points merge as a function of R are called critical events
(the slopping saddles of Hanami), for example a maximum and a
filament-saddle. Equivalently, critical events can be defined as crit-
ical points where one of the eigenvalue of the hessian vanishes,
which is also equivalent to having a vanishing determinant.

Let us therefore first define the determinant of the hessian
d(�) ⌘ det(rr�) = �1�2�3, �1 < �2 < �3 are the eigenval-
ues of rr�. In the following, we will use @R to denote derivatives
with respect to R. Since critical events are found where d = 0 and
r� = 0, let us rewrite Equation (4) in terms of the properties of
the field, using the coordinate transformation from r, R to r�, d.
This involves the 4D Jacobian of the transformation1

J(d, �) =

�����
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~r�

T ~r~r�

����� =

�����
@Rd

~rd

�R~r��
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����� , (5)

using the fact that for a Gaussian filter

@R� = �R��, (6)

with � the Laplacian. The fully covariant formulation of the num-
ber density of critical event is then the following

@
2
N

@r3@R
=

D
J �

(3)

D
(r�)�D(d)

E
. (7)

1 Note that the determinant can be developed along the first line or the first
column of the Jacobian matrix to find out – as shown by the simplifications
in the next section – that the final result does not depend on @Rd.

2.1.1 Expression in the frame of the Hessian

The Jacobian is by construction invariant under rotation, so we can
rewrite it in the frame of the eigenvalues without loss of generality.
Developing d into �

3

2x11x22x33, the Jacobian can be rewritten in
coordinate, assuming (arbitrarily) that direction 3 is the degenerate
one. Then

J(d, �)
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���� , (8)
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��������
, (9)

= |x11x22|
2
|@Rx3||x333|, (10)

where the factorisation with |x11x22| along the first line in equa-
tion (8) is consequence of x33 being zero – which also nulls the
last component of equation (9), while equation (10) follows by ex-
panding the determinant over the last line of (9). Using equation (6)
again, we can rewrite the number density of slopping saddle at
height ⌫ as2
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[� its factorises in odd and even doesn’t it?] where R⇤ and R̃ are
the typical inter critical point separation and inter inflection point
separation defined in equation (A1). Indeed, the novelty of (12)
w.r.t. the classical BBKS formula is the weight |x3ii||x333| which
requires the knowledge of the statistics of the 3rd order derivative
of the field. Note that R is measured in units of R̃ ⇠

3

4
R⇤ (for

n ⇠ �2, see Appendix A). Let us call n = @N/@r
3 the volume

density of doubly critical points. We can forget about the explicit
dependency over r as the field is assumed to be stationary. Intro-
ducing �D(x � ⌫) in the expectation of equation (11) allows us to
write the density of doubly critical points
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The expectations in equation (12) can be evaluated with
the joint statistics of the field and its successive derivatives,
P(x, xi, xij , xijk) which involves 20 variables, see Appendix B.
Since the integrant is mute w.r.t. to x3ij for i 6= j and xijk for
i 6= 3 the marginalisation over these variable is straightforward.
When removing the absolute value in equation (12), the expecta-
tion can be evaluated symbolically and reads
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(13)
This corresponds to the alternate sum of critical events. [� does
this have a deep topological meaning cf genus? Via the topology
of the excursion set in in space-scale? ] It is plotted in Figure 4 as
a function of ⌫ for different values of ns. Note that @2

N/@r
3
@R

scale like 1/R4 but is also a function of R via ns through

3 + ns(R) = �
@ log �2

0

@ logR
, (14)

2 One factor of |x11x22| drops between equation (10) and (12) because
of the Dirac of d in equation (7).
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2 Cadiou, Pichon et al.

Figure 1. [� snapshot of DM simulation showing disappearance of fil-
aments and peak: so 4 panels corresponding to before and after. We
should use disperse to identify the filament points. Possibly uses IC with
slopping saddle constraints to make the point that they indeed trigger
merger of peaks and filaments. In which case we may have an extra
panel showing the ICs. Make it look good.].

of the density field is changed, because it decrements the number of
components above a given threshold. Mapping the geometry of the
Gaussian random field to the knowledge of these singular events
only is a very efficient and useful compression of the information
encoded in the field. It is efficient because it maps a 3D space into
a finite set of points in 4D. It is useful because astronomers know
how to characterise the corresponding point process in terms of
the properties of the underlying initial Gaussian field. Since these
points bear significance in terms of galaxy formation we can there-
fore relate this process to the underlying power spectrum. Our mo-
tivations are many-fold:

• study the generalised history of accretion: what kind of merg-
ers happens when?
• connect the assembly history to the morphology of a given

galaxy.
• study how the anisotropic large scales modes bias this assem-

bly history.
• relate the various mergers to special events in terms of feed-

back (e.g. quenching by filament disconnect).
• quantify the conditional rate of filament and wall disappear-

ance in conjunction to that of peak.
• quantify the effect of anisotropic tides and connect the excur-

sion set theory to tidal torque theory.
• quantify the non -Gaussian evolution of void slopping saddles

(as a cosmological probe).

Section 3 identifies topologically special events in smoothed
Gaussian random fields. Section 2 forecasts special events through
the coalescence of critical points in the multi-scale landscape. Sec-
tion ?? compares the predictions to realisations of Gaussian ran-
dom fields. Section 4 reframes the present finding in the context of
excursion set theory and merger trees. Finally Section 5 wraps up.

Figure 2. Top panel: the impact of smoothing on a 1D landscape as a proxy
for time evolution. The ridges the of the density field in the 1D+smoothing
space correspond to ’time-lines’ for the peak at a given smoothing. Peak
merger correspond to two such ridges coalescing. Bottom panel: the im-
pact of smoothing on the topology of a given field. Smoothing changes the
topology of the excursion. For instance, between (c) and (d) a tunnel has
disappeared in the bottom left corner of the cube. Since this topology re-
flects that of the cosmic web, it will impact significant changes in galactic
infall with cosmic time.

2 THEORY

Let us first introduce the dimensionless quantities for the field and
its derivatives

x ⌘
�

�0

, xk ⌘
rk�

�1

, xkl ⌘
rkrl�

�2

, xklm ⌘
rmrlrk�

�3

, (1)

which involve the variance of the derivative of the field up to 3rd
order:

�
2

i (R) =

Z
d3

kP (k)k2i
W

2(kR) , (2)

so that

�
2

0 = h�
2
i,�

2

1 = h(r�)2i,�2

2 = h(��)2i,�2

3 = h(r�⇢)2i. (3)
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Figure 6. Left: mean density (contrast) field near a 2D peak of height ⌫ = 1, �1 = �1 and �2 = �2 for a power spectrum with index
n = 1/2 computed from Equation (11). Contours are displayed from � = �1 to 1 by step of 1/4 as labeled. The x and y axes are
in units of the smoothing length. Right: corresponding mean spin colour coded from blue (negative) to red (positive) computed from
Equation (13). The flattening of the filament’s cross section induces a clear quadrupolar spin distribution in its vicinity.
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Figure 7. Evolution of the amount of algebraic angular momen-
tum in sphere of radius RTH centered on r? The density power
spectrum index is n = �3/2, the height of the peak in (0, 0) is
⌫ = 1 and principal curvatures �1 = �1,�2 = �2. The amplitude
of the spin is normalised by its maximum value around RTH = r?

3.1.5 Zel’dovich mapping of the Spin

Figure 9 displays the image of the initial density field (resp.
initial spin field) translated by a Zel’dovich displacement.
The displacement is proportional to (�1,�2) here and its
expectation given a central peak is trivially computed from
the conditional PDFs. The resulting quadrupolar caustics is
qualitatively similar to the quadrupolar geometry of the vor-
ticity field measured in numerical simulations (Laigle et al.
2015). Indeed, as discussed in that paper, there is a dual
relationship between such Eulerian vorticity maps and the
geometry of the spin distribution within the neighbouring
patch of a 3D saddle point.

Figure 8. 2D spin dispersion (defined in Equation (17)) near a
2D peak of height ⌫ = 1 and curvatures �1 = �1 and �2 = �2
for a power spectrum with index n = 1/2

3.2 Transition mass for long filaments

Up to know we assumed that the geometry of the critical
point was given. Let us now build the joint statistics of the
spin and the mass near 2D peaks.

MNRAS 000, 000–000 (0000)

2D Theory of Tidal Torque @ saddle?
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Figure 6. Left: mean density (contrast) field near a 2D peak of height ⌫ = 1, �1 = �1 and �2 = �2 for a power spectrum with index
n = 1/2 computed from Equation (11). Contours are displayed from � = �1 to 1 by step of 1/4 as labeled. The x and y axes are
in units of the smoothing length. Right: corresponding mean spin colour coded from blue (negative) to red (positive) computed from
Equation (13). The flattening of the filament’s cross section induces a clear quadrupolar spin distribution in its vicinity.
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Figure 7. Evolution of the amount of algebraic angular momen-
tum in sphere of radius RTH centered on r? The density power
spectrum index is n = �3/2, the height of the peak in (0, 0) is
⌫ = 1 and principal curvatures �1 = �1,�2 = �2. The amplitude
of the spin is normalised by its maximum value around RTH = r?

3.1.5 Zel’dovich mapping of the Spin

Figure 9 displays the image of the initial density field (resp.
initial spin field) translated by a Zel’dovich displacement.
The displacement is proportional to (�1,�2) here and its
expectation given a central peak is trivially computed from
the conditional PDFs. The resulting quadrupolar caustics is
qualitatively similar to the quadrupolar geometry of the vor-
ticity field measured in numerical simulations (Laigle et al.
2015). Indeed, as discussed in that paper, there is a dual
relationship between such Eulerian vorticity maps and the
geometry of the spin distribution within the neighbouring
patch of a 3D saddle point.

Figure 8. 2D spin dispersion (defined in Equation (17)) near a
2D peak of height ⌫ = 1 and curvatures �1 = �1 and �2 = �2
for a power spectrum with index n = 1/2

3.2 Transition mass for long filaments

Up to know we assumed that the geometry of the critical
point was given. Let us now build the joint statistics of the
spin and the mass near 2D peaks.
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A simple toy model based on the theory of Lagrange Laplace gravitationally coupled rings
explains why discs with more massive gas component restore faster an alignment with their
stellar component.
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1 INTRODUCTION

These notes aim to explain how a toy model based on a proxy
involving gravitationally coupled rings can be used to understand
some of findings from NewHorizon’s simulation. In particular, we
want to understand why the rate of re-alignement should depend on
how massive the gaseous component is?

2 RELAXATING RINGS MODEL

In order to understand stellar gas disc misalignent, let us consider
a set of concentric gravitationally self-interacting rings depicted in
Fig 1. Each ring represents a set of orbits with a given set of actions
(i.e. orbital parameters), and are coupled together by gravity.

Since we are concerned by departure from a settled disc, we
will assume without loss of generality that the equation of motions
describing the different rings are linearised w.r.t. an unperturbed
co-planar configuration. After linearisation, the set of N coupled
oscillators will obey a matrix equation.

These equations of motions will then be decoupled by mov-
ing to the eigen-frame diagonalising the oscillators. This is best
described in the so-called Laplace Lagrange theory (Kocsis &
Tremaine 2011).

2.1 Laplace Lagrange theory

Let us assume that the stellar orbits with guiding center R in the
disc are nearly coplanar (✓ ⌧ 1) and nearly circular (e ⌧ 1). For
simplicity let us assume that we are considering the outer part of
the disc, so that the potential can be described as nearly Keplerian.
Defining the canonical variables1, p,q as

qi = �i✓i sin(�i) , pi = ��i✓i cos(�i) , (1)

1 so that x and y components of angular momentum obey Li,x = �iqi
and Li,y = �ipi

Figure 1. The relaxation of gravitationally self-interacting rings of stars and
gas (in red and blue resp.). The coupling can be linearized around the co-
planar configuration. The equations of motions governing the N oscillators
can be decoupled by moving to the eigen-frame.
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p
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SF, the more SN the hotter the gas the larger Qg . In parallel, the
stronger the SF the larger the accumulated stellar mass the lower the
Q?. Since the Q numbers add geometrically, the effective number
is therefore dominated by the component closest to one (the gas).
Once the stellar disc is massive enough to dominate this phase, it
damps runaway instabilities within the gaseous disc, and preserves
the global structure. Conversely, the cold rotating gas maintains
marginal stability which shortens the feedback loop.

This suggests that the maximum entropy production principle
in multiple component systems could be viewed as a process which
selects linear stability threshold.

a pb we have is that we need negative diffusion if we want a
settling process which is difficult if it has to be the RMS of fluctu-
ations of the potential. In principle the disc could oscillate around
any values of Q via positive and negative feedback coming from
SN, turbulence, shot noise, disc mass and cold gas inflow. In prac-
tice, Q ⇠ 1 is an attractor because it provides a tighter control loop
as it dresses the density fluctuations by a strong gravitational wake
so the dynamical time is significantly shorter. Hence Q cannot os-
cillate away from 1 by a lot.

3 RELAXATING RINGS MODEL

Beyond the numerical evidence that convergence towards marginal
stability is equivalent to the observed scaling of the settled fraction
of discs versus mass and redshift, it is of interest to explain why
such convergence drives the galaxy towards a thinner disc.

In order to understand this relaxation, let us consider a set of
concentric gravitationally self-interacting rings depicted in Fig 3.
Each ring represents a set of orbits with a given set of actions, and
are coupled together by gravity. Since we are concerned by depar-
ture from a settled disc, we can assume without loss of generality
that the equation of motions describing the different rings are lin-
earised w.r.t. an unperturbed co-planar configuration. After lineari-
sation, the set of N coupled oscillators obey a matrix equation. The
equations of motions governing the oscillators can be decoupled by
moving to the eigen-frame. This is best described in the so-called
Laplace Lagrange theory (Kocsis & Tremaine 2011).

3.1 Laplace Lagrange theory

Let us assume that the stellar orbits with guiding center R in the
disc are nearly coplanar (✓ ⌧ 1) and nearly circular (e ⌧ 1).
For simplicity let us assume that we are considering the outer part
of the disc, so that the potential can be described as nearly Keple-
rian. Defining the canonical variables2, p,q as qi = �i✓i sin(�i),
pi = ��i✓i cos(�i), with �i =

p
mi(GMRi)

1/4, the Hamilto-
nian describing the coupling between the ring in that limit reads

H(p,q) =
1

2
pT ·A · p+

1

2
qT ·A · q , (10)

where

Aij = � Gmimj↵ij

max(Ri, Rj)�i�j
b3/2(↵ij) , if i 6= j (11)
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X

k 6=j

Gmimk↵ik
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2

i

b3/2(↵ik) , if i 6= j , (12)

2 so that x and y components of angular momentum obey Li,x = �iqi
and Li,y = �ipi

Figure 3. The relaxation of gravitationally self-interacting rings. Top panel:
a schematic representation of rings. Each ring is coupled to the other by
the fluctuating potential, which is dressed by the wakes that these pertur-
bations trigger in the disc. Once the disc starts to settle, the coupling can
be linearized around the co-planar configuration. The equations of motions
governing the N oscillators can be decoupled by moving to the eigen-frame.
The secular growth of the gravitational susceptibility driven by the conver-
gence toward Q ⇠ 1 will induce a stiffening of the restoring force hence
damping of all eigen-oscillations. Bottom panel: the effect of damping of
one of the eigenmodes is well captured by the WKB approximation (blue
dashed line). Since the rings’ oscillations will be a linear combination of
such eigen-modes, they will all damp accordingly, globally inducing the
settling.

given ↵ij = min(Ri, Rj)/max(Ri, Rj) and

b3/2(↵) =
2

⇡

Z ⇡

0

cosxdx

(1� 2↵ cosx+ ↵2)3/2
, (13)

=
(1 + ↵

2
)E(↵)� (1� ↵

2
)K(↵)

⇡↵(1� ↵2)2
, (14)

with K and E the elliptic functions of the first and second type
resp. If we move to a frame which diagonalise the positive semi-
definite symmetric matrix A, in that frame, Hamilton’s equation
yield

¨̂qi + !
2

i q̂i = ⇠̂i , (15)

where !i is the i
th eigenvalue and ⇠̂i is the external stochastic spe-

cific force applied on the ring projected on the corresponding eigen-
vector.

The net effect of the cosmic convergence towards Q ⇠ 1 and
disc growth will be that the effective mass of each ring gets boosted
by the gravitational polarisation that it triggers within the unper-
turbed disc, so that in equation (15), one should consider that !i(t)

becomes a slowly growing function of cosmic time, while ⇠̂i(t)

now only reflects the slowly varying component of the fluctuating
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force field. The WKB solution to equation (18) then reads

q̂i(t)=

X

±

Z 1

�1

⇠̂i(t
0
)p

!i(t)!i(t
0)

exp

✓
±ı

Z t

t0
!i(⌧)d⌧

◆
dt

0
. (16)

As !i(t) grows the amplitudes of the fluctuations of all q̂i(t) de-
creases which cosmic time, reflecting ring alignement (8i , ✓i !
0). Hence the secular growth of the gravitational susceptibility
driven by the convergence toward Q ⇠ 1 will induce a stiffen-
ing of the restoring force between rings, and therefore damping of
all eigen-oscillations. Since the rings’ oscillations will be a linear
combination of such eigen-modes, they will all damp accordingly,
globally inducing the settling.

3.2 Tightly wound solution

It is in fact possible to push the limit of the N ring model in the con-
tinuum limit, which provides an alternative but equivalent formu-
lation of the setting process, while accounting for azimuthal varia-
tions.

Hunter & Toomre (1969) have shown that each (m, k) mode,
û exp(�ı!t+ ı

R r
k(r

0
)dr

0
+ım✓), of the radial WKB approxi-

mation3 of tightly wound vertical displacement above and below
the disc, u(r, ✓, t), obeys the dispersion relation

(! �m⌦)
2
= ⌫

2
+ 2⇡G⌃k . (17)

An important feature of this dispersion relation corresponds to the
positive sign in from of the surface density ⌃, which in contrast the
dispersion relation for in-plane self-gravitating spiral waves high-
lights the fact that the higher the (effective, dressing included) ⌃
the larger !. In equation (17), ⌫ and ⌦ are respectively the vertical
and azimuthal frequency of the disc, while k and m are the radial
and azimuthal frequencies. Let us now seek temporal secular WKB
solution to the time dependent forced evolution equation

@
2
û

@2t
+ !

2
(t)û(t) = f̂(t) , (18)

where the left hand side reflect some stochastic specific force,
f̂(t) = ık ̂(t) corresponding to the external forcing on this dis-
placement. Here the potential  accounts for all (slowly varying
component of the) forcing (flybys, SN and turbulence induced fluc-
tuations). discuss here time decoupling between frequency of forc-
ing secular time, and timescale associated with radial WKB wave.
The WKB solution to equation (18) once again reads4

û(t) =

X

±

Z 1

�1

f̂(t
0
)p

!(t)!(t0)
exp

✓
±ı

Z t

t0
!(⌧)d⌧

◆
dt

0
, (19)

where !(k,m, ⌧) is a solution to the dispersion relation, equa-
tion (17):

!(⌧) = m⌦+

p
⌫2 + 2⇡G⌃(⌧)k , (20)

which implies that as the effective surface density ⌃(⌧) increases
(both because the disc becomes more massive and because it gets
closer to marginal stability) and the amplitude of the stochastic

3 Please note that we will consider two WKB approximations here: one
related to the spatial frequency of the wave and later one related to the
temporal variation of the frequencies of the wave
4 the corresponding asymptotic solution being û(t) ⇠ f̂(t)/!2(t)

forcing decreases (because the cosmic environment quieten and be-
comes out of sync with the frequencies of the system) the wave be-
comes stiffer, and the amplitude of the out of plane oscillation de-
creases (since !(t) increases and f(t) decreases in equation (18)).
This fate is true for each (m, k) mode independently. Through non-
linearities, the high k modes will diffuse away within the disc, so
that the injected energy by the stochastic external forcing does not
accumulate. The net effect will be disc settling driven by three com-
plementary processes: quieter environment, convergence towards
marginal stability and increased stellar disc mass.

Note that an adiabatic argument allows us to claim that if the
variation induced by the convergence towards marginal stability is
slow enough the vertical action Jz = Ez/!z(t) will be conserved,
which implies that as the vertical frequency grows, the energy of
the vertical oscillations, Ez , will decrease. This argument does not
capture the impact of the decrease of the fluctuation’s amplitude
with cosmic time. there is a sign pb here

3.3 Stellar-Gas disc damping

Let us finally study a double sets of rings corresponding to the stel-
lar and gaseous disc respectively, to understand within the frame-
work of the linearised Laplace Lagrange theory how the two discs
re-orient with respect to each other, and how the gaseous disc al-
lows the stellar disc to settle. We aim here to account for the fact
that the latter is subject to stochastic forcing by SN explosions and
dissipation through shocks between rings. Such processes will al-
low it to remove entropy from the stellar disc.

Let us therefore consider the dynamics of the set of coupled
gas +star eigenmodes for the stars, and the gas components, which
amplitude we will write q?, and qg respectively. We will consider
that each eigen mode has its own natural frequency, !? and !g

resp, a coupling term, !?g and a driving, ⇠ and damping ⌘ term
specific to the gas component. is it legitimate to only have one drag
in the eigenframe? The amplitude of each mode then obeys the set
of coupled equations

q̈? + !
2

?q? + !
2

?gqg = 0 ,

q̈g + !
2

g q̂g + !
2

?gq? + ⌘q̇g = ⇠ , (21)

Solving for equation (21), each stellar eigenmode will obey

q?(t) = �
X

!2S4

!
2

g?

Z t

�1
exp ((t� ⌧)!) ⇠ (⌧) d⌧

⌘ (3!2 + !
2
?) + 2!

�
2!2 + !2

g + !
2
?

� , (22)

where the frequencies, !, are one of four complex conjugate solu-
tions of the implicit equation5

S4={!
�� �!2

+ !
2

?

� �
! (⌘ + !) + !

2

g

�
= !

4

g?}, (23)

which will have both a damped component, and an oscillatory one.
Figure 4 illustrates the damping of two modes when one increases
the drag on the gas component and shows the frequencies which
are roots of S4. As expected, the roots acquire a larger and larger
negative real part, and the lighter gas disc will drag the stellar disc
towards itself as it settles. This is made more explicit in the next
subsection for displacement waves above and below equilibrium.

5 note how S4 reduces as it should to ! = ±!? and ! = ±!g when both
the friction and the coupling is nul.
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force field. The WKB solution to equation (18) then reads
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As !i(t) grows the amplitudes of the fluctuations of all q̂i(t) de-
creases which cosmic time, reflecting ring alignement (8i , ✓i !
0). Hence the secular growth of the gravitational susceptibility
driven by the convergence toward Q ⇠ 1 will induce a stiffen-
ing of the restoring force between rings, and therefore damping of
all eigen-oscillations. Since the rings’ oscillations will be a linear
combination of such eigen-modes, they will all damp accordingly,
globally inducing the settling.

3.2 Tightly wound solution

It is in fact possible to push the limit of the N ring model in the con-
tinuum limit, which provides an alternative but equivalent formu-
lation of the setting process, while accounting for azimuthal varia-
tions.

Hunter & Toomre (1969) have shown that each (m, k) mode,
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the disc, u(r, ✓, t), obeys the dispersion relation
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An important feature of this dispersion relation corresponds to the
positive sign in from of the surface density ⌃, which in contrast the
dispersion relation for in-plane self-gravitating spiral waves high-
lights the fact that the higher the (effective, dressing included) ⌃
the larger !. In equation (17), ⌫ and ⌦ are respectively the vertical
and azimuthal frequency of the disc, while k and m are the radial
and azimuthal frequencies. Let us now seek temporal secular WKB
solution to the time dependent forced evolution equation
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(t)û(t) = f̂(t) , (18)

where the left hand side reflect some stochastic specific force,
f̂(t) = ık ̂(t) corresponding to the external forcing on this dis-
placement. Here the potential  accounts for all (slowly varying
component of the) forcing (flybys, SN and turbulence induced fluc-
tuations). discuss here time decoupling between frequency of forc-
ing secular time, and timescale associated with radial WKB wave.
The WKB solution to equation (18) once again reads4
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where !(k,m, ⌧) is a solution to the dispersion relation, equa-
tion (17):

!(⌧) = m⌦+
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⌫2 + 2⇡G⌃(⌧)k , (20)

which implies that as the effective surface density ⌃(⌧) increases
(both because the disc becomes more massive and because it gets
closer to marginal stability) and the amplitude of the stochastic

3 Please note that we will consider two WKB approximations here: one
related to the spatial frequency of the wave and later one related to the
temporal variation of the frequencies of the wave
4 the corresponding asymptotic solution being û(t) ⇠ f̂(t)/!2(t)

forcing decreases (because the cosmic environment quieten and be-
comes out of sync with the frequencies of the system) the wave be-
comes stiffer, and the amplitude of the out of plane oscillation de-
creases (since !(t) increases and f(t) decreases in equation (18)).
This fate is true for each (m, k) mode independently. Through non-
linearities, the high k modes will diffuse away within the disc, so
that the injected energy by the stochastic external forcing does not
accumulate. The net effect will be disc settling driven by three com-
plementary processes: quieter environment, convergence towards
marginal stability and increased stellar disc mass.

Note that an adiabatic argument allows us to claim that if the
variation induced by the convergence towards marginal stability is
slow enough the vertical action Jz = Ez/!z(t) will be conserved,
which implies that as the vertical frequency grows, the energy of
the vertical oscillations, Ez , will decrease. This argument does not
capture the impact of the decrease of the fluctuation’s amplitude
with cosmic time. there is a sign pb here

3.3 Stellar-Gas disc damping

Let us finally study a double sets of rings corresponding to the stel-
lar and gaseous disc respectively, to understand within the frame-
work of the linearised Laplace Lagrange theory how the two discs
re-orient with respect to each other, and how the gaseous disc al-
lows the stellar disc to settle. We aim here to account for the fact
that the latter is subject to stochastic forcing by SN explosions and
dissipation through shocks between rings. Such processes will al-
low it to remove entropy from the stellar disc.

Let us therefore consider the dynamics of the set of coupled
gas +star eigenmodes for the stars, and the gas components, which
amplitude we will write q?, and qg respectively. We will consider
that each eigen mode has its own natural frequency, !? and !g

resp, a coupling term, !?g and a driving, ⇠ and damping ⌘ term
specific to the gas component. is it legitimate to only have one drag
in the eigenframe? The amplitude of each mode then obeys the set
of coupled equations

q̈? + !
2

?q? + !
2

?gqg = 0 ,

q̈g + !
2

g q̂g + !
2

?gq? + ⌘q̇g = ⇠ , (21)

Solving for equation (21), each stellar eigenmode will obey

q?(t) = �
X

!2S4
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Z t
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exp ((t� ⌧)!) ⇠ (⌧) d⌧

⌘ (3!2 + !
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� , (22)

where the frequencies, !, are one of four complex conjugate solu-
tions of the implicit equation5

S4={!
�� �!2

+ !
2

?

� �
! (⌘ + !) + !

2

g

�
= !

4

g?}, (23)

which will have both a damped component, and an oscillatory one.
Figure 4 illustrates the damping of two modes when one increases
the drag on the gas component and shows the frequencies which
are roots of S4. As expected, the roots acquire a larger and larger
negative real part, and the lighter gas disc will drag the stellar disc
towards itself as it settles. This is made more explicit in the next
subsection for displacement waves above and below equilibrium.

5 note how S4 reduces as it should to ! = ±!? and ! = ±!g when both
the friction and the coupling is nul.
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Figure 2. Top panel: The relaxation of gravitationally self-interacting
eigenmodes of gas and stars. The stars in red are driven towards the gas ori-
entation in blue. The level of damping increase from dark to lighter curves.
Bottom panel: The corresponding drift of the four roots of S4, defining the
frequencies of the system. Note how the real negative part increases with
damping.

with K and E the elliptic functions of the first and second type
resp.

Equation (2) is best solved if we move to a frame which di-
agonalise the positive semi-definite symmetric matrix A, so that in
that frame, Hamilton’s equation yield for each eigen mode

¨̂qi + !
2
i q̂i = ⇠̂i , (7)

where !i is the i
th eigenvalue and ⇠̂i is the external specific force

applied on the ring projected on the corresponding eigenvector.

2.2 Stellar-Gas disc coupling

Now let us note that so long as the surface density of the gas and
the stars are proportional, the matrix M describing gas rings will be
formally identical to that for the stars (up to a multiplicative factor
reflecting the gas to star mass ratio), so that the eigen-space of both
discs are the same.

In that frame, the gas ring eigenmode obeys formally a sim-
ilar equation to equation (7) with one extra caveat, which is that
the gas can shock, so that each gas ring is subject to an extra drag
force. For expediency we consider that the drag term operates on
the eigenmode.

Finally, when considering simultaneously the evolution of
both gas and star eigenmodes we need to account for their relative

gravitational interaction, which can be accounted for by a supple-
mentary coupling term in both equation.

This leads us to now consider the dynamics of the set of cou-
pled gas +star eigenmodes for the stars, and the gas components,
which amplitude we will write q?, and qg respectively. For expedi-
ency let us consider only one such mode.

We will consider that this eigen mode has its own natural fre-
quency, !? and !g resp, a coupling term, !?g and a driving, ⇠ and
damping ⌘ term specific to the gas component. The amplitude of
each mode then obeys the set of coupled equations

q̈? + !
2
?q? + !

2
?gqg = 0 ,

q̈g + !
2
g q̂g + !

2
?gq? + ⌘q̇g = ⇠ , (8)

Solving for equation (8), each stellar eigenmode will obey

q?(t) = �
X

!2S4

!
2
g?

Z t

�1
exp ((t� ⌧)!) ⇠ (⌧) d⌧

⌘ (3!2 + !
2
?) + 2!

�
2!2 + !2

g + !
2
?

� , (9)

where the frequencies, !, are one of four complex conjugate solu-
tions of the implicit equation2

S4={!
�� �!2 + !

2
?

� �
! (⌘ + !) + !

2
g

�
= !

4
g?}, (10)

which will have both a damped component, and an oscillatory one.
Figure 2 illustrates the damping of two modes when one in-

creases the drag on the gas component and shows the frequencies
which are roots of S4. As expected, the roots acquire a larger and
larger negative real part, and the lighter gas disc will drag the stellar
disc towards itself as it settles.

2.3 Stellar-Gas disc re-alignment

We can now investigate the relative orientation of sets of rings cor-
responding to the stellar and gaseous disc respectively, to under-
stand within the framework of the linearised Laplace Lagrange the-
ory how the two discs re-orient with respect to each other. We aim
here to account for the fact that the latter is subject to forcing by
RAM pressure on the one hand, and dissipation through shocks be-
tween rings on the other hand.

Let us first consider a idealised experiment when either the gas
disc or the is subject to a driven gas impulse which propagate to the
other disc before eventually both modes damp and the coupled sys-
tem settles. Gas response is significantly stronger. Figure 3 shows
the result of such experiment.

Figure 4 illustrates the damping of two modes when one in-
creases both the drag on the gas disc and its mass. As expected, the
lighter the gas disc, the longer the settling phase.

This is in qualitative agreement with the findings of the main
text, corresponding to the situation where a given galaxy enters a
group or a cluster and the gas component feels ram pressure from
the hot corona.

Finally, Figure 5 shows the same experiment, modulo the fact
that both the stellar and gas disc are subject to the same external
(gravitational) torque. In this situation

2 note how S4 reduces as it should to ! = ±!? and ! = ±!g when both
the friction and the coupling is nul.
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Figure 2. Top panel: The relaxation of gravitationally self-interacting
eigenmodes of gas and stars. The stars in red are driven towards the gas ori-
entation in blue. The level of damping increase from dark to lighter curves.
Bottom panel: The corresponding drift of the four roots of S4, defining the
frequencies of the system. Note how the real negative part increases with
damping.

with K and E the elliptic functions of the first and second type
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agonalise the positive semi-definite symmetric matrix A, so that in
that frame, Hamilton’s equation yield for each eigen mode
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2
i q̂i = ⇠̂i , (7)

where !i is the i
th eigenvalue and ⇠̂i is the external specific force

applied on the ring projected on the corresponding eigenvector.

2.2 Stellar-Gas disc coupling

Now let us note that so long as the surface density of the gas and
the stars are proportional, the matrix M describing gas rings will be
formally identical to that for the stars (up to a multiplicative factor
reflecting the gas to star mass ratio), so that the eigen-space of both
discs are the same.

In that frame, the gas ring eigenmode obeys formally a sim-
ilar equation to equation (7) with one extra caveat, which is that
the gas can shock, so that each gas ring is subject to an extra drag
force. For expediency we consider that the drag term operates on
the eigenmode.

Finally, when considering simultaneously the evolution of
both gas and star eigenmodes we need to account for their relative

gravitational interaction, which can be accounted for by a supple-
mentary coupling term in both equation.

This leads us to now consider the dynamics of the set of cou-
pled gas +star eigenmodes for the stars, and the gas components,
which amplitude we will write q?, and qg respectively. For expedi-
ency let us consider only one such mode.

We will consider that this eigen mode has its own natural fre-
quency, !? and !g resp, a coupling term, !?g and a driving, ⇠ and
damping ⌘ term specific to the gas component. The amplitude of
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which will have both a damped component, and an oscillatory one.
Figure 2 illustrates the damping of two modes when one in-

creases the drag on the gas component and shows the frequencies
which are roots of S4. As expected, the roots acquire a larger and
larger negative real part, and the lighter gas disc will drag the stellar
disc towards itself as it settles.

2.3 Stellar-Gas disc re-alignment

We can now investigate the relative orientation of sets of rings cor-
responding to the stellar and gaseous disc respectively, to under-
stand within the framework of the linearised Laplace Lagrange the-
ory how the two discs re-orient with respect to each other. We aim
here to account for the fact that the latter is subject to forcing by
RAM pressure on the one hand, and dissipation through shocks be-
tween rings on the other hand.

Let us first consider a idealised experiment when either the gas
disc or the is subject to a driven gas impulse which propagate to the
other disc before eventually both modes damp and the coupled sys-
tem settles. Gas response is significantly stronger. Figure 3 shows
the result of such experiment.

Figure 4 illustrates the damping of two modes when one in-
creases both the drag on the gas disc and its mass. As expected, the
lighter the gas disc, the longer the settling phase.

This is in qualitative agreement with the findings of the main
text, corresponding to the situation where a given galaxy enters a
group or a cluster and the gas component feels ram pressure from
the hot corona.

Finally, Figure 5 shows the same experiment, modulo the fact
that both the stellar and gas disc are subject to the same external
(gravitational) torque. In this situation

2 note how S4 reduces as it should to ! = ±!? and ! = ±!g when both
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Figure 4. Top panel: The relaxation of gravitationally self-interacting
eigenmodes of gas and stars. The stars in red are driven towards the gas ori-
entation in blue. The level of damping increase from dark to lighter curves.
Bottom panel: The corresponding drift of the four roots of S4 defining the
frequency of the system. Note how the real negative part increases with
damping. I am puzzled by the fact that the roots jump around. I would have
naively thought we should have 4 branches.

Note that we can write a WKB solution for the slowly-varying
time-dependant counterpart of equation (21), calling

1

⌦
=

!
2

g?

⌘ (3!2 + !
2
?) + 2!

�
2!2 + !2

g + !
2
?

� , (24)

which is both an explicit function of the time-dependant frequen-
cies !g?(t),!?(t),!g(t) and friction term ⌘(t) and an implicit one
via equation (23), the cosmic solution obeys

q?(t) = �
X

!2S4

Z t

�1
exp

✓Z t

t0
!(⌧)d⌧

◆
⇠
�
t
0�
dt

0

p
⌦(t)⌦(t0)

, (25)

keeping in mind that the sum over ! 2 S4 yield 4 complex conju-
gate roots with different ⌦(t) each. Since this equation is secular,
it only involves the slowly varying part of ⇠.

As argued in Sec. 3.1, with cosmic time all frequencies will
stiffen (through increased stellar mass, and gravitational polarisa-
tion), while the amplitude of the secular stochasticity will decrease,
so that the relative alignment between the two discs will be ampli-
fied.

discuss relative frequency of gas and stellar disc reflecting
their relative mass?

3.4 Scale-dependent mode coupling

Let us finally revisit Hunter & Toomre (1969) presented in Sec-
tion 3.2 for a two component gravitationally coupled star+gas set
of discs (which again will give us access to the azimuthal variation
of the response).

Let us first expand each (m, k) mode as

u?|g(t, r) / û?|g exp(�ı!t+ ı

Z r

k(r
0
)dr

0
+ım✓) , (26)

for the two components labeled ? and g resp., using the radial WKB
approximation of tightly wound vertical displacement above and
below the disc, and seek first free waves solutions.

The dispersion relation generalising equation (17) for the two
gravitationally coupled waves obeys

�
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2

g

�
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4

?g , (27)

where, in close analogy with equation (17), we have
defined �! = ! �m⌦. The two frequencies obey
!

2

g|?(k) = ⌫
2
+ 2⇡G⌃g|?|k|, while the coupling frequency

obeys !
4

?g = (2⇡Gk)
2
⌃g⌃?, and we have introduced the damp-

ing rate ⌘ = ⌘0k
2 (where ⌘0 has the dimension of a frequency

times length square and is a measure of the effectiveness of the
energy dissipation on small scales) for the mode ûg(k,m). Here
⌦, ⌃g|? and ⌫ are slowly varying function of r.

A perturbative solution of equation (27) for ! in small !g?

and small ⌘ yield four (resp. gas-like and star-like) complex roots,
!j obeying

! = m⌦± !g +
!

4

g?

2!g(!
2
g � !

2
?)

� ı⌘d , (28)

! = m⌦± !? +
!

4

g?

2!?(!
2
g � !

2
?)

� ı⌘d , (29)

where

⌘d =
⌘ !

4

g?!
2

?

2(!
3
? � !2

g!?)
2 + !

4
g?(5!

2
? � !2

g)
. (30)

Equation (28) generalises equation (20) to the weakly coupled,
weakly damped disc. Lifting those assumptions, one could fol-
low the same route to write down the forced (k space, or k space
and time) WKB solutions, in close analogy with equations (22)-
(25), but the origin of the damping in clearer in equations (28)-
(30). Indeed, thanks to the (⌘ 6= 0) dissipation in the gaseous disc
and the gravitational coupling between the two discs (!g? 6= 0),
the stellar WKB modes will also damp. The energy dissipation
within the baryonic component propagates to the stellar waves, as
expected! Again, as argued in Sec. 3.1, the coupling frequency,
!g? / (⌃g⌃?)

1/4, will stiffen with cosmic time (through in-
creased stellar mass, and gravitational polarisation) so that ⌘d will
increase and oscillation of the stellar disc will damp away more
vigorously (until the gas disc becomes sub dominant, in which case
⌘d / ⌃g/⌃? and the damping becomes dominated by the first !?

on the r.h.s. of equation (29)). This is a clear illustration of the max-
imum entropy production principle operating to generate order out
of shock dissipation, through a self re-enforcing process.

Calling D(!, k) the difference between the l.h.s. and r.h.s. of
equation (27), we can define resp. the wave actions A = a

2
@D/@!

the energy !A and angular momentum densities mA of the wave,
while the corresponding fluxes are obtained by multiplication with
the group velocity @!/@k.

look at 16.3 in bertin 2000. Self regulation towards Q = 1

through cooling and heating functions (?)
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