Why should we care about the cosmic web?

a theoretical perspective

1. What is the cosmic web?

according to data...

what is the cosmic web

The Cosmic Web refers to the large-scale structure of the universe, composed of galaxies and dark matter, which are interconnected by filaments of dark matter and gas. These filaments form a web-like pattern that extends throughout the observable universe, giving rise to the idea of the "Cosmic Web." The structure of the Cosmic Web is thought to play a key role in the evolution and distribution of galaxies, as well as in the formation of large-scale structures like galaxy clusters and superclusters.

Plausible but ...

according to @cosmicweb23

The cosmic web is a dynamically relevant intermediate-density boundary between cosmology and galaxy formation.

When halo collapse, neighbouring filaments+walls are in place.

according to @cosmicweb23++

The cosmic web is a dynamically relevant intermediate-density boundary between cosmology and galaxy formation.

Since it exists on many scales

The cosmic web is a dynamically relevant anisotropic (=spin 2) boundary between a given scale and a larger scale.

We must consider peaks rigged = dressed by their sets of (wall + filament) saddle critical pts.

1. What is the cosmic web? a spin-2 two-point process

1. What is the cosmic web? a spin-2 one-point process

More recently, alignment w.r.t. (filament or wall) saddle eigen-frame = spin-2 one-point process.

1. What is the cosmic web? a spin-2 one point process

1. Kaiser bias on cosmic web

 partial alignment will change (=bias) anisotropically the mean and variance of things → specific signature of CW

1. What is the cosmic web? a spin 2 point process definition

Sometimes small for DM

 partial alignment will change (=bias) anisotropically the mean and variance of things = specific signature of CW

$$\left[\frac{\partial^2 \rho}{\partial x_i \partial x_j}\right]_{\text{sad}}$$

$$E(Y|x) = \mu_Y + \rho \frac{\sigma_Y}{\sigma_X} (x - \mu_X)$$

 $\sigma_{Y|X}^2 = \sigma_Y^2(1-\rho^2)$

revisit

- tidal torque theory
- excursion set theory
- critical event theory
- disc settling

BUT It really matters for baryons

alignments funnel gas along CW : small scales inherit coherence and stability

1. The impact of shocks in gaseous cosmic web

CW drives secondary infall :

IRON

STARS

MILKY WAY

Disks (re)form because LSS are large (dynamically young)_{12.9} GYR AGC and (partially) an-isotropic: they induce persistent angular momentum advection of gas along filaments which stratifies accordingly.

1. Impact of CW on non-linear dynamics is non linear & top down

On galactic scales, the Shape of initial P_k is such that galaxies inherit stability from LSS via cold flows

Spatial frequency

12

 saddle metric changes (=biases) anisotropically the mean and variance of things = specific signature of CW

- tidal torque theory
- excursion set theory
- critical event theory
- disc settling

Tidal torque theory reflects the mis alignment of two tensors on different scales

Angular momentum = anti symmetric contraction of two tensors

$$L_k = \epsilon_{ijk} I_{kl} \psi_{,lj}$$

aligment between frame of saddle and separation vector to halo.

Tidal torque theory reflects the mis-alignment of two tensors on different scales

Angular Momentum

Geometry of the saddle provides **a natural 'metric'** (local frame as defined by Hessian @ saddle) relative to which **dynamical evolution** of DH is predicted.

Figure 6. Mean alignment between spin and filament as a function of mass for a filament smoothing scale of 5 Mpc/h. The spin flip transition mass is around $4 \, 10^{12} M_{\odot}$.

geometric split

mass split

High mass patch

 $L \propto e_{\phi}$

Lagrangian theory capture spin flip

Transition mass associated with **size** of quadrant

Only 2 ingredients: a) spin is spin one b) filaments flattened

 \rightarrow intrinsic alignments

2.2 Revisiting (up-crossing) excursion set theory subject to CW

metric changes (=biases) anisotropically the mean and variance of
 Excursion = specific signature of CW

- disc settling

Excursion set theory quantifies barrier crossing

 $\mathcal{P}(\delta, \partial_R \delta | \mathcal{S}addle)$

set of paths (=excursion) compatible with saddle

2.2 Revisiting (up-crossing) excursion set theory subject to CW

Halos with same mass can have different slope because of tides

2.2 Typical mass subject to CW

Extra degree of freedom, $Q(\theta, \phi)$, provides a supplementary vector space

2.2 typical accretion rate subject to CW

 $\mathcal{P}(\delta, \partial_R \delta | \mathcal{S}addle)$

 $R_{\mathcal{S}}$

 $\Delta \dot{M}(\mathbf{r}) \propto \left[\xi_{20}' - \frac{\sigma - \xi_1' \xi_1}{\sigma^2 - \xi^2} \xi_{20}\right] \mathcal{Q}$

 ξ'_{20} : corr. slope-tide + variance of field

2.2 Revisiting (up-crossing) excursion set theory subject to CW

cross product of normals

$$\left(\frac{\partial \dot{M}_{\star}}{\partial r}\frac{\partial M_{\star}}{\partial \mathcal{Q}}-\frac{\partial \dot{M}_{\star}}{\partial \mathcal{Q}}\frac{\partial M_{\star}}{\partial r}\right)\tilde{\nabla}\mathcal{Q}$$

- background: ρ
- dotted M
- dashed \dot{M}
- \Rightarrow different gradients

accretion rate is not a function of mass and density alone

applies also to formation time, concentration (?), kinetic anisotropy...

2.3 Critical events: Galactic motivation

revisit

- tidal torque theory
- excursion set theory
- critical event theory
- disc settling

 metric changes (=biases) anisotropically the mean and variance of mergers = specific signature of CW

filament disconnect = cold gas inflow truncation

2.3 Synopsis of merger events

What happens to neighbouring critical pts?

Peak merger

Filament vanishing

Filament merger

Wall vanishing

Wall merger

Void vanishing

2.3 Critical event PDF: formal definition

$$\frac{\partial^2 \mathcal{N}}{\partial r^3 \partial R} \equiv \langle \delta_{\rm D}^{(3)} (\mathbf{r} - \mathbf{r}_0) \delta_{\rm D} (R - R_0) \rangle \,,$$

where \mathbf{r}_0 is a (double) critical point in real space and R_0 the scale at which the two critical points merge.

2.4 Critical events PDF: Derivation

$$\frac{\partial^2 \mathcal{N}}{\partial r^3 \partial R} \equiv \langle \delta_{\rm D}^{(3)} (\mathbf{r} - \mathbf{r}_0) \delta_{\rm D} (R - R_0) \rangle \,,$$

where \mathbf{r}_0 is a (double) critical point in real space and R_0 the scale at which the two critical points merge.

2.3 merger event function

2.4 Critical events within lightcone:

moothing

punt

number of critical event within "past lightcone" of peak defines typical number of mergers ~ 4

• Orientation of saddle frame at surrounding event defines a proxy for the angular momentum of mergers.

One needs to form stars AND maintain them in the disc

Cosmological simulations produce thin discs

New Horizon Simulation

(c) M Park 2020

2.4 Shape of Circum Galactic Medium

Disc torqued by GCM

Cosmic web sets up reservoir of free energy in CGM = the fuel for thin disc emergence

Synopsis of thin disc emergence:

- Why do disc settle ? Because $Q\!\rightarrow\!1$
- But Why does $Q \rightarrow 1$? Because tighter control loop ($t_{dyn} \ll 1$) via wake
- But how does it impact settling? Because wake also stiffens coupling

1. Impact of CW on homeostatic thin disc

On galactic scales, the Shape of initial P_k is such that galaxies inherit stability from LSS via gas inflow, which, in turn, sets up CGM engine/reservoir required to self-regulate thin discs

2.4 Synopsis of thin disc emergence induced by CW

- Three components system coupled by gravitation.
- A CGM reservoir fed by the CW (top down causation)
- Convergence towards marginal stability : acceleration of dynamical control-loop by wakes
- Tightening of stellar disc by boosting of torques, & increased dissipation.

2.4 Upshot of the various processes in the intra galactic medium

Destabilising effects

- supernovae
- Turbulence
- Minor merger
- accretion
- flybys

Cosmic perturbation

Stabilising effects

- Stellar formation
- Cooling
- Shocks
- aligned accretion

Free energy reservoir in CGM

Internal Structure @ small scales: simulation & theory

State-of-the-art simulations illustrates the level of perturbation on smaller (molecular cloud) scales

Inertial subrange

Quid of the effect of wakes on injection scale?

(c)Taysun Kimm

Tides and wakes 101

Chandrasekhar polarisation

to oppose gravitation

On the importance of gravitational dressing

Gravitational "Dielectric" function ϵ

thanks to **cosmic web** which sets up cold disc

For cold discs...

Wake drastically boost orbital frequencies, stiffening coupling/tightening control loops

Self regulating loop boosted by wake

Open system with control loop generates complexity through self-organisation

Toomre Q convergence with mass and z

Toomre Q (*****+gas) parameter convergence as a function of *both* mass and redshift

Match between simulation and observation as a function of *both* mass and redshift

Ring Toy model: secular damping by wake growth

<u>Lagrange Laplace theory of rings</u> (small eccentricity small inclinaison)

Why finite thickness? Chemistry of emergence

Let us write down effective (closed loop) production rate for cold stellar component

Auto-catalysis of the cold component (via wakes) converts kinetic evolution into a logistic differential equation.

3.8

4.0

3.6

control parameter

Chemistry of emergence... introduce heating

Now let us take into account for the **vertical** secular diffusion of the cold component **Dissipation converts kinetic instability point into an attractor**.

Chemistry of emergence... introduce heating

Now let us take into account for the **vertical** secular diffusion of the cold component **Dissipation converts kinetic instability point into an attractor**.

Chemistry of emergence... introduce tides

Now let us take into account for the **vertical** secular diffusion of the cold component

wake driven $\varepsilon(z) \to 0$ as $Q \to 1$

Dissipation converts kinetic instability point into an attractor.

Dressed Reaction-Diffusion equation (cf morphogenesis)

Gravitational Wake

Logistic map Hamiltonian

 \rightarrow Cosmic resilience of thin disc driven by CW

 $\eta_{\rm dressed} \propto \eta_{\rm raw} / \epsilon^2(Q)$ ~ quadratic in ϵ $D_{\rm dressed} \propto D_{\rm raw} / \epsilon^2(Q)$

- \rightarrow Operates swiftly near self-organised Criticality
- \rightarrow **Robustness** / feedback details

all discs are fairly thin whatever the feedback

SF efficiency

Diffusion

Rapid correction

Emergence cf: self-steering Bike on slope of increasing steepness

Disc resilience is direct analog of self-steering bike on slope of increasing steepness.

casper + gyroscopic effect

(c) veritassium 22

Pumps free energy from gravity to self-regulate more and more efficiently

leans, and turns, and leans ...

remarkably, the bike's analog **spontaneously** emerges thanks to the CW!

55

Conclusion:

We should care about the cosmic web!

cosmic web = metric set by eigframe

 ∂x_i

Merci !

1. Impact of CW on non-linear dynamics is top down

Change in Pk shape reflects dark halos larger or smaller than filament cross-section

1. What is the cosmic web? a fruitful theoretical spin

• Galaxy property driven by the past lightcone of tidal tensor $\partial^2 \psi / \partial x_i \partial x_j$'s non-linear evolution impacted by scale-coupling/differential time delays

$\overline{\langle f_{\rm NL}(IC)\rangle} \neq f_{\rm NL}(\langle IC\rangle)$ $\langle f_{\rm NL}(IC)\rangle_{\theta,\phi} \neq f_{\rm NL}(\langle IC\rangle_{\theta,\phi})$

Spherical collapse does not capture filamentary/wall tides...

Proto halo will be impacted by **all** components of Tidal tensor (not just trace, also eigenvectors+other minors) over past light cone

Context: skeleton tree

Statistics of Merging Peaks of Random Gaussian Fluctuations: Skeleton Tree Formalism

Hitoshi HANAMI 2001

Physics Section, Faculty of Humanities and Social Sciences, Iwate University, Morioka 020 JAPAN

Galactic motivation

filament disconnect

= cold gas inflow truncation

Galactic motivation 2

codis et al 2012

wall disappearance

= spin flip

Validation: 2D event counts

Validation: 3D event counts

Two-point clustering of events

 $r/R_{
m s}$

Application: preserving cosmic connectivity

On the connectivity of halos

Compute frequency of filament merger compared to halo merger in the vicinity of a halo merger event $\xi_{\rm hf}(r)$ $\xi_{\rm hh}(r)$.

Application: preserving 2D connectivity

Application: preserving 2D connectivity

smoothing cancels low persistence pairs

Critical event PDF: derivation

$$\frac{\partial^2 \mathcal{N}}{\partial r^3 \partial R} \equiv \langle \delta_{\rm D}^{(3)} (\mathbf{r} - \mathbf{r}_0) \delta_{\rm D} (R - R_0) \rangle \,,$$

where \mathbf{r}_0 is a (double) critical point in real space and R_0 the scale at which the two critical points merge.

$$d(\delta) \equiv \det(\nabla \nabla \delta) = \lambda_1 \lambda_2 \lambda_3$$

$$\frac{\partial^2 \mathcal{N}}{\partial r^3 \partial R} = \left\langle J \, \delta_{\mathrm{D}}^{(3)}(\nabla \delta) \delta_{\mathrm{D}}(d) \right\rangle$$

$$J(d,\delta) = \begin{vmatrix} \partial_R d & \vec{\nabla} d \\ \partial_R \vec{\nabla} \delta^T & \vec{\nabla} \vec{\nabla} \delta \end{vmatrix}$$

Bring home message: dressing redefine clocks 75

New dynamical equilibrium

Impact of CGM growth

Lagrange Laplace theory of rings (small eccentricity small inclinaison)

x and y components of angular momentum,

Growth of CGM component **also** brings down the \star modes

Ring Toy model: gas + star coupling

Dissipation in gas **also** brings down the \star modes