

HectoMAP Redshift Survey

It exists on many scales.
what is the cosmic web

The Cosmic Web refers to the large-scale structure of the universe, composed of galaxies and dark matter, which are interconnected by filaments of dark matter and gas. These filaments form a web-like pattern that extends throughout the observable universe, giving rise to the idea of the "Cosmic Web." The structure of the Cosmic Web is thought to play a key role in the evolution and distribution of galaxies, as well as in the formation of large-scale structures like galaxy clusters and superclusters.

Plausible but ...

The cosmic web is a dynamically relevant intermediate-density boundary between cosmology and galaxy formation.

When halo collapse, neighbouring filaments+walls are in place.

The cosmic web is a dynamically relevant intermediate-density boundary between cosmology and galaxy formation.

Since it exists on many scales
The cosmic web is a dynamically relevant anisotropic (=spin 2) boundary between a given scale and a larger scale.

We must consider peaks rigged = dressed by their sets of (wall + filament) saddle critical pts.

\section*{| cosmic web $=$ alignment of eigframes $\left[\frac{\partial^{2} \bar{\psi}}{\partial x_{i} \partial x_{j}}\right.$
 pk
 - tides are longer range than density when aligned with something
 BKP96: alignment of shear tensor @ 2 peaks: |
| :--- |}

- Predicts LSS in ICs (on large scales) unexpected result in 96
- Applicable on any scale important for this talk

alignment \rightarrow high degree of constructive interference \rightarrow bridge
cosmic web \approx metric set by eigframe $\left[\frac{\partial^{2} \rho}{\partial x_{i} \partial x_{j}}\right]_{\mathrm{sad}}$

More recently, alignment w.r.t. (filament or wall) saddle eigen-frame $=$ spin- 2 one-point process.

Correlation
zone of saddle
one should consider peaks dressed by neighbouring critical pts.
cosmic web \approx metric set by eigframe $\left[\frac{\partial^{2} \rho}{\partial x_{i} \partial x_{j}}\right]_{\text {sad }}$

- partial alignment will change (=bias) anisotropically the mean and variance of things \rightarrow specific signature of CW

$$
\begin{gathered}
E(Y \mid x)=\mu_{Y}+\rho \frac{\sigma_{Y}}{\sigma_{X}}\left(x-\mu_{X}\right) \\
\sigma_{Y \mid X}^{2}=\sigma_{Y}^{2}\left(1-\rho^{2}\right)
\end{gathered}
$$

$$
+
$$

Kaiser bias
spin 0 pt constraint (=density) \rightarrow isotropy (spherical collapse);

1. Kaiser hias on cosmic web

- partial alignment will change (=bias) anisotropically the mean and variance of things \rightarrow specific signature of CW

1. What is the cosmic web? a spin 2 point process definition
cosmic web \approx metric set by eigframe $\left[\frac{\partial^{2} \rho}{\partial x_{i} \partial x_{j}}\right]_{\mathrm{sad}}$

- partial alignment will change (=bias) anisotropically the mean and variance of things $=$ specific signature of CW

$$
\begin{gathered}
E(Y \mid x)=\mu_{Y}+\rho \frac{\sigma_{Y}}{\sigma_{X}}\left(x-\mu_{X}\right) \\
\sigma_{Y \mid X}^{2}=\sigma_{Y}^{2}\left(1-\rho^{2}\right)
\end{gathered}
$$

- tidal torque theory
- excursion set theory $>$ Sometimes small for DM
- critical event theory
- disc settling

BUT It really matters for baryons
 alignments funnel gas along CW : small scales inherit coherence and stability

CW drives secondary infall:

$t_{\text {dyn }} \sim 1 / \sqrt{\rho}$

STARS
GAS
Disks (re)form because LSS are large (dynamically youngh 2.9 GYR AGC and (partially) an-isotropic:
they induce persistent angular momentum advection of gas along flaments which stratifies accordingly.

1. Impact of. (W on non-linear dynamics is non linear \& top down

On galactic scales, the Shape of initial P_{k} is such that golaxies inherit stability from LSS via cold flows

2.1 Revisiting tidal torque theory subject to CW

- saddle metric changes (=biases) anisotropically the mean and variance of things $=$ specific signature of CW
- tidal torque theory
- excursion set theory
- critical event theory
- disc settling

Tidal torque theory reflects the mis alignment of two tensors on different scales
Angular momentum = anti symmetric contraction of two tensors

$$
L_{k}=\epsilon_{i j k} I_{k l} \psi_{, l j}
$$

aligment between frame of saddle and separation vector to halo.

Tidal torque theory reflects the mis-alignment of two tensors on different scales

in saddle mid plane
2.1 Revisiting tidal torque theory subject to CW

Angular Momentum vectors

2.1 Revisiing fidal torque theory subject to CW

- point reflection symmetric
- vanish if no a-symmetry
perp. along $\mathrm{e}_{\boldsymbol{\phi}}$

spin //
to filament

2.1. Revisiting tidal torque theory subject to CW

Geometry of the saddle provides a natural 'metric' (local frame as defined by Hessian @ saddle) relative to which dynamical evolution of DH is predicted.

Figure 6. Mean alignment between spin and filament as a function of mass for a filament smoothing scale of $5 \mathrm{Mpc} / h$. The spin flip transition mass is around $410^{12} M_{\odot}$.
21. Revisiing fidal torque theory subject to CW

Lagrangian theory capture spin flip

Transition mass associated with size of quadrant

Low mass'patch
$L \propto e_{z}$

ROI x8 smaller

2.1 Revisiting tidal torque theory subject to CW

Only 2 ingredients: a) spin is spin one b) filaments flattened

Transition mass versus redshift
horizon 4π

skeleton of LSS
\rightarrow intrinsic alignments

2.2 Revisifing (up-crossing) excursion set theory subject to CW

- metric changes (=biases) anisotropically the mean and variance of Excursion = specific signature of CW

Excursion set theory quantifies barrier crossing

$$
\mathcal{P}\left(\delta, \partial_{R} \delta \mid \mathcal{S a d d l e}\right)
$$

set of paths (=excursion) compatible with saddle

2.2 Revisining (up-crossing) excursion set theory subjeet to CW

Halos with same mass can have different slope because of tides

2.2 Typical mass subbect to CW

Extra degree of freedom, $\mathrm{Q}(\theta, \varphi)$, provides a supplementary vector space

$\xi_{20}:$ corr. density-tide +
$\Delta M_{\star}(\mathbf{r}) \propto \delta_{\mathcal{S}} \xi_{20}(r) \mathcal{Q}$ density

2.2 typical acredion rate subject to CW

$\mathcal{P}\left(\delta, \partial_{R} \delta \mid \mathcal{S a d d l e}\right)$

$$
\Delta \dot{M}(\mathbf{r}) \propto\left[\xi_{20}^{\prime}-\frac{\sigma-\xi_{1}^{\prime} \xi_{1}}{\sigma^{2}-\xi^{2}} \xi_{20}\right] \mathcal{Q}
$$

$\xi_{20}^{\prime}:$ corr. slope-tide + variance of field

2.2 Revising (up-crossing) excursion se theory subject to cW

applies also to formation time, concentration (?), kinetic anisotropy...

2.3 critical events:Galactic motivation

- metric changes (=biases) anisotropically the mean and variance of mergers $=$ specific signature of CW
filament disconnect = cold gas inflow truncation

cosmic time

2.3 Synop sis of mergerereanis

What happens to neighbouring critical pts?

Peak merger

Filament vanishing

Filament merger
Wall vanishing

Wall merger
Void vanishing

2.3 Critical event PDF: formal definition

$$
\frac{\partial^{2} \mathcal{N}}{\partial r^{3} \partial R} \equiv\left\langle\delta_{\mathrm{D}}^{(3)}\left(\mathbf{r}-\mathbf{r}_{0}\right) \delta_{\mathrm{D}}\left(R-R_{0}\right)\right\rangle,
$$

where \mathbf{r}_{0} is a (double) critical point in real space and R_{0} the scale at which the two critical points merge.

2.4 Criticcl avents PDFF Derivation

$\frac{\partial^{2} \mathcal{N}}{\partial r^{3} \partial R} \equiv\left\langle\delta_{\mathrm{D}}^{(3)}\left(\mathbf{r}-\mathbf{r}_{0}\right) \delta_{\mathrm{D}}\left(R-R_{0}\right)\right\rangle$,
where \mathbf{r}_{0} is a (double) critical point in real space and R_{0} the scale at which the two critical points merge.
\checkmark Invoque ergodicity
\checkmark Change variable to (gradient, determinant)

23 merger erenan fundion

2.4 Critical events within lighticone: AM \& number count

Cosmological simulations produce hin discs

(c) M Park 2020

Disc forqued by GCM

Cosmic web sets up
reservoir of free energy in CGM = the fuel for thin disc emergence

- Why do disc settle ? Because $Q \rightarrow 1$
- But Why does $Q \rightarrow 1$? Because tighter control loop $\left(t_{\text {dyn }} \ll 1\right)$ via wake
- But how does it impact settling? Because wake also stiffens coupling

On golactic scales, the Shape of initial P_{k} is such that golaxies inherit stability from LSS via gas inflow, which, in turn, sets up CGM engine/reservoir required to self-regulate thin discs

2.4 Synopsis of thin disc emergence induced by (W

- Three components system coupled by gravitation.
- A CGM reservoir fed by the CW (top down causation)
- Convergence towards marginal stability : acceleration of dynamical control-loop by wakes
- Tightening of stellar disc by boosting of torques, \& increased dissipation.

Destabilising effects

- supernovae
- Turbulence
- Minor merger
- accretion
- flybys

Stabilising effects

- Stellar formation
- Cooling
- Shocks
- aligned accretion

Cosmic perturbation

Internal Structure @ small scales: simulation \& theory.

State-of-the-art simulations illustrates the level of perturbation on smaller (molecular cloud) scales

Simulations

$\log n_{H}$

Turbulent cascade controlled by energy injection scale

Quid of the effect of wakes on injection scale?

Chandrasekhar polarisation

Quasi circular trajectories:

\rightarrow No significant relative motion to oppose gravitation

Graviitational woke/polarisation/dressing

Quasi circular Trajectories: ‘cold’ disc

$$
Q=\frac{\kappa \sigma}{\pi G \Sigma} \rightarrow 1
$$

- colder disc means larger wake
- colder disc means stronger wake
- colder disc means shorter dynamical time

Mass in wake = mass in perturbation X 140 !!

Kalnajs

For cold discs...
Gravitational "Dielectric" function ϵ
$Q=\frac{\kappa \sigma}{\pi \Sigma} \rightarrow 1$
$\epsilon(Q) \equiv \mathcal{D}(\omega, k)=\operatorname{det}(1-\mathbf{M}(\omega))$
Dispersion relation Response matrix

$$
[\delta \psi]_{\text {dressed }}=\frac{[\delta \psi]_{\text {bare }}}{|\varepsilon(\omega)|}
$$

$$
T_{\text {dressed }} \simeq|\varepsilon| T_{\text {bare }}
$$

$\Omega_{\text {dressed }} \simeq \frac{1}{|\varepsilon|} \Omega_{\text {bare }}$
thanks to cosmic web which sets up cold disc

Wake drastically boost orbital frequencies, stiffening coupling/tightening control loops

Transition to secularly-driven morphology promoting self-regulation around an effective Toomre $Q \sim 1$.

$$
\underset{\substack{\text { dressed } \\ \text { so long as Totesesed }>\text { Toool }}}{ } \simeq|\varepsilon| T_{\text {bare }}
$$

Attraction point of feedback loop

Destabilising effects
Tighter loop
$Q_{\text {eff }}^{-1}=Q_{g}^{-1}+Q_{\star}^{-1}=\frac{G \pi}{\kappa}\left(\frac{\Sigma_{g}}{\sigma_{g}}+\frac{\Sigma_{\star}}{\sigma_{\star}}\right)$
Stabilising effects

- Star formation
- Cooling
- Shocks
- Minor Mergers
- Misaligned infall
- FlyBys

Cosmic perturbation

Gravitational Wake

- Co-rotating Aligned infall

Toomre Q ($\star+$ gas) parameter convergence as a function of both mass and redshift

$$
Q_{\mathrm{eff}}^{-1}=Q_{g}^{-1}+Q_{\star}^{-1}=\frac{\pi}{\kappa}\left(\frac{\Sigma_{g}}{\sigma_{g}}+\frac{\Sigma_{\star}}{\sigma_{\star}}\right)
$$

Match between simulation and observation as a function of both mass and redshift

Ring Toy model: secular damping by wake growth

Lagrange Laplace theory of rings (small eccentricity small inclinaison)

Why finite thickness? Chemisiny of emergence

Let us write down effective (closed loop) production rate for cold stellar component

Auto-catalysis of the cold component

(via wakes) converts kinetic evolution
into a logistic differential equation.

Chemistry of emergence... introduce heating

Now let us take into account for the vertical secular diffusion of the cold component Dissipation converts kinetic instability point into an attractor.

Chemistry of emergence... introduce heating

Now let us take into account for the vertical secular diffusion of the cold component
Dissipation converts kinetic instability point into an attractor.

Chemistry of emergence... introduce iides

Now let us take into account for the vertical secular diffusion of the cold component
Dissipation converts kinetic instability point into an attractor.

Dressed Reaction-Diffusion equation (cf morphogenesis)

Rapid correction
\rightarrow Cosmic resilience of thin disc driven by CW
\rightarrow Operates swiftly near self-organised Criticality
\rightarrow Robustness / feedback details

Disc resilience is direct analog of self-steering bike on slope of increasing steepness.
leans, and turns, and leans ... casper + gyroscopic effect

remarkably, the bike's analog spontaneously emerges thanks to the CW!

Pumps free energy from gravity to self-regulate more and more efficiently

Conclusion:

We should care about the cosmic web!

cosmic welb $=$ metric set by eigframe
$\left[\frac{\partial^{2} p}{\partial x_{i} \partial x_{j}}\right]$

Merci !

Change in Pk shape reflects dark halos larger or smaller than filament cross-section

1. What is the cosmic web? a fruifful theoretical spin

- Galaxy property driven by the past lightcone of tidal tensor $\partial^{2} \psi / \partial x_{i} \partial x_{j}$'s non-linear evolution impacted by scale-coupling/differential time delays
$\left\langle f_{\mathrm{NL}}(I C)\right\rangle \neq f_{\mathrm{NL}}(\langle I C\rangle)$
$\left\langle f_{\mathrm{NL}}(I C)\right\rangle_{\theta, \phi} \neq f_{\mathrm{NL}}\left(\langle I C\rangle_{\theta, \phi}\right)$

Spherical collapse does not capture filamentary/wall tides...

Proto halo will be impacted by all components of Tidal tensor (not just trace, also eigenvectors+other minors) over past light cone

Context: skeleton tree

Statistics of Merging Peaks of Random Gaussian Fluctuations: Skeleton Tree Formalism

Hitoshi HANAMI 2001

Physics Section, Faculty of Humanities and Social Sciences, Iwate University, Morioka 020 JAPAN

Galactic motivation

filament disconnect
= cold gas inflow truncation

cosmic time

Galactic motivation 2

codis et al 2012
wall disappearance
$=$ spin flip

g_{3} has spin \perp to wall 1
gS has spin \perp bo wall 2 (when wall 1 disapear

Two-point clustering of events

$2+1 D$

$3+I D$

Application: preserving cosmic connectivity

On the connectivity of halos

Compute frequency of filament merger compared to halo merger in the vicinity of a halo merger event $\xi_{\mathrm{hf}}(r) \xi_{\text {hh }}(r)$.

Application preserving 2D connectivity

-- peak
P-F-F-P
\bigcirc void
负 saddle

Application: preserving 2D connectivity

- peak
\bigcirc void
绿 saddle

smoothing cancels low persistence pairs

$$
\frac{\partial^{2} \mathcal{N}}{\partial r^{3} \partial R} \equiv\left\langle\delta_{\mathrm{D}}^{(3)}\left(\mathbf{r}-\mathbf{r}_{0}\right) \delta_{\mathrm{D}}\left(R-R_{0}\right)\right\rangle,
$$

where \mathbf{r}_{0} is a (double) critical point in real space and R_{0} the scale at which the two critical points merge.

$$
d(\delta) \equiv \operatorname{det}(\nabla \nabla \delta)=\lambda_{1} \lambda_{2} \lambda_{3}
$$

$$
\frac{\partial^{2} \mathcal{N}}{\partial r^{3} \partial R}=\left\langle J \delta_{\mathrm{D}}^{(3)}(\nabla \delta) \delta_{\mathrm{D}}(d)\right\rangle
$$

$J(d, \delta)=\left|\begin{array}{cc}\partial_{R} d & \vec{\nabla} d \\ \partial \partial_{R} \vec{\nabla} \delta^{T} & \vec{\nabla} \vec{\nabla} \delta\end{array}\right|$

$$
\frac{\partial^{2} \mathcal{N}}{\partial r^{3} \partial R}=\left\langle J \delta_{\mathrm{D}}^{(3)}(\nabla \delta) \delta_{\mathrm{D}}(d)\right\rangle
$$

$$
J(d, \delta)=\left|\begin{array}{cc}
\partial_{R} d & \vec{\nabla} d \\
\partial_{R} \vec{\nabla} \delta^{T} & \vec{\nabla} \vec{\nabla} \delta
\end{array}\right|=\left|\begin{array}{cc}
\partial_{R} d & \vec{\nabla} d \\
-R \vec{\nabla} \Delta \delta^{T} & \vec{\nabla} \vec{\nabla} \delta
\end{array}\right|,
$$

$$
\begin{aligned}
\frac{J(d, \delta)}{\sigma_{1} \sigma_{2}^{4} \sigma_{3}} & =\left|x_{11} x_{22}\right|\left|\begin{array}{cc}
\partial_{R} x_{33} & x_{33 i} \\
\partial_{R} x_{i} & x_{i j}
\end{array}\right| \\
& \left.=\left|x_{11} x_{22}\right| \begin{array}{cccc}
\partial_{R} x_{33} & x_{133} & x_{233} & x_{333} \\
\partial_{R} x_{1} & x_{11} & 0 & 0 \\
\partial_{R} x_{2} & 0 & x_{22} & 0 \\
\partial_{R} x_{3} & 0 & 0 & 0
\end{array} \right\rvert\, \\
& =\left|x_{11} x_{22}\right|^{2}\left|\partial_{R} x_{3}\right|\left|x_{333}\right|
\end{aligned}
$$

$$
x \equiv \frac{\delta}{\sigma_{0}}, x_{k} \equiv \frac{\nabla_{k} \delta}{\sigma_{1}}, x_{k l} \equiv \frac{\nabla_{k} \nabla_{l} \delta}{\sigma_{2}}, x_{k l m} \equiv \frac{\nabla_{m} \nabla_{l} \nabla_{k} \delta}{\sigma_{3}}
$$

2D Theory ofTidal Torque @ saddle?

$$
\delta\left(\mathbf{r}, \kappa, I_{1}, \nu \mid \mathrm{ext}\right)=\frac{I_{1}\left(\xi_{\phi \delta}^{\Delta \Delta}+\gamma \xi_{\phi \phi}^{\Delta \Delta}\right)+\nu\left(\xi_{\phi \phi}^{\Delta \Delta}+\gamma \xi_{\phi \delta}^{\Delta \Delta}\right)}{1-\gamma^{2}}+4\left(\hat{\mathbf{r}}^{\mathrm{T}} \cdot \underset{\text { Hessian }}{\overline{\mathbf{H}} \cdot \hat{\mathbf{r}})} \xi_{\phi \delta}^{\Delta+}\right.
$$

$$
f^{+}=\left(f_{11}-f_{22}\right) / 2 \text { and } f^{\times}=f_{12}
$$

2D Theory of Tidal Torque @ saddle?

$$
\left\langle L_{z} \mid \operatorname{ext}\right\rangle=L_{z}\left(\mathbf{r}, \kappa, I_{1}, \nu \mid \operatorname{ext}\right)=-16\left(\hat{\mathbf{r}}^{\mathrm{T}} \odot \epsilon \cdot \overline{\mathbf{H}} \cdot \hat{\mathbf{r}}\right)\left(L_{z}^{(1)}(r)+2\left(\hat{\mathbf{r}}^{\mathrm{T}} \cdot \overline{\mathbf{H}} \cdot \hat{\mathbf{r}}\right) L_{z}^{(2)}(r)\right)
$$

$$
\begin{array}{r}
L_{z}^{(1)}(r)=\frac{\nu}{1-\gamma^{2}\left[\left(\xi_{\phi \phi}^{\Delta+}+\gamma \xi_{\phi \delta}^{\Delta+}\right) \xi_{\delta \delta}^{\times \times}-\left(\xi_{\phi \delta}^{\Delta+}+\gamma \xi_{\delta \delta}^{\Delta+}\right) \xi_{\phi \delta}^{\times \times}\right]} \\
L_{z}^{(2)}(r)=\left(\xi_{\phi x}^{\Delta \Delta} \xi_{\delta \delta}^{\times \times}-\xi_{\phi \delta}^{\times \times} \xi_{\delta \delta}^{\Delta \Delta}\right)+\frac{I_{1}}{1-\gamma^{2}}\left[\left(\xi_{\phi \delta}^{\Delta+}+\gamma \xi_{\phi \phi}^{\Delta+}\right) \xi_{\delta \delta}^{\times \times}-\left(\xi_{\delta \delta}^{\Delta+}+\gamma \xi_{\phi \delta}^{\Delta+}\right) \xi_{\phi \delta}^{\times \times}\right]
\end{array}
$$

New dynamical equilibrium

Lagrange Laplace theory of rings (small eccentricity small inclinaison)

Growth of CGM component also brings down the \star modes

Dissipation in gas also brings down the \star modes

