Thin and thick discs of spiral galaxies

Sukyoung K. Yi (Yonsei) Minjung Park (Harvard) & JK Jang (Yonsei)

Snowflake

M101 ESA/NASA

Burrow.case.edu

Numerical simulation of GF

ellipticals

disk galaxies

Vogelsberger et al. 2014 (Illustris)

ŀ

Thin discs

NewHorizon (Dubois et al. 2021, A&A)

- Cosmological zoom-in simulation • Medium-size (D ~ 20 Mpc) volume • ~150 galaxies of $M_s > 1e9$

- Resolution: $dx_{best} = 35 \text{ pc}, dm_s \sim 1e4, dm_{DM} \sim 1e6$
- Computing: 80 Mhr to reach z=0.17

- Resolution: $dx_{best} = 70 \text{ pc}, dm_s \sim 2e4, dm_{DM} \sim 1e6$ Chemical elements: H,D,C,N,O,Mg,Si,S,Fe

NewHorizon2

NewHorizon

Dubois et al. 2021

Field environment Ramses 4800 cores 80 Mhr D = 20 Mpcdx > 34 pc $dm_star = 1e4$ AGN & Stellar FB 1000 snapshots

a = 0.022

Credit: Jinsu Rhee

5

Disc formation NH in SKIRT

NH: ID-1-867

Credit: JK Jang

Observation

UGC 10738 (Scott et al. 2021)

TNG50

with resolved dust TNG50 z=1: ID 227888

$M_{*} = 1.27 \times 10^{11} M_{\odot}$

High-resolution allows profile fits

Radial Profile in r-band: Sersic + exponential disc

disk scale length: $R_d = 1.7$ kpc

 $\rho(z)$

Vertical Profile

$$) = \rho_{\text{thin}} \ sech^2(z/2z_{\text{thin}}) + \rho_{\text{thick}} \ sech^2(z/2z_{\text{thick}})$$

Epoch of disc settling?

(See also Kassin+12; Simons+16; Johnson+18; El-Badry+18; Hung+19; Pillepich+19)

10

Conditions for disc settling?

- galaxy should be massive having collected enough angular momentum from the cosmic web
- and reach a meta-stable Q=1 stage (Pichon's talk)
- merger should not be frequent (external perturbation)
- too much stellar and BH feedback causes turbulence (internal perturbation)

Thick discs

Observation: Vertical profile requires 2 components?

Resolved star count in MW

- Photometric parallexes for ~12,500 stars brighter than I=18
- The density distribution for stars with 4<M_v<5 with distance from the Galactic plane

- Exponential fit ~ 300pc (thin) ~1450pc (thick) Thick disk contains ~ 2% of stars in the solar neighborhood

Observation: sech² fit

SDSS survey to map 3D number density distribution in the Galaxy

Vertical Profile functions

- Vertical density profile of a self-gravitating isothermal population, massive disc (Spitzer 1942; Kruit & Searle 1981) $\rho(z) = \rho_0 \ sech^2(z/z_0)$
- can be approximated as an exponential with scale height of $h_z = z_0/2$ $\rho(z) = \rho_0 \, exp(-z/h_z)$ $(Z > Z_0)$

Observation: dynamical models on star counts

Bovy & Rix 2013; Bland-Hawthorn & Gerhard 2016 review thin: Thick=6:1

Observation: bimodality in [a/Fe]- [Fe/H], distinct origin?

(Lee et al. 2011) ~17,000 G-type dwarfs

Observation: External galaxies: surface photometry

(Yoachim & Dalcanton 2006) 34 edge-on disk galaxies with a wide range of mass

Formation scenarios of the thick disks

(1) Kinematic heating of a pre-exisiting disk

- minor mergers (e.g., Quinn+93; Kazantzidis+08)
- spiral arms/ bars (e.g., Sellwood & Carlberg 84)
- GMCs (e.g., Spitzer & Schwarzschild 1951)

(3) Radial Migration (e.g., Roskar et al. 2008)

(2) Accretion from disrupted satellite galaxies

(e.g., Abadi+03)

(4) In-situ SF triggered by **gas-rich merger** (e.g., Brook et al. 2004)

$[D/T]_{kin} = 0.68$

Face-on

Edge-on

Do we see thick discs in high-res simulations? What is the origin of thick disc?

Gaussian Mixture Model on NH galaxies

Radial & vertical profiles: two-component fits

Galactica **Radial Profile in r-band: Sersic** + exponential disc

disk scale length: $R_d = 1.7$ kpc

In the cylindrical region: $R_{xy} = 2 R_d = 3.4 \pm 1 kpc$

Vertical Profile:

Park et al. 2021, ApJS, 254, 2 Thick disc fractions: scale height and luminosity

Spatial decomposition: thin and thick discs

Thick disc: in situ formed, older, metal-poorer than thin disc 2021, ApJS, 254, 2 (one galaxy)

NH2: bimodal distribution in chemical properties like MW

NH2: dx=70 pc simulation with 9 chemical elements

C.f., NIHAO (Buck et al. 2019), Auriga (Grand et al. 2020), Vintergatan (Agertz et al. 2021)

NH2: bimodal distribution in chemical properties like MW

NH2: dx=70 pc simulation with 9 chemical elements

Varieties in chemical phase space distribution

Consistent with Auriga (Grand et al. 2020)

NH2: [a/Fe] - morphology

20

NH2: [a/Fe] - kinematics

Bimodal when smoothed

High [a/Fe] includes many thin-disc & spheroidal stars

$$\begin{array}{c} & & \\$$

-2

-4

0

Height (kpc)

16.5

4

2

NH2: Kinematically-defined thin/thick discs

"thick disc" has a wide range of [a/Fe].

NH2: Spatially-defined thin/thick discs

thin disk's scale height : 0.36 kpc thick disk's scale height : 1.12 kpc z_cross : 1.19 kpc

z_thick / z_thin : 3.16

1.0 Now (2-comp fitting) thin Surface r-band luminosity (L_{\odot}) thick 0.8 **Thick Thick** (⊙ ₩ 0.6 10^{6} (10^{8}) 0.4 \mathbf{X}^* Thin 10^{5} 0.2 0.0 -22 -40 4 Height (kpc)

```
thin disk: |Z| < 1*z thin
thick disk: 1.2*z thick < |Z| < 2.5*z thick
```

```
Measured within 0.5*R_50 - 2.0*R_50
```

Spatial thick disc based on the surface bright fit

NH: Birth place of spatial thick disc stars

Cicularity change of disc stars: disc heating

Consistent with FIRE (Ma et al. 2019) and NIHAO (Buck et al. 2019)

Most of the stars are born on the thin disc and dynamically heated with time.

Summary

- Both thin and thick discs are well reproduced as observed.
- Thick disc stars: mostly **in situ** formed.
- Thick disc is mainly a result of secular evolution
 - Pre-existing stars get dynamically heated.
 - But a large variation between galaxies depending on SF and merger history.
- Thin and thick discs are continuous and reflect the SFH of the galaxy.
- Are there really two distinct discs?

