## On the relevance/importance of of better modelling the interface between CGM and cosmic web

#### Julien Devriendt

Harley Katz (https://arxiv.org/pdf/2211.04626.pdf)
Martin Rey (to be submitted -- next week)
Adrianne Slyz



#### Why should we care?

#### **Plenty of reasons:**

- Charlotte's talk about multiphase filamentary flows
- Corentin's talk about AM ... (also Tillson et al 2015) etc ...

But above and overall: constraining feedback models/physics!

#### Pandora project: Martin-Alvarez et al, arXiV:2211.09139

|               | Simulation   | Solver | $B_0$ (G)          | RT | CR | Stars | Stellar feedback        |
|---------------|--------------|--------|--------------------|----|----|-------|-------------------------|
| <u></u>       | NoFb+thSfNoZ | Hydro  | Х                  | Х  | Х  | thres | Х                       |
|               | NoFb+thSf    | Hydro  | ×                  | X  | X  | thres | No energy/mom injection |
| 4             | NoFb+NoZ     | Hydro  | ×                  | X  | X  | MTT   | X                       |
|               | NoFb         | Hydro  | ×                  | X  | X  | MTT   | No energy/mom injection |
|               | HD+thSf      | Hydro  | X                  | X  | X  | thres | Mech                    |
| )             | HD+thSfBoost | Hydro  | ×                  | X  | X  | thres | Boosted Mech            |
| *             | HD           | Hydro  | ×                  | X  | X  | MTT   | Mech                    |
| *             | HD+Boost     | Hydro  | ×                  | X  | X  | MTT   | Boosted Mech            |
| •             | MHD          | MHD    | $3 \cdot 10^{-13}$ | X  | X  | MTT   | Mech                    |
| A             | sMHD         | MHD    | $3 \cdot 10^{-11}$ | X  | X  | MTT   | Mech                    |
| $\rightarrow$ | iMHD         | MHD    | $3 \cdot 10^{-20}$ | X  | X  | MTT   | MagMech                 |
| $\Rightarrow$ | RT           | Hydro  | ×                  | 1  | X  | MTT   | Radiation + Mech        |
| (44)          | RTsMHD       | MHD    | $3 \cdot 10^{-11}$ | 1  | X  | MTT   | Radiation + Mech        |
|               | RTiMHD       | MHD    | $3 \cdot 10^{-20}$ | 1  | X  | MTT   | Radiation + MagMech     |
| 2             | CRiMHD       | MHD    | $3 \cdot 10^{-20}$ | X  | 1  | MTT   | CRMagMech               |
| <b>(</b>      | RTnsCRiMHD   | MHD    | $3 \cdot 10^{-20}$ | 1  | 1  | MTT   | Radiation + CRMagMech   |
| ❸             | RTCRiMHD     | MHD    | $3 \cdot 10^{-20}$ | 1  | 1  | MTT   | Radiation + CRMagMech   |



### What is (are) the problem(s)?

#### Rey and Blaizot (in prep) ... but also others



→ Need to track metals and ionization states



**Cold CGM Gas** 

Rey, Maxime (PhD Thesis)



→ Need to have resolution in the CGM to properly capture its multiphase nature!



Rey, Maxime (PhD Thesis)

**Hot CGM gas** 

#### PRISM: Tracking the metals and atom ionization states

Katz et al, arXiV:2211.04626

NB: also applies to the CGM but metals produced in the ISM (although see movie later on)!

| Group Name       | $E_{ m low}$ | $E_{ m high}$ | Function                                                                             |
|------------------|--------------|---------------|--------------------------------------------------------------------------------------|
|                  | (eV)         | (eV)          |                                                                                      |
| IR               | 0.1          | 1.0           | Infrared radiation pressure                                                          |
| Opt.             | 1.0          | 5.6           | Direct radiation pressure                                                            |
| FUV              | 5.6          | 11.2          | Photoelectric heating, Mg I, Si I, S I,                                              |
|                  |              |               | Fe I ionization                                                                      |
| LW               | 11.2         | 13.6          | H <sub>2</sub> dissociation, C I ionization                                          |
| $EUV_1$          | 13.6         | 15.2          | HI, NI, OI, Mg II ionization                                                         |
| $EUV_2$          | 15.2         | 24.59         | H <sub>2</sub> , C II, Si II, S II, Fe II, Ne I ionization                           |
| EUV <sub>3</sub> | 24.59        | 54.42         | He I, O II, C III, N II, N III, Si III, Si IV, S III, S IV, Ne II, Fe III ionization |
| EUV <sub>4</sub> | 54.42        | ∞             | He II, O III+, N IV+, C IV+, Mg III+, S V+, Si V+, Fe IV+, Ne III+ ionization        |

(> 60 ions)

<u>Caveats:</u> no MHD, thermal conduction, non-self consistent dust model or CR treatment yet but coming soon ... also only valid for optically thin regime (density limited)

## PRISM: chemistry ... main atoms/ions and even a few molecules (H<sub>2</sub>, CO)





1D equilibrium model

Idealised galaxy simulation



### PRISM: multiphase ISM & non equilibrium effects



# What about the resolution in the CGM problem?

Rey et al, (in prep)

Caveat: all idealized simulations so far→ no inflow/cosmic web yet but once again, coming soon!

$$l_{\rm cool} = \sqrt{\frac{P_{\rm th}}{\rho}} \times \frac{1}{\Lambda_{\rm net}}$$

for each gas cell  $\rightarrow$  refine if n dx >  $I_{cool}$  > 0





Rey et al, (in prep)

| Simulation          | Maximum cooling    | Average timestep cost   |  |
|---------------------|--------------------|-------------------------|--|
|                     | length target (pc) | (CPU s / simulated Myr) |  |
| ISM 18pc (x3)       | N/A                | $1965^{+144}_{-248}$    |  |
| + Outflow 72pc      | 72                 | $2093^{+144}_{-210}$    |  |
| + Outflow 36pc (x3) | 36                 | $3537^{+326}_{-281}$    |  |
| + Outflow 18pc      | 18                 | $10,389^{+945}_{-698}$  |  |

#### Mass loading factors

$$\eta_{M} = \frac{\dot{M}_{\text{out}}}{\text{SFR}_{10 \text{ Myr}}},$$

$$\eta_{E} = \frac{\dot{E}_{\text{out}}}{\text{SFR}_{10 \text{ Myr}} p_{\text{SN}}},$$

$$\eta_{Z} = \frac{\dot{Z}_{\text{out}}}{\text{SFR}_{10 \text{ Myr}} Z_{\text{disc}}},$$

Rey et al, (in prep)



Rey et al, (in prep)

## **Towards multiphase outflows**



## Impact on covering fractions



Rey et al, (in prep)