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Order out of Chaos: Secular Disc Settling

* emergence = the arising of novel and coherent structures through self-organization in complex systems
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Gravity does it all:  
A Top-Down Multiscale Analysis  
of the Cosmic Emergence  
of Thin Galactic Discs. 



* Emergence: arising of novel coherent (unlikely) structures  
through self-organisation

The whole does not simply behave  
like the  sum of its parts!

flock

Near phase transition  
 in open dissipative systems.

School



3Emergence cf: self-steering Bike on slope of increasing steepness
 Disc resilience is direct analog of self-steering bike on slope of increasing steepness. 
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leans, and turns, and leans …

 Pumps free energy from gravity to self-regulate more and more efficiently 

 casper + gyroscopic effect

remarkably, 
the bike’s analog  
spontaneously emerges



Observation

Thin discs:  an incongruous structure in a stochastic universe?

One needs to form stars AND maintain them in the disc

A fragile object : with a significant axis ratio 
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5Cosmological simulations produce thin discs

New Horizon Simulation (c) M Park 2020



6Question raised by emergence of thin disc

•Where is the coherence coming from? The CGM acts like a free energy reservoir 

•Why do disc settle ? Because they converge towards marginal stability 

•What is the role of Q ?  Because tighter control loop ( ) via wake  

•How does it impact settling? Because wake also stiffens coupling

∼ 1 tdyn ≪ 1

New Horizon

• Environment need to detune & stellar component to dominate: secular mode 
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Synopsis of thin disc emergence
Tighter coupling

• Three components system coupled by gravitation.

•  A CGM reservoir fed by the large scale structures  (top down causation) 

• Convergence towards marginal stability : acceleration of dynamical control-loop by wakes

• Tightening  of stellar disc by boosting of  torques, & increased dissipation.
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Clue?  circumgalactic medium geometry 

How to find the galaxy? 
How to collimate accretion? 
How to sustain thinness?

- warps            
- thick disks 

Both know 
about infall  
direction!  

Chicken or the egg … 

Simulations

New Horizon SimulationGas

synthetic light

Simulations

gas observations
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Agertz, Renaud et al. (2021) 
Renaud, Agertz et al. (2021a,b)

LSS drives secondary infall : 2 C. Pichon, D. Pogosyan, T. Kimm, A. Slyz, J. Devriendt and Y. Dubois

contrast, if this material comes in cold, star formation can be
fueled on a halo free-fall time. Cold-mode accretion should
also have an important impact on the properties (scale
length, scale height, rotational velocity) of galactic discs, if as
conjectured by Kereš et al. (2005), cold streams merge onto
disks “like streams of cars entering an expressway”, convert-
ing a significant fraction of their infall velocity to rotational
velocity. Dekel et al. (2009) argued along the same lines in
their analysis of the HORIZON-MareNostrum simulation: the
stream carrying the largest coherent flux with an impact pa-
rameter of a few kiloparsecs may determine the disc’s spin
and orientation. Powell et al. (2010) spectacularly confirmed
these conjectures by showing that indeed, the filaments con-
nect rather smoothly to the disc: they appear to join from dif-
ferent directions, coiling around one another and forming a
thin extended disc structure, their high velocities driving its
rotation.

The way angular momentum is advected through the
virial sphere as a function of time is expected to play a key
role in re-arranging the gas and dark matter within dark mat-
ter halos. The pioneer works of Peebles (1969); Doroshkevich
(1970); White (1984) addressed the issue of the original spin
up of collapsed halos, explaining its linear growth up to the
time the initial overdensity decouples from the expansion of
the Universe through the re-alignment of the primordial per-
turbation’s inertial tensor with the shear tensor. However, lit-
tle theoretical work has been devoted to analysing the out-
skirts of the Lagrangian patches associated with virialised
dark matter halos, which account for the later infall of gas
and dark matter onto the already formed halos. In this pa-
per, we quantify how significant this issue is and present a
consistent picture of the time evolution of angular momen-
tum accretion at the virial sphere based on our current the-
oretical understanding of the large scale structure dynamics.
More specifically, the paper presents a possible answer to the
conundrum of why cold gas flows in Λ-CDM universes are
consistent with thin disk formation. Indeed, as far as galactic
disc formation is concerned, the heart of the matter lies in un-
derstanding how and when gas is accreted through the virial
sphere onto the disc. In other words, what are the geometry
and temporal evolution of the gas accretion?

In the ’standard’ paradigm of disc formation, this ques-
tion was split in two. The dark matter and gas present in the
virialised halo both acquired angular momentum through
tidal torques in the pre-virialisation stage, i.e. until turn-
around (e.g White 1984). The gas was later shock-heated as
it collapsed, and secularly cooled and condensed into a disk
(Fall & Efstathiou 1980) having lost most of the connection
with its anisotropic cosmic past. In the modern cold mode
accretion picture which now seems to dominate all but the
most massive halos, these questions need to be re-addressed.
This paper presents a new scenario in which the coherency
in the disk build-up stems from the orderly motion of the fil-
amentary inflow of cold gas coming from the outskirts of the
collapsing galactic patch. The outline is as follows: in section
2, using hydrodynamical simulations, we report evidence
that filamentary flows advect an ever increasing amount of
angular momentum through the halo virial sphere at redshift
higher than 1.5. We also demonstrate that the orientation of
these flows is consistent, i.e. maintained over long periods of
time. Section 3 presents results obtained through simplified
pure dark matter simulations of the collapse of a Lagrangian

Figure 1. A typical galaxy residing in a high mass halo (M ∼
2 × 1012 M# at z = 3.8). The radius of the circle in the both pan-
els corresponds to Rvir = 79 kpc. Gas (left panel), and dark matter
(right panel) projected densities are plotted. Gas filaments are signif-
icantly thinner than their dark matter counterpart. Note the extent
and the coherence of the large scale gaseous filaments surrounding
that galaxy.
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Figure 3. The covariances (thick line) between different redshifts
(as labeled) of the thresholded density maps on the virial sphere,
Rvir, together with the corresponding dispersion (inter-quartile, dot-
ted lines). The lower bound of the thresholded density is chosen
such that filamentary structures stand out, while the upper bound
is adopted to minimise the signal from the satellites (see the text,
Section 2). The orientation of filaments is temporally coherent, as is
qualitatively illustrated in Figure 2.

patch associated with a virialised halo as these have the merit
of better illustrating the dynamics of matter flows in the out-
skirts of the halo. Section 4 is devoted to the presentation of
the conjectured impact of this scenario on disk growth at var-
ious redshifts, conclusions and prospects.

2 HYDRODYNAMICAL EVIDENCE

Let us start by briefly reporting the relevant hydrody-
namical results we have obtained. We statistically anal-
ysed the advected specific angular momentum of both gas
and dark matter at the virial radius of dark haloes in the
HORIZON-MareNostrum cosmological simulation at redshift
6.1, 5.0, 3.8, 2.5 and 1.5 (see Figure 1, Details can be found in
Kimm et al. 2011).

The HORIZON-MareNostrum simulation (Ocvirk et al.
2008; Devriendt et al. 2010) was carried out using the Eule-
rian hydrodynamic code, RAMSES (Teyssier 2002), which uses
an Adaptive Mesh Refinement (AMR) technique. It followed
the evolution of a cubic cosmological volume of 50h−1 Mpc

≠

The impact of shocks in gaseous cosmic web

void

wall

filament

CGM

gas Dark Matter

Disks (re)form because LSS are large (dynamically young) 
 and (partially)  an-isotropic : 

they induce persistent angular momentum advection of cold gas along filaments which 
stratifies accordingly. 

tdyn ⇠ 1/
p
⇢



10Shape of Circum Galactic Medium 

Agertz, Renaud et al. (2021) 
Renaud, Agertz et al. (2021a,b)

Cosmic web sets up 
reservoir of free energy in CGM = the fuel for  thin disc emergence 

Tumlinson+ 17

Disc torqued by GCM



11Impact of LSS on non-linear dynamics is top down

Power  
spectrum
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Non-linear top-down mode coupling via cold flows

Wake driven 
self-regulation

On galactic scales, the Shape of initial Pk is such that galaxies inherit stability from LSS 
via cold flows, which, in turn, sets up CGM engine/reservoir. 

More power: important impact

Hierarchical clustering

hierarchical growth


Spatial frequency



12 Upshot of the various processes in the intra galactic medium

• supernovae
• Turbulence
————
• Minor merger
• accretion
• flybys

• Stellar formation
• Cooling
• Shocks
—————
• aligned  

accretion  

Free 

 energy 


reservoir in CGM


Destabilising effects Stabilising effects

Cosmic

perturbation 


 




Simulations

Internal Structure of a simulated thin disc

State-of-the-art in modelling illustrates  
the level of SFR/turbulence/feedback  induced perturbation

(c)Taysun Kimm 



A. Nunez+ ’21 

Simulations

Internal Structure of a simulated thin disc:  varying feedback model

Note that  the exact model of feedback impacts face-on view BUT does not  
impact disc thickness.

No fine tuning required: something more fundamental operates



Simulations

 Internal Structure  @ small scales: simulation & theory 

(c)Taysun Kimm 

Quid of the effect of wakes on injection scale?

State-of-the-art simulations also illustrates 
the level of perturbation  
on smaller (molecular cloud) scales

Turbulent cascade

controlled by 

energy injection scale

Kolmogorov

cascade



16Tides and wakes 101

Simulations

Observations

Interstellar

Chandrasekhar polarisation

Gravitational Wake
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In a cold disc the tide itself is 
gravitating it self-amplifies!

Quasi circular trajectories: 
‘cold’ disc 

 No significant relative motion
                    to oppose gravitation
→



Order out of chaos: the emergence of homeostatic thin galactic discs 5

Q=1.1

Q=1.02

Figure 4. The stationary polarisation triggered by a a cloud with a Gaussian
surface density located at the origin in a shearing sheet disc with Q = 1.1
(top panel) and Q = 1.02 (bottom panel). The x (radial) and y (trans-
verse) axes are in units of the critical wavelength �crit = (2⇡)2G⌃/2.
The black (resp. red) contours values are 0.9 times the maximum (resp.
miminum) over-density multiplied by 0.25,0.5,0.75, and 1. The dashed line
corresponds to the zero contour. The extend and amplitude of the polarisa-
tion increases drastically with proximity to Q = 1. (Binney 2019, private
communication).

Qg . In parallel, the stronger the SF the larger the accumulated stel-
lar mass the lower the Q?. Since the Q numbers add geometrically,
the effective number is therefore dominated by the component clos-
est to one (the gas). Once the stellar disc is massive enough to dom-
inate this phase, it damps runaway instabilities within the gaseous
disc, and preserves the global structure. Conversely, the cold rotat-
ing gas maintains marginal stability which shortens the feedback
loop.

During the disc settling phase, the effective Q number be-
comes an attractor because gravitational polarisation near marginal
stability dresses fluctuations which yields a tighter feedback loop
corresponding to turbulence-driven star formation (lowering Q?)
on the one hand, and SN feedback and turbulence (increasing Qg)
on the other hand, allowing efficient stellar disc’s growth, whose
natural frequencies then detune from perturbations. This shorter
feedback loop drives Q closer to one. In principle the disc could
oscillate around any values of Q via positive and negative feed-
back coming from SN, turbulence, shot noise, disc mass and cold
gas inflow. In practice, Q ⇠ 1 is an attractor because it provides a
tighter control loop as it dresses the density fluctuations by a strong
gravitational wake so the dynamical time is significantly shorter
(Toomre & Kalnajs 1991). Hence Q cannot oscillate away from
1 by a lot. Conversely, it seems to avoid passing the threshold of
Q = 1 because at marginal stability the wake’s temporal and spa-
cial correlation’s length diverge3, which warrants the disc’ rapid
regulation, unless the kick is too strong (see Sec. 6).

3 Indeed, it has been argued (e.g. Melnick & Selman 2000) that star for-
mation and feedback operates through self-organised criticality in the ISM
which imply spatio-temporal power law correlations, apparent self-tuning
to a critical point and intermittency.

Let us be slightly more quantitative. The star formation in ram-
ses is implemented following the prescription4

⇢̇?(t) = ⌘SF(M,↵)
⇢cold

tdyn,dressed
,

= ⌘SF(M[Q],↵[Q])
�(Q)⇢cold

tdyn,bare
, (13)

where �(Q) is given by equation (12). In writing equation (13) we
assume that the wake impacts star formation on molecular cloud
scales. This is true in the star formation recipes such as those im-
plemented in Ramses since the code does not resolve lower scales.
It is also likely to be true in real galaxies where (dressed) poten-
tial perturbations on such scales will stir the cloud and trigger star
formation on smaller scales. In essence, gravitational perturbations
cascade down to the relevant scales for star formation. It follows
from equation (13) that the star formation rate will be strongly en-
hanced near marginal stability so long that a sufficient flux of cold
gas from the CGM exists to refurbish the consumed gas. Increased
star formation will contribute to increasing ⌃?(t) and decreasing
�?(t) momentarily, hence decreasing Qeff = (Q

�1

? +Q
�1

gas)
�1 via

a stronger stellar contribution, up to the point where the more mas-
sive stars explode in super-novae, induce more turbulence within
the gas, which in turn will increase �gas,turb, hence increase Qeff.
But assuming that the disc is dense enough so that tdyn,dressed > tcool

the key bring-home feature of this cycle is that it is globally driven
by the shortening of the dynamical time with proximity to marginal
stability. Hence one can define a characteristic relaxation timescale
⌧Q so that

d log(Q� 1)

dt
=� 1

⌧Q
, so �(t)=�0 exp

✓
t

⌧Q

◆
. (14)

We expect that ⌧Q / n tdyn where n � 1, while tdyn ⇠ 1/
p
M . As

found in the simulation, the more massive discs will settle earlier.
Critically, the control loop needs to remain closed, which in

turn requires that the disc operates with continuous infall of cold
coplanar gas, so as to maintain a kinematic cold source (to lower Q
via efficient star formation). This necessary reservoir of free energy
is typical of the active work required to maintain a given system
close to an unstable equilibrium point, such as a driven inverted
pendulum. The level of energy dissipation within the turbulent gas
component needs to match the energy input from that source so as
to maintain a stationary process5. Finally, the infalling gas must
impact the disc with some initial level of coplanarity (Pichon et al.
2011, see Sec. 6) so as to contribute positively to the realignment
process which we now describe.

3 RELAXING RINGS MODEL

Beyond the numerical evidence that convergence towards marginal
stability is equivalent to the observed scaling of the settled fraction
of discs versus mass and redshift, it is of interest to explain why
such convergence drives the galaxy towards a thinner disc.

In order to understand this relaxation, let us consider a set of

4 In practice the star formation efficiency ⌘SF, which depends only
on the turbulent Mach number, M, and the virial parameter ↵vir =
2Ekin/Egrav . Now, @M/@Q < 0 and @↵vir/@Q < 0, hence
@⌘SF/@Q < 0, so that colder discs will also form stars more efficiently.
5 It would be interesting to see it can be shown to correspond to an ex-
tremum of entropy production. At the very least, it allows for some order to
emerge out of disorder!

© 0000 RAS, MNRAS 000, 000–000

17Gravitational wake/polarisation/dressing

510 Chapter 6: Disk Dynamics and Spiral Structure

Figure 6.19 Evolution of a packet of leading waves in a Mestel disk with Q = 1.5 and
fd = 1/2 (equal contributions from the disk and the rigid halo to the flat circular-speed
curve). Contours represent fixed fractional excess surface densities; since the calculations
are based on linear perturbation theory, the amplitude normalization is arbitrary. Con-
tours in regions of depleted surface density are not shown. The time interval between
diagrams is one-half of a rotation period at corotation. ILR, CR, and OLR denote the
radii of the inner Lindblad resonance, the corotation resonance, and the outer Lindblad
resonance. From Toomre (1981), c© Cambridge University Press 1981. Reprinted by
permission of Cambridge University Press.

Toomre 81

Mass in  wake = mass in 
perturbation X 140 !!

Q~ 1.2

• colder disc means larger wake 
•colder disc means stronger wake 
•colder disc means shorter dynamical time

cold disc

colder disc

Binney (private com.)
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Quasi circular Trajectories:  ‘cold’ disc 

λcrit = (2π)2GΣ/κ2

 long range correlation: self organised criticality→

Q =
κσ

πGΣ
→ 1

shearing sheet

Kalnajs



18On the importance of gravitational dressing
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=

[δψ]bare

|ε(ω) |

Tdressed ≃ |ε | TbareTdressed ≃ |ε | Tbare

Ωdressed ≃
1

|ε |
Ωbare

Q =
κσ
πΣ

→ 1

thanks to cosmic web  
which sets up cold disc
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An example of secular evolution
• In orbital space

J�

Jr

Jr

J�

• Long-term appearance of a dominant narrow resonant ridge.
17 / 47
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510 Chapter 6: Disk Dynamics and Spiral Structure

Figure 6.19 Evolution of a packet of leading waves in a Mestel disk with Q = 1.5 and
fd = 1/2 (equal contributions from the disk and the rigid halo to the flat circular-speed
curve). Contours represent fixed fractional excess surface densities; since the calculations
are based on linear perturbation theory, the amplitude normalization is arbitrary. Con-
tours in regions of depleted surface density are not shown. The time interval between
diagrams is one-half of a rotation period at corotation. ILR, CR, and OLR denote the
radii of the inner Lindblad resonance, the corotation resonance, and the outer Lindblad
resonance. From Toomre (1981), c© Cambridge University Press 1981. Reprinted by
permission of Cambridge University Press.

Mass in  wake = mass in 
perturbation X 140 

A&A proofs: manuscript no. LB_Thick

Fig. 1: Evolution of an epicyclic orbit (top panel) as one respectively
increases its radial action Jr (middle panel) or its vertical action Jz

(bottom panel). As expected, the radial (resp. vertical) excursions of the
orbit increase with increasing Jr (resp. Jz).

defined by the implicit relation

@ e↵

@R

�����
(Rg,0)
= 0 , (14)

so that Rg(J�) corresponds to the radius for which stars with an
angular momentum J� are on exactly circular orbits. In addition,
this circular orbit is described at the angular fequency ⌦� given
by

⌦2
�(Rg) =

1
Rg

@ 0

@R

�����
(Rg,0)
. (15)

In the neigborhourhood of circular orbits, the Hamiltonian from
equation (12) may be expanded as

H0 =
1
2


p

2
R
+p

2
z

�
+ e↵(Rg, 0)+

2

2
(R�Rg)2+

⌫2

2
z

2 , (16)

where the symmetry of the potential  0 w.r.t. the plane z=0 was
used. In equation (16), the epicyclic frequencies  and ⌫ were
introduced as

2(Rg) =
@ e↵

@R2

�����
(Rg,0)

; ⌫2(Rg) =
@2 e↵

@z2

�����
(Rg,0)
. (17)

In equation (16), one should note that the radial and vertical mo-
tions have been decoupled and correspond to harmonic librations.
Therefore, up to initial phases, there exist two amplitudes AR and
Az such that R(t)=Rg+AR cos(t) and z(t)=Az cos(⌫t). The two
corresponding actions Jr and Jz are then given by

Jr =
1
2
A

2
R

; Jz =
1
2
⌫A

2
z
. (18)

Therefore, (Jr, Jz)= (0, 0) corresponds to exactly circular orbits.
Increasing Jr (resp. Jz) tends to increase the amplitude of the
radial (resp. vertical) oscillations, corresponding to hotter or-
bits, see figure 1. One should also note that within the epicyclic
approximation, the intrinsic frequencies ⌦= (⌦�, , ⌫) only de-
pend on Rg and are assumed to be independent of Jr and Jz.
Such a degeneracy significantly simplifies the resonance condi-
tion �D(m1 ·⌦1�m2 ·⌦2) present in the Balescu-Lenard equa-
tion (2). The final step is now to construct an explicit map-
ping between the physical coordinates (R, �, z, pR, p�, pz) and

(✓R, ✓�, ✓z, Jr, Jz, J�) (Lynden-Bell & Kalnajs 1972; Palmer 1994;
Binney & Tremaine 2008) which at first order takes the form
8>>>>>><
>>>>>>:

R = Rg+AR cos(✓R) ,

� = ✓��
2⌦�


AR

Rg
sin(✓R) ,

z = Az cos(✓z) .

(19)

This mapping will be used to compute the Fourier transform
w.r.t. the angles as defined in equation (6). Finally, throughout the
calculations, it will be assumed that the disc’s quasi-stationary
DF takes initially the form of a quasi-isothermal DF (Binney &
McMillan 2011) given by

F(Rg, Jr, Jz) =
⌦�⌃

⇡�2
r

exp

� Jr

�2
r

� ⌫

2⇡�2
z

exp

� ⌫Jz

�2
z

�
, (20)

where the functions ⌃, ⌦�, , ⌫, �r and �z have to be evaluated at
Rg. Equation (20) involves ⌃ the projected active surface density
of the disc associated with the system’s density ⇢, such that
⌃(R)=

R
dz ⇢(R, z). It also involves �r (resp. �z), which quantifies

the radial (resp. vertical) velocity dispersion of the stars at a given
radius. Such a DF becomes the Schwarzschild DF in the epicyle
limit (see (4.153) in Binney & Tremaine 2008).

3.2. Thick WKB basis

FPC15, in the context of razor-thin discs, showed how one could
construct a biorthonormal basis of tightly wound potential and
density elements and use it to obtain explicit expressions for the
drift and di↵usion coe�cients of the Balescu-Lenard equation. In
the current paper, these results will be generalised to thick discs
by constructing their vertical components. Some of the upcoming
calculations will not be detailed as they can be found in FPC15,
and we will mainly focus on the new vertical component. In the
context of collisionless secular evolution, Fouvry et al. (2016b)
presents a similar generalisation of the WKB formalism to thick
discs: details on some of the upcoming calculations may be found
therein. Using the cylindrical coordinates (R, �, z), let us define
the basis elements

 [k�,kr ,R0,n](R, �, z) = A 
[k�,kr ,R0]
r (R, �) [kr ,n]

z
(z) . (21)

In equation (21), A is an amplitude which will be determined
later on to ensure the correct normalisation of the basis elements,
and  

[k�,kr ,R0]
r corresponds to the same in-plane dependence of

the razor-thin tightly wound basis elements introduced in FPC15,
which reads

 
[k�,kr ,R0]
r (R, �) = ei(k��+krR) BR0 (R) , (22)

where the radial window function BR0 is defined as

BR0 (R) =
1

(⇡�2)1/4 exp

� (R�R0)2

2�2

�
. (23)

The thickened basis elements from equation (21) are indexed by
four numbers: k� is an integer which quantifies the number of
azimuthal patterns of the basis elements, kr corresponds to the
radial frequency of the basis elements, while R0 is the radius
within the disc around which the window BR0 is centred. Finally,
in this thick context, a final integer index n�1 was introduced,
which numbers the vertical dependences, as detailed below. In
equation (23), a decoupling scale�was also introduced, which, as
explained in FPC15, ensures the biorthogonality of the basis. The

Article number, page 4 of 18

One-to-one correspondance between position
of 4 weakly damped mode and position of ridges 
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20Self regulating loop boosted by wake

• SN1a
• Turbulence
————
• Minor Mergers
• Misaligned infall
• FlyBys

• Star formation
• Cooling
• Shocks
—————
• Co-rotating  

Aligned infall

Free energy 

reservoir 

in CGM

→Q

→Q

Destabilising effects Stabilising effects 

Cosmic 

perturbation

Transition to secularly-driven morphology promoting self-regulation around an effective Toomre  Q 1.  ∼
Attraction point of feedback loop

Q−1
eff = Q−1

g + Q−1
⋆ =

Gπ
κ (

Σg
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+

Σ⋆

σ⋆ )

Gravitational Wake

Tighter loop 

Tdressed ≃ |ε | Tbare

Open system with control loop generates complexity through self-organisation

so long as Tdressed > Tcool

CoolingHeating
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Figure 1. Fits to Q(M?, z) for z = 2, 1, 0.4, 0.25. The fit is Q / (1 +

M0(z)/M?)↵(z) with M0 / 1/(1 + z) and ↵ / (1 + z)�1/3.

motion via deflections on giant molecular clouds. The correspond-
ing radial migration will also play an important role in their secular
evolution.

The epoch of cosmic environment settling allows secular res-
onant processes to take over to define the morphology of galaxies
(bar formation, radial migration, disk heating and thickening, etc.).
These discs are cold and therefore fragile dynamical systems for
which rotation provides an important reservoir of free energy, and
where orbital resonances play a key role. The availability of this
free energy leads to a strong amplification of certain stimuli, with
the net result that even a small disturbance can lead to disks evolv-
ing towards substantially distinct quasi-equilibria. These disks are
furthermore immersed in various sources of perturbations, ranging
from fluctuations coming from the cosmic environment, stochastic
cosmic infall, shot noise coming from the finite number and short
life span of giant molecular clouds in the interstellar medium, to
globular clusters and substructures in orbit around the galaxy. Spi-
ral arms and central bars provide other sources of coherent stimu-
lation. The cosmic history of galactic disks must therefore include
the common responses to all these various stimuli (internal and ex-
ternal).

Section 2 shows why and how disc converge towards marginal
stability, Section 3 explains how marginal stability stiffens hence
settles the disc, Section 4 explains how marginal stability is also a
confounding factor for joint thick/thin disc growth, while Section 5
wraps up.

2 CONVERGENCE TOWARD MARGINAL STABILITY

Let us first present numerical evidence of convergence toward
marginal stability extracted from NewHorizon, before showing
why such convergence with mass and redshift is effectively equiv-
alent to disc settling. here we want to also highlight why transition
mass scales like mass of non linearity.

Yohan will explain how measurements were done.

2.1 fits to Q

A fit to NewHorizon yields

Q(M?, z) =

✓
1 +

Mz(z)

M

◆↵(z)

,where ↵(z) =
0.55

3
p
1 + z

, (1)

and Mz =
7.5⇥ 10

8

(1 + z)0.92
M� , (2)

where the transition mass, Mz can be shown to match the mass
of non-linearity. Indeed, we have a redshift dependency of M?/M

which compensates three powers of 1 + z since to be corrected

M?

M
= 1.57 ⇥ 10

�7
(z + 1)

3
M

0.69
(z+1)0.3

? (3)

See also Agertz et al. (2015) Inoue et al. (2016) Oklopčić et al.
(2017) Mandelker et al. (2017) Ceverino et al. (2017) Krumholz
et al. (2018) Meng et al. (2019) Romeo et al. (2020) for a similar
finding.

2.2 Equivalence between settling fraction and marginality

Let us revisit the issue of disc settling based on Toomre’s criterion.
The goal is to show that i) the convergence of Q towards 1 that
drives the increase of f3 ii) In the best of worlds we should to show
it drives h/R = aspect ratio of the disc.

Dimensional analysis of a given disc yields

Q =
�

⇡G⌃
=

M

M?

�

v
. (4)

Let us call s = v/�, m? = logM?, m = logM , fb =

M?/M and iQ = Q
�1. Note that both fb and s are (increasing)

function of M?. The former because low mass discs are known to
be sub-maximal, while the latter because within the disc popula-
tion V/� increases with mass (see Appendix C). In terms of these
variables, equation (4) becomes simply

iQ = fb s . (5)

The number, Nc , of galaxies which have s > sc in the stellar mass
bin mk ⌘ logMk ±�/2 reads

N k
c = h⇥H(s� sc)⇧�(m? �mk)i (6)

=

mk+�/2Z

mk��/2

dm?

Z 1

sc

ds
d
2
n

dm?ds
. (7)

With Nc we can readily define the fraction of settled disc in that
mass bin as

f3(Mk) ⌘
N k

3

N k
1

, (8)

where the numerator corresponds the integral of d2n/dm?ds over
the dark shaded area on Fig 2, while the denominator corresponds
to the integral over the intermediate+dark shaded area. It clearly
follows that f3 < 1 and df3/dm? > 0 (at higher stellar mass,
the number counts have shifted up so more of them fall in the dark
region).

The simulation gives us access to either d
2
n/dm?ds or

d
2
n/dm?d iQ. From equation (4), we can relate one PDF to the

other through

@iQ

@s
= fb(m,m?) > 0 . (9)

Because iQ accumulates upwards towards 1 as a function of
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Figure 4. Decomposition of star particles into disordered and ordered (disc) components in an example galaxy at redshift
z = 0.7. The six panels on the left show the total and decomposed images of the galaxy. A threshold value of ✏ > 0.5 is used to
identify star particles that form the ordered component of the galaxy. The images are in the rest-frame r-band. The two panels
on the right show two component fits to the radial (d) and vertical (h) profiles of the galaxy.

on. Galaxies with a lower mass develop their disc much
more slowly. It takes half of the cosmic history for the
galaxies in the mass bin of 109 < M⇤/M� < 1010 to
reach fsettle ⇡ 0.2. Lower-mass galaxies struggle very
hard to develop a disc throughout the cosmic history.
The mass dependence of the epoch of disc settling has
recently been reported by Park et al. (2019) using the
same simulation. It appears to be in reasonable agree-
ment with observations (Kassin et al. 2012; Simons et al.
2017). The simulation underfits the observation in the
low mass bin roughly by a factor of two.

3.2. Driver and tracer of disc settling

The formation of discs and their settling process is
influenced by several internal and external processes.
E�cient localised star formation drives intense stellar
feedback (Kimm et al. 2015; Agertz & Kravtsov 2015)
which injects significant amounts of internal gas turbu-
lence and ejects gas from galaxies at velocities (Martizzi
et al. 2016) close to 100�200 km s�1. Hence, until the es-
cape velocity of the galaxy surpasses this typical value,
supernova-ejected gas can expand almost freely in the
interstellar medium and escape the galaxy, making it
di�cult for a coherent rotational gas flow to develop.
In addition, particularly at high redshift, external pro-

cesses like mergers and cold filamentary accretion act to

Figure 5. The fraction of galaxies with a settled disc,
as a function of redshift, adopting V/�(cold gas) > 3 as
the disc settling criterion (Genzel et al. 2011; Kassin et al.
2012). We show the NH galaxies (shades with solid circles)
binned in two mass ranges (orange: M⇤ � 1010 M�, blue:
109  M⇤/M� < 1010). The observational data (dashed
lines with star symbols) are the combination of observational
data points (Simons et al. 2017, R. Simons, private commu-
nication) following the same colour scheme.

 Fraction of galaxies with v/σ > than 3 and 1 resp.

Data Simulation

High mas
Low mass

 

Mock image construction 
 
Mock images of galaxies have been generated using the SKIRT code48. SKIRT calculates the              
effect of radiative transfer using the star particles and gas properties from the simulation,              
assuming a dust to metal ratio of 0.449,50. The images are created using three filters of JWST                 
(NIRCam F070W, F090W and F115W) and JWST spatial resolution (0.04 arcsec/pixel),           
assuming a hypothetical distance of 200 Mpc. 
 
Measurement of the disc component of galaxies 
 
We have used the circularity parameter (e) to measure the contribution of the rotating disc               
component among star particles. The circularity parameter is defined as the specific angular             
momentum of each star particle on the galactic rotational axis normalized by that of a circular                
orbit at the same radius as the star particle in question47. The galaxy rotational axis is defined                 
by the angular momentum vector of stars within the radius that contains 90 percent of the                
stellar mass. Therefore, a disc component would have a distribution of e with a peak at 1 (i.e.                  
ordered, purely circular orbits within the galactic plane), while a disordered, non-rotating            
(dispersion-dominated) component would have a peak around 0 (i.e. no rotation along the             
spin axis). We divide the stars in a galaxy into rotational (i.e. the disc) and disordered                
components using a threshold of e = 0.5 (with e > 0.5 denoting the disc component), and note                  
that our decomposition analysis does not depend strongly on the choice of this threshold (the               
result is the same for e= 0.5-0.7). The disc fraction based on the mass measurements from the                
decomposition (see below), also shows a good correlation with the values of V/σ in individual               
galaxies. Finally, we note that the ‘disordered’ velocity components of galaxies at these             
epochs, which are driven by frequent interactions with companions, are not directly            
comparable to the ‘bulge’ components of local galaxies, which are composed of a             
‘steady-state’ collection of random stellar orbits (not dominated by ongoing interactions).           
This is also largely the reason for using the term ‘disordered’ rather than ‘bulge’ to describe                
these components in this study.  
 
We also performed radial and vertical profile fits to the r-band images of galaxies using two                
components. Radial fits allow a combination of an exponential disc and a power law profile               
with a free index, whereas vertical fits are based on the two exponential components. While               
a two-component decomposition may be simplistic, it provides reasonable fits for galaxies in             
our simulation, around the epochs at which disc settling takes places. 
 
Scaling relation for the settled disc fraction 
 
As shown in Figure 4, the fraction of settled discs scales with both redshift and mass of the                  
hosts as f =0.7(M*/1010M◉)1/3/(1+z). We can rephrase this double scaling as a function of a              
single power-law. In a hierarchical bottom up model, at any given redshift, there is a critical                
mass, MNL(z ), called the non-linear mass which determines that least massive objects have             
entered the non-linear regime of structure formation. Let us approximate the underlying            
power spectrum locally with a power-law as P(k,z)=A D 2(z )kn where D (z ) is the linear growth               
factor, A a constant of normalization, and k the wave number. 
At the scale of non-linearity  RNL, the redshift-dependent cosmic variance equals unity: 
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Match between simulation and observation  as a function of both mass and redshift
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1 INTRODUCTION

These notes aim to explain how a toy model based on a proxy
involving gravitationally coupled rings can be used to understand
some of findings from NewHorizon’s simulation. In particular, we
want to understand why the rate of re-alignement should depend on
how massive the gaseous component is?

2 RELAXATING RINGS MODEL

In order to understand stellar gas disc misalignent, let us consider
a set of concentric gravitationally self-interacting rings depicted in
Fig 1. Each ring represents a set of orbits with a given set of actions
(i.e. orbital parameters), and are coupled together by gravity.

Since we are concerned by departure from a settled disc, we
will assume without loss of generality that the equation of motions
describing the different rings are linearised w.r.t. an unperturbed
co-planar configuration. After linearisation, the set of N coupled
oscillators will obey a matrix equation.

These equations of motions will then be decoupled by mov-
ing to the eigen-frame diagonalising the oscillators. This is best
described in the so-called Laplace Lagrange theory (Kocsis &
Tremaine 2011).

2.1 Laplace Lagrange theory

Let us assume that the stellar orbits with guiding center R in the
disc are nearly coplanar (✓ ⌧ 1) and nearly circular (e ⌧ 1). For
simplicity let us assume that we are considering the outer part of
the disc, so that the potential can be described as nearly Keplerian.
Defining the canonical variables1, p,q as

qi = �i✓i sin(�i) , pi = ��i✓i cos(�i) , (1)

1 so that x and y components of angular momentum obey Li,x = �iqi
and Li,y = �ipi

Figure 1. The relaxation of gravitationally self-interacting rings of stars and
gas (in red and blue resp.). The coupling can be linearized around the co-
planar configuration. The equations of motions governing the N oscillators
can be decoupled by moving to the eigen-frame.

with �i =
p
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1/4, the Hamiltonian describing the cou-
pling between the ring at radius Ri in that limit reads
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SF, the more SN the hotter the gas the larger Qg . In parallel, the
stronger the SF the larger the accumulated stellar mass the lower the
Q?. Since the Q numbers add geometrically, the effective number
is therefore dominated by the component closest to one (the gas).
Once the stellar disc is massive enough to dominate this phase, it
damps runaway instabilities within the gaseous disc, and preserves
the global structure. Conversely, the cold rotating gas maintains
marginal stability which shortens the feedback loop.

This suggests that the maximum entropy production principle
in multiple component systems could be viewed as a process which
selects linear stability threshold.

a pb we have is that we need negative diffusion if we want a
settling process which is difficult if it has to be the RMS of fluctu-
ations of the potential. In principle the disc could oscillate around
any values of Q via positive and negative feedback coming from
SN, turbulence, shot noise, disc mass and cold gas inflow. In prac-
tice, Q ⇠ 1 is an attractor because it provides a tighter control loop
as it dresses the density fluctuations by a strong gravitational wake
so the dynamical time is significantly shorter. Hence Q cannot os-
cillate away from 1 by a lot.

3 RELAXATING RINGS MODEL

Beyond the numerical evidence that convergence towards marginal
stability is equivalent to the observed scaling of the settled fraction
of discs versus mass and redshift, it is of interest to explain why
such convergence drives the galaxy towards a thinner disc.

In order to understand this relaxation, let us consider a set of
concentric gravitationally self-interacting rings depicted in Fig 3.
Each ring represents a set of orbits with a given set of actions, and
are coupled together by gravity. Since we are concerned by depar-
ture from a settled disc, we can assume without loss of generality
that the equation of motions describing the different rings are lin-
earised w.r.t. an unperturbed co-planar configuration. After lineari-
sation, the set of N coupled oscillators obey a matrix equation. The
equations of motions governing the oscillators can be decoupled by
moving to the eigen-frame. This is best described in the so-called
Laplace Lagrange theory (Kocsis & Tremaine 2011).

3.1 Laplace Lagrange theory

Let us assume that the stellar orbits with guiding center R in the
disc are nearly coplanar (✓ ⌧ 1) and nearly circular (e ⌧ 1).
For simplicity let us assume that we are considering the outer part
of the disc, so that the potential can be described as nearly Keple-
rian. Defining the canonical variables2, p,q as qi = �i✓i sin(�i),
pi = ��i✓i cos(�i), with �i =

p
mi(GMRi)

1/4, the Hamilto-
nian describing the coupling between the ring in that limit reads

H(p,q) =
1

2
pT ·A · p+

1

2
qT ·A · q , (10)

where

Aij = � Gmimj↵ij

max(Ri, Rj)�i�j
b3/2(↵ij) , if i 6= j (11)

Aii =

X

k 6=j

Gmimk↵ik

max(Ri, Rk)�
2

i

b3/2(↵ik) , if i 6= j , (12)

2 so that x and y components of angular momentum obey Li,x = �iqi
and Li,y = �ipi

Figure 3. The relaxation of gravitationally self-interacting rings. Top panel:
a schematic representation of rings. Each ring is coupled to the other by
the fluctuating potential, which is dressed by the wakes that these pertur-
bations trigger in the disc. Once the disc starts to settle, the coupling can
be linearized around the co-planar configuration. The equations of motions
governing the N oscillators can be decoupled by moving to the eigen-frame.
The secular growth of the gravitational susceptibility driven by the conver-
gence toward Q ⇠ 1 will induce a stiffening of the restoring force hence
damping of all eigen-oscillations. Bottom panel: the effect of damping of
one of the eigenmodes is well captured by the WKB approximation (blue
dashed line). Since the rings’ oscillations will be a linear combination of
such eigen-modes, they will all damp accordingly, globally inducing the
settling.

given ↵ij = min(Ri, Rj)/max(Ri, Rj) and

b3/2(↵) =
2

⇡

Z ⇡

0

cosxdx

(1� 2↵ cosx+ ↵2)3/2
, (13)

=
(1 + ↵

2
)E(↵)� (1� ↵

2
)K(↵)

⇡↵(1� ↵2)2
, (14)

with K and E the elliptic functions of the first and second type
resp. If we move to a frame which diagonalise the positive semi-
definite symmetric matrix A, in that frame, Hamilton’s equation
yield

¨̂qi + !
2

i q̂i = ⇠̂i , (15)

where !i is the i
th eigenvalue and ⇠̂i is the external stochastic spe-

cific force applied on the ring projected on the corresponding eigen-
vector.

The net effect of the cosmic convergence towards Q ⇠ 1 and
disc growth will be that the effective mass of each ring gets boosted
by the gravitational polarisation that it triggers within the unper-
turbed disc, so that in equation (15), one should consider that !i(t)

becomes a slowly growing function of cosmic time, while ⇠̂i(t)

now only reflects the slowly varying component of the fluctuating
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force field. The WKB solution to equation (18) then reads

q̂i(t)=

X

±

Z 1

�1

⇠̂i(t
0
)p

!i(t)!i(t
0)

exp

✓
±ı

Z t

t0
!i(⌧)d⌧

◆
dt

0
. (16)

As !i(t) grows the amplitudes of the fluctuations of all q̂i(t) de-
creases which cosmic time, reflecting ring alignement (8i , ✓i !
0). Hence the secular growth of the gravitational susceptibility
driven by the convergence toward Q ⇠ 1 will induce a stiffen-
ing of the restoring force between rings, and therefore damping of
all eigen-oscillations. Since the rings’ oscillations will be a linear
combination of such eigen-modes, they will all damp accordingly,
globally inducing the settling.

3.2 Tightly wound solution

It is in fact possible to push the limit of the N ring model in the con-
tinuum limit, which provides an alternative but equivalent formu-
lation of the setting process, while accounting for azimuthal varia-
tions.

Hunter & Toomre (1969) have shown that each (m, k) mode,
û exp(�ı!t+ ı

R r
k(r

0
)dr

0
+ım✓), of the radial WKB approxi-

mation3 of tightly wound vertical displacement above and below
the disc, u(r, ✓, t), obeys the dispersion relation

(! �m⌦)
2
= ⌫

2
+ 2⇡G⌃k . (17)

An important feature of this dispersion relation corresponds to the
positive sign in from of the surface density ⌃, which in contrast the
dispersion relation for in-plane self-gravitating spiral waves high-
lights the fact that the higher the (effective, dressing included) ⌃
the larger !. In equation (17), ⌫ and ⌦ are respectively the vertical
and azimuthal frequency of the disc, while k and m are the radial
and azimuthal frequencies. Let us now seek temporal secular WKB
solution to the time dependent forced evolution equation

@
2
û

@2t
+ !

2
(t)û(t) = f̂(t) , (18)

where the left hand side reflect some stochastic specific force,
f̂(t) = ık ̂(t) corresponding to the external forcing on this dis-
placement. Here the potential  accounts for all (slowly varying
component of the) forcing (flybys, SN and turbulence induced fluc-
tuations). discuss here time decoupling between frequency of forc-
ing secular time, and timescale associated with radial WKB wave.
The WKB solution to equation (18) once again reads4

û(t) =

X

±

Z 1

�1

f̂(t
0
)p

!(t)!(t0)
exp

✓
±ı

Z t

t0
!(⌧)d⌧

◆
dt

0
, (19)

where !(k,m, ⌧) is a solution to the dispersion relation, equa-
tion (17):

!(⌧) = m⌦+

p
⌫2 + 2⇡G⌃(⌧)k , (20)

which implies that as the effective surface density ⌃(⌧) increases
(both because the disc becomes more massive and because it gets
closer to marginal stability) and the amplitude of the stochastic

3 Please note that we will consider two WKB approximations here: one
related to the spatial frequency of the wave and later one related to the
temporal variation of the frequencies of the wave
4 the corresponding asymptotic solution being û(t) ⇠ f̂(t)/!2(t)

forcing decreases (because the cosmic environment quieten and be-
comes out of sync with the frequencies of the system) the wave be-
comes stiffer, and the amplitude of the out of plane oscillation de-
creases (since !(t) increases and f(t) decreases in equation (18)).
This fate is true for each (m, k) mode independently. Through non-
linearities, the high k modes will diffuse away within the disc, so
that the injected energy by the stochastic external forcing does not
accumulate. The net effect will be disc settling driven by three com-
plementary processes: quieter environment, convergence towards
marginal stability and increased stellar disc mass.

Note that an adiabatic argument allows us to claim that if the
variation induced by the convergence towards marginal stability is
slow enough the vertical action Jz = Ez/!z(t) will be conserved,
which implies that as the vertical frequency grows, the energy of
the vertical oscillations, Ez , will decrease. This argument does not
capture the impact of the decrease of the fluctuation’s amplitude
with cosmic time. there is a sign pb here

3.3 Stellar-Gas disc damping

Let us finally study a double sets of rings corresponding to the stel-
lar and gaseous disc respectively, to understand within the frame-
work of the linearised Laplace Lagrange theory how the two discs
re-orient with respect to each other, and how the gaseous disc al-
lows the stellar disc to settle. We aim here to account for the fact
that the latter is subject to stochastic forcing by SN explosions and
dissipation through shocks between rings. Such processes will al-
low it to remove entropy from the stellar disc.

Let us therefore consider the dynamics of the set of coupled
gas +star eigenmodes for the stars, and the gas components, which
amplitude we will write q?, and qg respectively. We will consider
that each eigen mode has its own natural frequency, !? and !g

resp, a coupling term, !?g and a driving, ⇠ and damping ⌘ term
specific to the gas component. is it legitimate to only have one drag
in the eigenframe? The amplitude of each mode then obeys the set
of coupled equations

q̈? + !
2

?q? + !
2

?gqg = 0 ,

q̈g + !
2

g q̂g + !
2

?gq? + ⌘q̇g = ⇠ , (21)

Solving for equation (21), each stellar eigenmode will obey

q?(t) = �
X

!2S4

!
2

g?

Z t

�1
exp ((t� ⌧)!) ⇠ (⌧) d⌧

⌘ (3!2 + !
2
?) + 2!

�
2!2 + !2

g + !
2
?

� , (22)

where the frequencies, !, are one of four complex conjugate solu-
tions of the implicit equation5

S4={!
�� �!2

+ !
2

?

� �
! (⌘ + !) + !

2

g

�
= !

4

g?}, (23)

which will have both a damped component, and an oscillatory one.
Figure 4 illustrates the damping of two modes when one increases
the drag on the gas component and shows the frequencies which
are roots of S4. As expected, the roots acquire a larger and larger
negative real part, and the lighter gas disc will drag the stellar disc
towards itself as it settles. This is made more explicit in the next
subsection for displacement waves above and below equilibrium.

5 note how S4 reduces as it should to ! = ±!? and ! = ±!g when both
the friction and the coupling is nul.
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force field. The WKB solution to equation (18) then reads

q̂i(t)=

X

±

Z 1

�1

⇠̂i(t
0
)p

!i(t)!i(t
0)

exp

✓
±ı

Z t
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!i(⌧)d⌧

◆
dt

0
. (16)

As !i(t) grows the amplitudes of the fluctuations of all q̂i(t) de-
creases which cosmic time, reflecting ring alignement (8i , ✓i !
0). Hence the secular growth of the gravitational susceptibility
driven by the convergence toward Q ⇠ 1 will induce a stiffen-
ing of the restoring force between rings, and therefore damping of
all eigen-oscillations. Since the rings’ oscillations will be a linear
combination of such eigen-modes, they will all damp accordingly,
globally inducing the settling.

3.2 Tightly wound solution

It is in fact possible to push the limit of the N ring model in the con-
tinuum limit, which provides an alternative but equivalent formu-
lation of the setting process, while accounting for azimuthal varia-
tions.

Hunter & Toomre (1969) have shown that each (m, k) mode,
û exp(�ı!t+ ı

R r
k(r

0
)dr

0
+ım✓), of the radial WKB approxi-

mation3 of tightly wound vertical displacement above and below
the disc, u(r, ✓, t), obeys the dispersion relation

(! �m⌦)
2
= ⌫

2
+ 2⇡G⌃k . (17)

An important feature of this dispersion relation corresponds to the
positive sign in from of the surface density ⌃, which in contrast the
dispersion relation for in-plane self-gravitating spiral waves high-
lights the fact that the higher the (effective, dressing included) ⌃
the larger !. In equation (17), ⌫ and ⌦ are respectively the vertical
and azimuthal frequency of the disc, while k and m are the radial
and azimuthal frequencies. Let us now seek temporal secular WKB
solution to the time dependent forced evolution equation

@
2
û

@t
+ !

2
(t)û(t) = f̂(t) , (18)

where the left hand side reflect some stochastic specific force,
f̂(t) = ık ̂(t) corresponding to the external forcing on this dis-
placement. Here the potential  accounts for all (slowly varying
component of the) forcing (flybys, SN and turbulence induced fluc-
tuations). discuss here time decoupling between frequency of forc-
ing secular time, and timescale associated with radial WKB wave.
The WKB solution to equation (18) once again reads4

û(t) =

X

±

Z 1

�1

f̂(t
0
)p

!(t)!(t0)
exp

✓
±ı

Z t

t0
!(⌧)d⌧

◆
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0
, (19)

where !(k,m, ⌧) is a solution to the dispersion relation, equa-
tion (17):

!(⌧) = m⌦+

p
⌫2 + 2⇡G⌃(⌧)k , (20)

which implies that as the effective surface density ⌃(⌧) increases
(both because the disc becomes more massive and because it gets
closer to marginal stability) and the amplitude of the stochastic

3 Please note that we will consider two WKB approximations here: one
related to the spatial frequency of the wave and later one related to the
temporal variation of the frequencies of the wave
4 the corresponding asymptotic solution being û(t) ⇠ f̂(t)/!2(t)

forcing decreases (because the cosmic environment quieten and be-
comes out of sync with the frequencies of the system) the wave be-
comes stiffer, and the amplitude of the out of plane oscillation de-
creases (since !(t) increases and f(t) decreases in equation (18)).
This fate is true for each (m, k) mode independently. Through non-
linearities, the high k modes will diffuse away within the disc, so
that the injected energy by the stochastic external forcing does not
accumulate. The net effect will be disc settling driven by three com-
plementary processes: quieter environment, convergence towards
marginal stability and increased stellar disc mass.

Note that an adiabatic argument allows us to claim that if the
variation induced by the convergence towards marginal stability is
slow enough the vertical action Jz = Ez/!z(t) will be conserved,
which implies that as the vertical frequency grows, the energy of
the vertical oscillations, Ez , will decrease. This argument does not
capture the impact of the decrease of the fluctuation’s amplitude
with cosmic time. there is a sign pb here

3.3 Stellar-Gas disc damping

Let us finally study a double sets of rings corresponding to the stel-
lar and gaseous disc respectively, to understand within the frame-
work of the linearised Laplace Lagrange theory how the two discs
re-orient with respect to each other, and how the gaseous disc al-
lows the stellar disc to settle. We aim here to account for the fact
that the latter is subject to stochastic forcing by SN explosions and
dissipation through shocks between rings. Such processes will al-
low it to remove entropy from the stellar disc.

Let us therefore consider the dynamics of the set of coupled
gas +star eigenmodes for the stars, and the gas components, which
amplitude we will write q?, and qg respectively. We will consider
that each eigen mode has its own natural frequency, !? and !g

resp, a coupling term, !?g and a driving, ⇠ and damping ⌘ term
specific to the gas component. is it legitimate to only have one drag
in the eigenframe? The amplitude of each mode then obeys the set
of coupled equations

q̈? + !
2

?q? + !
2

?gqg = 0 ,

q̈g + !
2

g q̂g + !
2

?gq? + ⌘q̇g = ⇠ , (21)

Solving for equation (21), each stellar eigenmode will obey

q?(t) = �
X

!2S4

!
2

g?

Z t

�1
exp ((t� ⌧)!) ⇠ (⌧) d⌧

⌘ (3!2 + !
2
?) + 2!

�
2!2 + !2

g + !
2
?

� , (22)

where the frequencies, !, are one of four complex conjugate solu-
tions of the implicit equation5

S4={!
�� �!2

+ !
2

?

� �
! (⌘ + !) + !

2

g

�
= !

4

g?}, (23)

which will have both a damped component, and an oscillatory one.
Figure 4 illustrates the damping of two modes when one increases
the drag on the gas component and shows the frequencies which
are roots of S4. As expected, the roots acquire a larger and larger
negative real part, and the lighter gas disc will drag the stellar disc
towards itself as it settles. This is made more explicit in the next
subsection for displacement waves above and below equilibrium.

5 note how S4 reduces as it should to ! = ±!? and ! = ±!g when both
the friction and the coupling is nul.
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Figure 2. Top panel: The relaxation of gravitationally self-interacting
eigenmodes of gas and stars. The stars in red are driven towards the gas ori-
entation in blue. The level of damping increase from dark to lighter curves.
Bottom panel: The corresponding drift of the four roots of S4, defining the
frequencies of the system. Note how the real negative part increases with
damping.

with K and E the elliptic functions of the first and second type
resp.

Equation (2) is best solved if we move to a frame which di-
agonalise the positive semi-definite symmetric matrix A, so that in
that frame, Hamilton’s equation yield for each eigen mode

¨̂qi + !
2
i q̂i = ⇠̂i , (7)

where !i is the i
th eigenvalue and ⇠̂i is the external specific force

applied on the ring projected on the corresponding eigenvector.

2.2 Stellar-Gas disc coupling

Now let us note that so long as the surface density of the gas and
the stars are proportional, the matrix M describing gas rings will be
formally identical to that for the stars (up to a multiplicative factor
reflecting the gas to star mass ratio), so that the eigen-space of both
discs are the same.

In that frame, the gas ring eigenmode obeys formally a sim-
ilar equation to equation (7) with one extra caveat, which is that
the gas can shock, so that each gas ring is subject to an extra drag
force. For expediency we consider that the drag term operates on
the eigenmode.

Finally, when considering simultaneously the evolution of
both gas and star eigenmodes we need to account for their relative

gravitational interaction, which can be accounted for by a supple-
mentary coupling term in both equation.

This leads us to now consider the dynamics of the set of cou-
pled gas +star eigenmodes for the stars, and the gas components,
which amplitude we will write q?, and qg respectively. For expedi-
ency let us consider only one such mode.

We will consider that this eigen mode has its own natural fre-
quency, !? and !g resp, a coupling term, !?g and a driving, ⇠ and
damping ⌘ term specific to the gas component. The amplitude of
each mode then obeys the set of coupled equations

q̈? + !
2
?q? + !

2
?gqg = 0 ,

q̈g + !
2
g q̂g + !

2
?gq? + ⌘q̇g = ⇠ , (8)

Solving for equation (8), each stellar eigenmode will obey

q?(t) = �
X

!2S4

!
2
g?

Z t

�1
exp ((t� ⌧)!) ⇠ (⌧) d⌧

⌘ (3!2 + !
2
?) + 2!

�
2!2 + !2

g + !
2
?

� , (9)

where the frequencies, !, are one of four complex conjugate solu-
tions of the implicit equation2

S4={!
�� �!2 + !

2
?

� �
! (⌘ + !) + !

2
g

�
= !

4
g?}, (10)

which will have both a damped component, and an oscillatory one.
Figure 2 illustrates the damping of two modes when one in-

creases the drag on the gas component and shows the frequencies
which are roots of S4. As expected, the roots acquire a larger and
larger negative real part, and the lighter gas disc will drag the stellar
disc towards itself as it settles.

2.3 Stellar-Gas disc re-alignment

We can now investigate the relative orientation of sets of rings cor-
responding to the stellar and gaseous disc respectively, to under-
stand within the framework of the linearised Laplace Lagrange the-
ory how the two discs re-orient with respect to each other. We aim
here to account for the fact that the latter is subject to forcing by
RAM pressure on the one hand, and dissipation through shocks be-
tween rings on the other hand.

Let us first consider a idealised experiment when either the gas
disc or the is subject to a driven gas impulse which propagate to the
other disc before eventually both modes damp and the coupled sys-
tem settles. Gas response is significantly stronger. Figure 3 shows
the result of such experiment.

Figure 4 illustrates the damping of two modes when one in-
creases both the drag on the gas disc and its mass. As expected, the
lighter the gas disc, the longer the settling phase.

This is in qualitative agreement with the findings of the main
text, corresponding to the situation where a given galaxy enters a
group or a cluster and the gas component feels ram pressure from
the hot corona.

Finally, Figure 5 shows the same experiment, modulo the fact
that both the stellar and gas disc are subject to the same external
(gravitational) torque. In this situation

2 note how S4 reduces as it should to ! = ±!? and ! = ±!g when both
the friction and the coupling is nul.
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Figure 2. Top panel: The relaxation of gravitationally self-interacting
eigenmodes of gas and stars. The stars in red are driven towards the gas ori-
entation in blue. The level of damping increase from dark to lighter curves.
Bottom panel: The corresponding drift of the four roots of S4, defining the
frequencies of the system. Note how the real negative part increases with
damping.

with K and E the elliptic functions of the first and second type
resp.

Equation (2) is best solved if we move to a frame which di-
agonalise the positive semi-definite symmetric matrix A, so that in
that frame, Hamilton’s equation yield for each eigen mode

¨̂qi + !
2
i q̂i = ⇠̂i , (7)

where !i is the i
th eigenvalue and ⇠̂i is the external specific force

applied on the ring projected on the corresponding eigenvector.

2.2 Stellar-Gas disc coupling

Now let us note that so long as the surface density of the gas and
the stars are proportional, the matrix M describing gas rings will be
formally identical to that for the stars (up to a multiplicative factor
reflecting the gas to star mass ratio), so that the eigen-space of both
discs are the same.

In that frame, the gas ring eigenmode obeys formally a sim-
ilar equation to equation (7) with one extra caveat, which is that
the gas can shock, so that each gas ring is subject to an extra drag
force. For expediency we consider that the drag term operates on
the eigenmode.

Finally, when considering simultaneously the evolution of
both gas and star eigenmodes we need to account for their relative

gravitational interaction, which can be accounted for by a supple-
mentary coupling term in both equation.

This leads us to now consider the dynamics of the set of cou-
pled gas +star eigenmodes for the stars, and the gas components,
which amplitude we will write q?, and qg respectively. For expedi-
ency let us consider only one such mode.

We will consider that this eigen mode has its own natural fre-
quency, !? and !g resp, a coupling term, !?g and a driving, ⇠ and
damping ⌘ term specific to the gas component. The amplitude of
each mode then obeys the set of coupled equations
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which will have both a damped component, and an oscillatory one.
Figure 2 illustrates the damping of two modes when one in-

creases the drag on the gas component and shows the frequencies
which are roots of S4. As expected, the roots acquire a larger and
larger negative real part, and the lighter gas disc will drag the stellar
disc towards itself as it settles.

2.3 Stellar-Gas disc re-alignment

We can now investigate the relative orientation of sets of rings cor-
responding to the stellar and gaseous disc respectively, to under-
stand within the framework of the linearised Laplace Lagrange the-
ory how the two discs re-orient with respect to each other. We aim
here to account for the fact that the latter is subject to forcing by
RAM pressure on the one hand, and dissipation through shocks be-
tween rings on the other hand.

Let us first consider a idealised experiment when either the gas
disc or the is subject to a driven gas impulse which propagate to the
other disc before eventually both modes damp and the coupled sys-
tem settles. Gas response is significantly stronger. Figure 3 shows
the result of such experiment.

Figure 4 illustrates the damping of two modes when one in-
creases both the drag on the gas disc and its mass. As expected, the
lighter the gas disc, the longer the settling phase.

This is in qualitative agreement with the findings of the main
text, corresponding to the situation where a given galaxy enters a
group or a cluster and the gas component feels ram pressure from
the hot corona.

Finally, Figure 5 shows the same experiment, modulo the fact
that both the stellar and gas disc are subject to the same external
(gravitational) torque. In this situation

2 note how S4 reduces as it should to ! = ±!? and ! = ±!g when both
the friction and the coupling is nul.
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Figure 4. Top panel: The relaxation of gravitationally self-interacting
eigenmodes of gas and stars. The stars in red are driven towards the gas ori-
entation in blue. The level of damping increase from dark to lighter curves.
Bottom panel: The corresponding drift of the four roots of S4 defining the
frequency of the system. Note how the real negative part increases with
damping. I am puzzled by the fact that the roots jump around. I would have
naively thought we should have 4 branches.

Note that we can write a WKB solution for the slowly-varying
time-dependant counterpart of equation (21), calling

1

⌦
=

!
2

g?

⌘ (3!2 + !
2
?) + 2!

�
2!2 + !2

g + !
2
?

� , (24)

which is both an explicit function of the time-dependant frequen-
cies !g?(t),!?(t),!g(t) and friction term ⌘(t) and an implicit one
via equation (23), the cosmic solution obeys

q?(t) = �
X

!2S4

Z t

�1
exp

✓Z t

t0
!(⌧)d⌧

◆
⇠
�
t
0�
dt

0

p
⌦(t)⌦(t0)

, (25)

keeping in mind that the sum over ! 2 S4 yield 4 complex conju-
gate roots with different ⌦(t) each. Since this equation is secular,
it only involves the slowly varying part of ⇠.

As argued in Sec. 3.1, with cosmic time all frequencies will
stiffen (through increased stellar mass, and gravitational polarisa-
tion), while the amplitude of the secular stochasticity will decrease,
so that the relative alignment between the two discs will be ampli-
fied.

discuss relative frequency of gas and stellar disc reflecting
their relative mass?

3.4 Scale-dependent mode coupling

Let us finally revisit Hunter & Toomre (1969) presented in Sec-
tion 3.2 for a two component gravitationally coupled star+gas set
of discs (which again will give us access to the azimuthal variation
of the response).

Let us first expand each (m, k) mode as

u?|g(t, r) / û?|g exp(�ı!t+ ı

Z r

k(r
0
)dr

0
+ım✓) , (26)

for the two components labeled ? and g resp., using the radial WKB
approximation of tightly wound vertical displacement above and
below the disc, and seek first free waves solutions.

The dispersion relation generalising equation (17) for the two
gravitationally coupled waves obeys

�
�!

2 � !
2

?

��
�!(�! � ı⌘)� !

2

g

�
= !

4

?g , (27)

where, in close analogy with equation (17), we have
defined �! = ! �m⌦. The two frequencies obey
!

2

g|?(k) = ⌫
2
+ 2⇡G⌃g|?|k|, while the coupling frequency

obeys !
4

?g = (2⇡Gk)
2
⌃g⌃?, and we have introduced the damp-

ing rate ⌘ = ⌘0k
2 (where ⌘0 has the dimension of a frequency

times length square and is a measure of the effectiveness of the
energy dissipation on small scales) for the mode ûg(k,m). Here
⌦, ⌃g|? and ⌫ are slowly varying function of r.

A perturbative solution of equation (27) for ! in small !g?

and small ⌘ yield four (resp. gas-like and star-like) complex roots,
!j obeying

! = m⌦± !g +
!

4

g?

2!g(!
2
g � !

2
?)

� ı⌘d , (28)

! = m⌦± !? +
!

4

g?

2!?(!
2
g � !

2
?)

� ı⌘d , (29)

where

⌘d =
⌘ !

4

g?!
2

?

2(!
3
? � !2

g!?)
2 + !

4
g?(5!

2
? � !2

g)
. (30)

Equation (28) generalises equation (20) to the weakly coupled,
weakly damped disc. Lifting those assumptions, one could fol-
low the same route to write down the forced (k space, or k space
and time) WKB solutions, in close analogy with equations (22)-
(25), but the origin of the damping in clearer in equations (28)-
(30). Indeed, thanks to the (⌘ 6= 0) dissipation in the gaseous disc
and the gravitational coupling between the two discs (!g? 6= 0),
the stellar WKB modes will also damp. The energy dissipation
within the baryonic component propagates to the stellar waves, as
expected! Again, as argued in Sec. 3.1, the coupling frequency,
!g? / (⌃g⌃?)

1/4, will stiffen with cosmic time (through in-
creased stellar mass, and gravitational polarisation) so that ⌘d will
increase and oscillation of the stellar disc will damp away more
vigorously (until the gas disc becomes sub dominant, in which case
⌘d / ⌃g/⌃? and the damping becomes dominated by the first !?

on the r.h.s. of equation (29)). This is a clear illustration of the max-
imum entropy production principle operating to generate order out
of shock dissipation, through a self re-enforcing process.

Calling D(!, k) the difference between the l.h.s. and r.h.s. of
equation (27), we can define resp. the wave actions A = a

2
@D/@!

the energy !A and angular momentum densities mA of the wave,
while the corresponding fluxes are obtained by multiplication with
the group velocity @!/@k.

look at 16.3 in bertin 2000. Self regulation towards Q = 1

through cooling and heating functions (?)
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1 INTRODUCTION

These notes aim to explain how a toy model based on a proxy
involving gravitationally coupled rings can be used to understand
some of findings from NewHorizon’s simulation. In particular, we
want to understand why the rate of re-alignement should depend on
how massive the gaseous component is?

2 RELAXATING RINGS MODEL

In order to understand stellar gas disc misalignent, let us consider
a set of concentric gravitationally self-interacting rings depicted in
Fig 1. Each ring represents a set of orbits with a given set of actions
(i.e. orbital parameters), and are coupled together by gravity.

Since we are concerned by departure from a settled disc, we
will assume without loss of generality that the equation of motions
describing the different rings are linearised w.r.t. an unperturbed
co-planar configuration. After linearisation, the set of N coupled
oscillators will obey a matrix equation.

These equations of motions will then be decoupled by mov-
ing to the eigen-frame diagonalising the oscillators. This is best
described in the so-called Laplace Lagrange theory (Kocsis &
Tremaine 2011).

2.1 Laplace Lagrange theory

Let us assume that the stellar orbits with guiding center R in the
disc are nearly coplanar (✓ ⌧ 1) and nearly circular (e ⌧ 1). For
simplicity let us assume that we are considering the outer part of
the disc, so that the potential can be described as nearly Keplerian.
Defining the canonical variables1, p,q as

qi = �i✓i sin(�i) , pi = ��i✓i cos(�i) , (1)

1 so that x and y components of angular momentum obey Li,x = �iqi
and Li,y = �ipi

Figure 1. The relaxation of gravitationally self-interacting rings of stars and
gas (in red and blue resp.). The coupling can be linearized around the co-
planar configuration. The equations of motions governing the N oscillators
can be decoupled by moving to the eigen-frame.

with �i =
p
mi(GMRi)

1/4, the Hamiltonian describing the cou-
pling between the ring at radius Ri in that limit reads

H(p,q) =
1
2
pT ·A · p+

1
2
qT ·A · q , (2)

where

Aij = � Gmimj↵ij

max(Ri, Rj)�i�j
b3/2(↵ij) , if i 6= j (3)

Aii =
X

k 6=j

Gmimk↵ik

max(Ri, Rk)�2
i

b3/2(↵ik) , if i 6= j , (4)

given ↵ij = min(Ri, Rj)/max(Ri, Rj) and

b3/2(↵) =
2
⇡

Z ⇡

0

cosxdx

(1� 2↵ cosx+ ↵2)3/2
, (5)

=
(1 + ↵

2)E(↵)� (1� ↵
2)K(↵)

⇡↵(1� ↵2)2
, (6)
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1/4, the Hamiltonian describing the cou-
pling between the ring at radius Ri in that limit reads

H(p,q) =
1
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SF, the more SN the hotter the gas the larger Qg . In parallel, the
stronger the SF the larger the accumulated stellar mass the lower the
Q?. Since the Q numbers add geometrically, the effective number
is therefore dominated by the component closest to one (the gas).
Once the stellar disc is massive enough to dominate this phase, it
damps runaway instabilities within the gaseous disc, and preserves
the global structure. Conversely, the cold rotating gas maintains
marginal stability which shortens the feedback loop.

This suggests that the maximum entropy production principle
in multiple component systems could be viewed as a process which
selects linear stability threshold.

a pb we have is that we need negative diffusion if we want a
settling process which is difficult if it has to be the RMS of fluctu-
ations of the potential. In principle the disc could oscillate around
any values of Q via positive and negative feedback coming from
SN, turbulence, shot noise, disc mass and cold gas inflow. In prac-
tice, Q ⇠ 1 is an attractor because it provides a tighter control loop
as it dresses the density fluctuations by a strong gravitational wake
so the dynamical time is significantly shorter. Hence Q cannot os-
cillate away from 1 by a lot.

3 RELAXATING RINGS MODEL

Beyond the numerical evidence that convergence towards marginal
stability is equivalent to the observed scaling of the settled fraction
of discs versus mass and redshift, it is of interest to explain why
such convergence drives the galaxy towards a thinner disc.

In order to understand this relaxation, let us consider a set of
concentric gravitationally self-interacting rings depicted in Fig 3.
Each ring represents a set of orbits with a given set of actions, and
are coupled together by gravity. Since we are concerned by depar-
ture from a settled disc, we can assume without loss of generality
that the equation of motions describing the different rings are lin-
earised w.r.t. an unperturbed co-planar configuration. After lineari-
sation, the set of N coupled oscillators obey a matrix equation. The
equations of motions governing the oscillators can be decoupled by
moving to the eigen-frame. This is best described in the so-called
Laplace Lagrange theory (Kocsis & Tremaine 2011).

3.1 Laplace Lagrange theory

Let us assume that the stellar orbits with guiding center R in the
disc are nearly coplanar (✓ ⌧ 1) and nearly circular (e ⌧ 1).
For simplicity let us assume that we are considering the outer part
of the disc, so that the potential can be described as nearly Keple-
rian. Defining the canonical variables2, p,q as qi = �i✓i sin(�i),
pi = ��i✓i cos(�i), with �i =

p
mi(GMRi)

1/4, the Hamilto-
nian describing the coupling between the ring in that limit reads

H(p,q) =
1

2
pT ·A · p+

1

2
qT ·A · q , (10)

where

Aij = � Gmimj↵ij

max(Ri, Rj)�i�j
b3/2(↵ij) , if i 6= j (11)

Aii =

X

k 6=j

Gmimk↵ik

max(Ri, Rk)�
2

i

b3/2(↵ik) , if i 6= j , (12)

2 so that x and y components of angular momentum obey Li,x = �iqi
and Li,y = �ipi

Figure 3. The relaxation of gravitationally self-interacting rings. Top panel:
a schematic representation of rings. Each ring is coupled to the other by
the fluctuating potential, which is dressed by the wakes that these pertur-
bations trigger in the disc. Once the disc starts to settle, the coupling can
be linearized around the co-planar configuration. The equations of motions
governing the N oscillators can be decoupled by moving to the eigen-frame.
The secular growth of the gravitational susceptibility driven by the conver-
gence toward Q ⇠ 1 will induce a stiffening of the restoring force hence
damping of all eigen-oscillations. Bottom panel: the effect of damping of
one of the eigenmodes is well captured by the WKB approximation (blue
dashed line). Since the rings’ oscillations will be a linear combination of
such eigen-modes, they will all damp accordingly, globally inducing the
settling.

given ↵ij = min(Ri, Rj)/max(Ri, Rj) and

b3/2(↵) =
2

⇡

Z ⇡

0

cosxdx

(1� 2↵ cosx+ ↵2)3/2
, (13)

=
(1 + ↵

2
)E(↵)� (1� ↵

2
)K(↵)

⇡↵(1� ↵2)2
, (14)

with K and E the elliptic functions of the first and second type
resp. If we move to a frame which diagonalise the positive semi-
definite symmetric matrix A, in that frame, Hamilton’s equation
yield

¨̂qi + !
2

i q̂i = ⇠̂i , (15)

where !i is the i
th eigenvalue and ⇠̂i is the external stochastic spe-

cific force applied on the ring projected on the corresponding eigen-
vector.

The net effect of the cosmic convergence towards Q ⇠ 1 and
disc growth will be that the effective mass of each ring gets boosted
by the gravitational polarisation that it triggers within the unper-
turbed disc, so that in equation (15), one should consider that !i(t)

becomes a slowly growing function of cosmic time, while ⇠̂i(t)

now only reflects the slowly varying component of the fluctuating

© 0000 RAS, MNRAS 000, 000–000

Order out of chaos: radiating away entropy near marginal stability 5

force field. The WKB solution to equation (18) then reads

q̂i(t)=

X

±

Z 1

�1

⇠̂i(t
0
)p

!i(t)!i(t
0)

exp

✓
±ı

Z t

t0
!i(⌧)d⌧

◆
dt

0
. (16)

As !i(t) grows the amplitudes of the fluctuations of all q̂i(t) de-
creases which cosmic time, reflecting ring alignement (8i , ✓i !
0). Hence the secular growth of the gravitational susceptibility
driven by the convergence toward Q ⇠ 1 will induce a stiffen-
ing of the restoring force between rings, and therefore damping of
all eigen-oscillations. Since the rings’ oscillations will be a linear
combination of such eigen-modes, they will all damp accordingly,
globally inducing the settling.

3.2 Tightly wound solution

It is in fact possible to push the limit of the N ring model in the con-
tinuum limit, which provides an alternative but equivalent formu-
lation of the setting process, while accounting for azimuthal varia-
tions.

Hunter & Toomre (1969) have shown that each (m, k) mode,
û exp(�ı!t+ ı

R r
k(r

0
)dr

0
+ım✓), of the radial WKB approxi-

mation3 of tightly wound vertical displacement above and below
the disc, u(r, ✓, t), obeys the dispersion relation

(! �m⌦)
2
= ⌫

2
+ 2⇡G⌃k . (17)

An important feature of this dispersion relation corresponds to the
positive sign in from of the surface density ⌃, which in contrast the
dispersion relation for in-plane self-gravitating spiral waves high-
lights the fact that the higher the (effective, dressing included) ⌃
the larger !. In equation (17), ⌫ and ⌦ are respectively the vertical
and azimuthal frequency of the disc, while k and m are the radial
and azimuthal frequencies. Let us now seek temporal secular WKB
solution to the time dependent forced evolution equation

@
2
û

@2t
+ !

2
(t)û(t) = f̂(t) , (18)

where the left hand side reflect some stochastic specific force,
f̂(t) = ık ̂(t) corresponding to the external forcing on this dis-
placement. Here the potential  accounts for all (slowly varying
component of the) forcing (flybys, SN and turbulence induced fluc-
tuations). discuss here time decoupling between frequency of forc-
ing secular time, and timescale associated with radial WKB wave.
The WKB solution to equation (18) once again reads4

û(t) =

X

±

Z 1

�1

f̂(t
0
)p

!(t)!(t0)
exp

✓
±ı

Z t

t0
!(⌧)d⌧

◆
dt

0
, (19)

where !(k,m, ⌧) is a solution to the dispersion relation, equa-
tion (17):

!(⌧) = m⌦+

p
⌫2 + 2⇡G⌃(⌧)k , (20)

which implies that as the effective surface density ⌃(⌧) increases
(both because the disc becomes more massive and because it gets
closer to marginal stability) and the amplitude of the stochastic

3 Please note that we will consider two WKB approximations here: one
related to the spatial frequency of the wave and later one related to the
temporal variation of the frequencies of the wave
4 the corresponding asymptotic solution being û(t) ⇠ f̂(t)/!2(t)

forcing decreases (because the cosmic environment quieten and be-
comes out of sync with the frequencies of the system) the wave be-
comes stiffer, and the amplitude of the out of plane oscillation de-
creases (since !(t) increases and f(t) decreases in equation (18)).
This fate is true for each (m, k) mode independently. Through non-
linearities, the high k modes will diffuse away within the disc, so
that the injected energy by the stochastic external forcing does not
accumulate. The net effect will be disc settling driven by three com-
plementary processes: quieter environment, convergence towards
marginal stability and increased stellar disc mass.

Note that an adiabatic argument allows us to claim that if the
variation induced by the convergence towards marginal stability is
slow enough the vertical action Jz = Ez/!z(t) will be conserved,
which implies that as the vertical frequency grows, the energy of
the vertical oscillations, Ez , will decrease. This argument does not
capture the impact of the decrease of the fluctuation’s amplitude
with cosmic time. there is a sign pb here

3.3 Stellar-Gas disc damping

Let us finally study a double sets of rings corresponding to the stel-
lar and gaseous disc respectively, to understand within the frame-
work of the linearised Laplace Lagrange theory how the two discs
re-orient with respect to each other, and how the gaseous disc al-
lows the stellar disc to settle. We aim here to account for the fact
that the latter is subject to stochastic forcing by SN explosions and
dissipation through shocks between rings. Such processes will al-
low it to remove entropy from the stellar disc.

Let us therefore consider the dynamics of the set of coupled
gas +star eigenmodes for the stars, and the gas components, which
amplitude we will write q?, and qg respectively. We will consider
that each eigen mode has its own natural frequency, !? and !g

resp, a coupling term, !?g and a driving, ⇠ and damping ⌘ term
specific to the gas component. is it legitimate to only have one drag
in the eigenframe? The amplitude of each mode then obeys the set
of coupled equations

q̈? + !
2

?q? + !
2

?gqg = 0 ,

q̈g + !
2

g q̂g + !
2

?gq? + ⌘q̇g = ⇠ , (21)

Solving for equation (21), each stellar eigenmode will obey

q?(t) = �
X

!2S4

!
2

g?

Z t

�1
exp ((t� ⌧)!) ⇠ (⌧) d⌧

⌘ (3!2 + !
2
?) + 2!

�
2!2 + !2

g + !
2
?

� , (22)

where the frequencies, !, are one of four complex conjugate solu-
tions of the implicit equation5

S4={!
�� �!2

+ !
2

?

� �
! (⌘ + !) + !

2

g

�
= !

4

g?}, (23)

which will have both a damped component, and an oscillatory one.
Figure 4 illustrates the damping of two modes when one increases
the drag on the gas component and shows the frequencies which
are roots of S4. As expected, the roots acquire a larger and larger
negative real part, and the lighter gas disc will drag the stellar disc
towards itself as it settles. This is made more explicit in the next
subsection for displacement waves above and below equilibrium.

5 note how S4 reduces as it should to ! = ±!? and ! = ±!g when both
the friction and the coupling is nul.
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Figure 9. top: asymmetric wake above plane impacting diffusion. Bottom:
Validation of kinetic theory for the 1D model of vertical oscillation of N
planes near the Isothermal distribution. Both the predicted FP (solid) dif-
fusion coefficient and its BL counterpart (dashed) match simulations very
well (error bars). Wakes reduce significantly vertical diffusion (Roule+in
prep.).

that this model explains flaring in the outer part of the disc: self-
gravity being stronger in the inner part, diffusion is relatively sup-
pressed. Conversely in the outer part the wakes are weaker, hence
vertical diffusion stronger.

5.4 Tightening of Kennicutt–Schmidt law?

The tightening of the KS relationship, Fig 10, is the star forming
analogue to the tighter Q(M [z]) relationship since they both partic-
ipate in the same multi-component dissipative feedback loop. The
galaxies transition from a regime where gravity through mergers
is the dominant force, triggering stellar formation outbursts, to a
regime where strong tides within a more massive colder disc is the
self-regulating dominant force, thanks to globally coherent rota-
tion. Rotation provides a dual source of free energy input into the
turbulence injection scale: directly via inertia, and indirectly via
(gravity-driven) strong wakes, thanks to a low velocity dispersion.
Wake-driven self-regulation tighten all contributors of the loop to-
wards their operating point, including the KS law. The excursions
away from the relation are effectively damped by the rapid correc-
tion in energy injection on the larger scale of the turbulent cascade.
Since the whole loop is self-regulated without fine tuning, the leg
corresponding to star formation inherits this feature. establish link
with self-catalysis of star formation

6 BREAKING THE DISCS?

A Having described in details how robust the homeostasis of the
thin disc is, let us briefly discuss how it can in practice be broken,
so as to account for the observed large number of thick discs, ellipti-
cal and irregular galaxies in the universe! While the self-regulation
operates close to marginal stability by necessity (to warrant rapid

correction of the control loop), this implies that it will be subject
to two types of failure: i) those impacting too strongly/rapidly di-
rectly the disc, not allowing the regulating loop to operate against
large amplitude variations, and throwing it off it stability bound-
ary; ii) those impacting the engine (within the disc or within the
free energy reservoir) so that self-regulation is made impossible.

The former category implies that the polarisation fails to op-
erate fast enough to correct for the crossing of the boundary thresh-
old of the disc. In this category, a major/ or strong-minor merger
will of course have a dramatic effect on the disc. The long-term
impact of minor mergers is less straightforward to anticipate. Our
own MilkyWay has swallowed Sgr about 5 Billion years ago. The
GAIA data shows stellar kinematic evidence for this past accretion
event (including a bar), though our disc still fall into the thin cate-
gory, suggesting that the merger was not disruptive enough to stop
permanently the loop.

The latter quenching mechanisms can be split in subcate-
gories: cosmic infall can break the loop by breaking the engine,
providing too much/to little vorticity in CGM, quenching gas infall
all-together (Pichon & Aubert 2006), while a change in star for-
mation efficiency can break the cascade between meso (disk scale
hight) and microscopic (GMC) scales.

Indeed Pichon et al. (2011) have shown that the cosmic web
deposits angular momentum-rich gas in the vicinity of the disc in
the so called CGM (see also Danovich et al. 2012; Stewart et al.
2013). Disc morphology is established by AM acquisition through
anisotropic secondary infall, coming from larger scales, which are
less dense, hence more steady: non linear baryonic flows from
asymmetric voids provide the link. Anisotropically speaking, we
have a top down influence of tides in a bottom-up structure forma-
tion framework.

If the environment temporally (e.g. while passing the the caus-
tics of large scale filaments, Song et al. 2020) boosts the vorticity
content of the CGM, the cold gas will not reach the inner regions
of the disc and cooling via star formation will stop, breaking the
loop. Conversely, if the vorticity content of the CGM is momentar-
ily too low, the inside-out build up of the disc will stop, triggering
accretion, bar formation, compaction, and eventually bulge forma-
tion via bar dissolution. All in all, gas inflow yields emergence via
homeostasis: rotation matters!

Note finally that this framework can address the question of
how not to start forming thin discs. Beyond the obvious impact of
higher minor merger rates at higher redshift, it is worth consid-
ering that when discs are too light, the quantised amount of en-
ergy released by supernovae is likely to impair the feedback loop,
triggering too abrupt corrections that the regulation cannot handle.
Typically at those redshift the disc is also more gas rich, making it
directly sensitive to the blast wave of the supernovae explosion.

7 CONCLUSION

A The cosmic appearance of thin galactic disks implies a fine-
tuning between cooling mechanisms (e.g. coplanar infall of gas),
and heating processes (merging of small virialised objects, turbu-
lence, deflection on molecular clouds etc). Thanks to a large reser-
voir of free energy in the circumgalactic medium in the form of
a radially stratified corotating cold gas, cosmic evolution conspire
to promote a redshift-dependant transition mass between cosmic-
driven morphology on the one hand (through mergers, strong feed-
back and turbulence), to resilient secularly-driven morphology on
the other hand (which promotes self-regulation around an effective

© 0000 RAS, MNRAS 000, 000–000

Kinetic theory of (toy model) parallel planes with and w/o dressing

With polarisation:
Without polarisation
Diffusion coefficient

Energy 

rate of diffusion

x 1/ 10

Roule et al 22

Polarisation stiffen coupling between planes  wakes stiffen disc→

Gravitational Wake



Link to Mandelbrot Set (Veritassium 2021)

d
dt

= (1− )

→

+ → +

Why finite thickness? Chemistry of emergence

Auto-catalysis of the cold component  
(via wakes) converts kinetic evolution  
into a logistic differential equation.  

Gas

Gas = cold stellar component

Logistic  ODE (cf Ecology, Chaos, Covid,  Innovation etc..)
cf: logistic map

r

r

control parameter

= Simplest quadratic model for self -regulation 

= Taylor expansion of effective  production rate

Let us write down effective (closed loop) production rate for cold stellar component

control parameter



d
dt

=δD (1− ) + Δ

Chemistry of emergence… introduce heating

Order out of chaos: the emergence of homeostatic thin galactic discs 13

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

-0.4
-0.2
0.0
0.2
0.4

x

p

Figure A1. @tf = D�f + ⌘f(f0 � f)

absurd but not a given

APPENDIX A: NEW

APPENDIX B: OPEN RING MODE

D-: Let us consider an open system obeying Vlazov’s equation with
a first order source term

@F

@t
+ {H,F} = se , (B1)

Solving equation (B1) perturbatively, with F = F0 + f , a formal
solution read

f(J1,w1, t1)=

Z
dJ2dw2dt2G(J1,w1|J2,w2, t1�t2)se(J2,w2, t2) ,

(B2)
where the (Green) propagator obeys:
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and following Heyvaerts (2010), we defined
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The first term in the brace of (B3) represents the balistic displace-
ment of the perturbation (each harmonic phase-mixing at its own
frequency while keeping actions fixed) while the last term its dress-
ing.

this works only for perturbations following the unperturbed
orbits of the system. Let us integrate over rings to get the open set
of ring equation.

APPENDIX C: ORBITAL DIFFUSION

this will possibly go away unless we write open secular diffusion
Let us first consider an isolated stellar self-gravitating disc embed-
ded in a dark halo and its fluctuating cosmic environment and per-
turbed by supernovae feedback, turbulence and GMC driven shot
noise. We will consider the impact of dissipative processes and
the input from the cosmic environment later. Let us further assume

that the gravitational background  0, associated with its Hamilto-
nian H0, is stationary and integrable12, so as to remap the physical
coordinates (x,v) to the (orbit labelling) angle-action coordinates
(✓,J) (Goldstein 1950; Born 1960; Binney & Tremaine 2008). In
a cosmic context, we will later allow for a secular evolution of H0,
in order to account for the growth of the disc. Along the (assumed)
unperturbed motions, the actions J are conserved, while the angles
✓ are 2⇡�periodic. One can then introduce the intrinsic frequen-
cies of the system ⌦ as

⌦ = ✓̇ =
@H0

@J
. (C1)

Since the disc is assumed to be in a quasi-stationary state, it can
be described by a distribution function (DF) f(J , ✓, t), with the
normalisation convention

R
dxdvf=Mtot, where Mtot is the total

active mass of the system. Environmental and internal source of
stochastic source of perturbations will drive distorsion of the orbital
structure of the stars on secular timescales via so called quasi-linear
theory, which derivation can be sketched as follows. Let us expand
this DF into a slowly varying component, F (I, t) and a rapidly
varying one, �f(I, ✓(t)) as follows

f = F (I, t) + �f(I, ✓(t)) , subject to
@�f

@t
� @F

@t
, (C2)

and insert this expansion into Boltzmann’s equation

@f

@t
+ {H0 + � , f} = 0 , (C3)

where { } stands for Poisson bracket. Let us now angle-average
this equation so as to produce two sets of equation for F and �f

@F

@t
= �h[�f, � ]i , and

@�f

@t
+ {H0, �f}+ {� , F} = 0 .

(C4)
Inserting the second equation into the first, and a bit of algebra
(Weinberg 2001; Fouvry et al. 2015) allows us to recast into an
anisotropic diffusion equation of the form

@F

@t
=

@

@J
·
X

m

mDm(J)m· @F
@J

�
, (C5)

where the index m2Z3 corresponds to the Fourier coefficients as-
sociated with the Fourier transform w.r.t. the angles ✓. In equa-
tion (C5), the diffusion coefficients Dm(J) are given by

Dm(J) =
1

2

X

p,q

 
(p)
m  

(q)⇤
m


[I�cM]

�1· bC·[I�cM]
�1

�

pq

. (C6)

C1 Orbital diffusion coefficient

In equation (C6), the response matrix cM and the cross-power per-
turbations bC are functions of actions and temporal frequencies
! which should be evaluated at the resonant frequency m·⌦.
Here I stands for the identity matrix. Equation (C6) for the dif-
fusion coefficients involves potential basis elements  (p), which
are introduced following Kalnajs matrix method (Kalnajs 1976).
Indeed, to solve the non-local Poisson’s equation, one introduces

12 We note that in the thickened geometry, integrability is not warranted by
symmetry, so that we are effectively assuming that the disc is thin enough
so that it can be approximated to be integrable; see Weinberg (2015) for a
discussion.
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Fig. 1: Evolution of an epicyclic orbit (top panel) as one respectively
increases its radial action Jr (middle panel) or its vertical action Jz

(bottom panel). As expected, the radial (resp. vertical) excursions of the
orbit increase with increasing Jr (resp. Jz).

defined by the implicit relation

@ e↵

@R

�����
(Rg,0)
= 0 , (14)

so that Rg(J�) corresponds to the radius for which stars with an
angular momentum J� are on exactly circular orbits. In addition,
this circular orbit is described at the angular fequency ⌦� given
by

⌦2
�(Rg) =

1
Rg

@ 0

@R

�����
(Rg,0)
. (15)

In the neigborhourhood of circular orbits, the Hamiltonian from
equation (12) may be expanded as

H0 =
1
2


p

2
R
+p

2
z

�
+ e↵(Rg, 0)+

2

2
(R�Rg)2+

⌫2

2
z

2 , (16)

where the symmetry of the potential  0 w.r.t. the plane z=0 was
used. In equation (16), the epicyclic frequencies  and ⌫ were
introduced as

2(Rg) =
@ e↵

@R2

�����
(Rg,0)

; ⌫2(Rg) =
@2 e↵

@z2

�����
(Rg,0)
. (17)

In equation (16), one should note that the radial and vertical mo-
tions have been decoupled and correspond to harmonic librations.
Therefore, up to initial phases, there exist two amplitudes AR and
Az such that R(t)=Rg+AR cos(t) and z(t)=Az cos(⌫t). The two
corresponding actions Jr and Jz are then given by

Jr =
1
2
A

2
R

; Jz =
1
2
⌫A

2
z
. (18)

Therefore, (Jr, Jz)= (0, 0) corresponds to exactly circular orbits.
Increasing Jr (resp. Jz) tends to increase the amplitude of the
radial (resp. vertical) oscillations, corresponding to hotter or-
bits, see figure 1. One should also note that within the epicyclic
approximation, the intrinsic frequencies ⌦= (⌦�, , ⌫) only de-
pend on Rg and are assumed to be independent of Jr and Jz.
Such a degeneracy significantly simplifies the resonance condi-
tion �D(m1 ·⌦1�m2 ·⌦2) present in the Balescu-Lenard equa-
tion (2). The final step is now to construct an explicit map-
ping between the physical coordinates (R, �, z, pR, p�, pz) and

(✓R, ✓�, ✓z, Jr, Jz, J�) (Lynden-Bell & Kalnajs 1972; Palmer 1994;
Binney & Tremaine 2008) which at first order takes the form
8>>>>>><
>>>>>>:

R = Rg+AR cos(✓R) ,

� = ✓��
2⌦�


AR

Rg
sin(✓R) ,

z = Az cos(✓z) .

(19)

This mapping will be used to compute the Fourier transform
w.r.t. the angles as defined in equation (6). Finally, throughout the
calculations, it will be assumed that the disc’s quasi-stationary
DF takes initially the form of a quasi-isothermal DF (Binney &
McMillan 2011) given by

F(Rg, Jr, Jz) =
⌦�⌃

⇡�2
r

exp

� Jr

�2
r

� ⌫

2⇡�2
z

exp

� ⌫Jz

�2
z

�
, (20)

where the functions ⌃, ⌦�, , ⌫, �r and �z have to be evaluated at
Rg. Equation (20) involves ⌃ the projected active surface density
of the disc associated with the system’s density ⇢, such that
⌃(R)=

R
dz ⇢(R, z). It also involves �r (resp. �z), which quantifies

the radial (resp. vertical) velocity dispersion of the stars at a given
radius. Such a DF becomes the Schwarzschild DF in the epicyle
limit (see (4.153) in Binney & Tremaine 2008).

3.2. Thick WKB basis

FPC15, in the context of razor-thin discs, showed how one could
construct a biorthonormal basis of tightly wound potential and
density elements and use it to obtain explicit expressions for the
drift and di↵usion coe�cients of the Balescu-Lenard equation. In
the current paper, these results will be generalised to thick discs
by constructing their vertical components. Some of the upcoming
calculations will not be detailed as they can be found in FPC15,
and we will mainly focus on the new vertical component. In the
context of collisionless secular evolution, Fouvry et al. (2016b)
presents a similar generalisation of the WKB formalism to thick
discs: details on some of the upcoming calculations may be found
therein. Using the cylindrical coordinates (R, �, z), let us define
the basis elements

 [k�,kr ,R0,n](R, �, z) = A 
[k�,kr ,R0]
r (R, �) [kr ,n]

z
(z) . (21)

In equation (21), A is an amplitude which will be determined
later on to ensure the correct normalisation of the basis elements,
and  

[k�,kr ,R0]
r corresponds to the same in-plane dependence of

the razor-thin tightly wound basis elements introduced in FPC15,
which reads

 
[k�,kr ,R0]
r (R, �) = ei(k��+krR) BR0 (R) , (22)

where the radial window function BR0 is defined as

BR0 (R) =
1

(⇡�2)1/4 exp

� (R�R0)2

2�2

�
. (23)

The thickened basis elements from equation (21) are indexed by
four numbers: k� is an integer which quantifies the number of
azimuthal patterns of the basis elements, kr corresponds to the
radial frequency of the basis elements, while R0 is the radius
within the disc around which the window BR0 is centred. Finally,
in this thick context, a final integer index n�1 was introduced,
which numbers the vertical dependences, as detailed below. In
equation (23), a decoupling scale�was also introduced, which, as
explained in FPC15, ensures the biorthogonality of the basis. The
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D-: Let us consider an open system obeying Vlazov’s equation with
a first order source term

@F

@t
+ {H,F} = se , (B1)

Solving equation (B1) perturbatively, with F = F0 + f , a formal
solution read

f(J1,w1, t1)=

Z
dJ2dw2dt2G(J1,w1|J2,w2, t1�t2)se(J2,w2, t2) ,

(B2)
where the (Green) propagator obeys:
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The first term in the brace of (B3) represents the balistic displace-
ment of the perturbation (each harmonic phase-mixing at its own
frequency while keeping actions fixed) while the last term its dress-
ing.

this works only for perturbations following the unperturbed
orbits of the system. Let us integrate over rings to get the open set
of ring equation.

APPENDIX C: ORBITAL DIFFUSION

this will possibly go away unless we write open secular diffusion
Let us first consider an isolated stellar self-gravitating disc embed-
ded in a dark halo and its fluctuating cosmic environment and per-
turbed by supernovae feedback, turbulence and GMC driven shot
noise. We will consider the impact of dissipative processes and
the input from the cosmic environment later. Let us further assume

that the gravitational background  0, associated with its Hamilto-
nian H0, is stationary and integrable12, so as to remap the physical
coordinates (x,v) to the (orbit labelling) angle-action coordinates
(✓,J) (Goldstein 1950; Born 1960; Binney & Tremaine 2008). In
a cosmic context, we will later allow for a secular evolution of H0,
in order to account for the growth of the disc. Along the (assumed)
unperturbed motions, the actions J are conserved, while the angles
✓ are 2⇡�periodic. One can then introduce the intrinsic frequen-
cies of the system ⌦ as

⌦ = ✓̇ =
@H0

@J
. (C1)

Since the disc is assumed to be in a quasi-stationary state, it can
be described by a distribution function (DF) f(J , ✓, t), with the
normalisation convention

R
dxdvf=Mtot, where Mtot is the total

active mass of the system. Environmental and internal source of
stochastic source of perturbations will drive distorsion of the orbital
structure of the stars on secular timescales via so called quasi-linear
theory, which derivation can be sketched as follows. Let us expand
this DF into a slowly varying component, F (I, t) and a rapidly
varying one, �f(I, ✓(t)) as follows

f = F (I, t) + �f(I, ✓(t)) , subject to
@�f

@t
� @F

@t
, (C2)

and insert this expansion into Boltzmann’s equation
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@t
+ {H0 + � , f} = 0 , (C3)

where { } stands for Poisson bracket. Let us now angle-average
this equation so as to produce two sets of equation for F and �f

@F

@t
= �h[�f, � ]i , and

@�f

@t
+ {H0, �f}+ {� , F} = 0 .

(C4)
Inserting the second equation into the first, and a bit of algebra
(Weinberg 2001; Fouvry et al. 2015) allows us to recast into an
anisotropic diffusion equation of the form
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, (C5)

where the index m2Z3 corresponds to the Fourier coefficients as-
sociated with the Fourier transform w.r.t. the angles ✓. In equa-
tion (C5), the diffusion coefficients Dm(J) are given by
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C1 Orbital diffusion coefficient

In equation (C6), the response matrix cM and the cross-power per-
turbations bC are functions of actions and temporal frequencies
! which should be evaluated at the resonant frequency m·⌦.
Here I stands for the identity matrix. Equation (C6) for the dif-
fusion coefficients involves potential basis elements  (p), which
are introduced following Kalnajs matrix method (Kalnajs 1976).
Indeed, to solve the non-local Poisson’s equation, one introduces

12 We note that in the thickened geometry, integrability is not warranted by
symmetry, so that we are effectively assuming that the disc is thin enough
so that it can be approximated to be integrable; see Weinberg (2015) for a
discussion.
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ment of the perturbation (each harmonic phase-mixing at its own
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orbits of the system. Let us integrate over rings to get the open set
of ring equation.
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this will possibly go away unless we write open secular diffusion
Let us first consider an isolated stellar self-gravitating disc embed-
ded in a dark halo and its fluctuating cosmic environment and per-
turbed by supernovae feedback, turbulence and GMC driven shot
noise. We will consider the impact of dissipative processes and
the input from the cosmic environment later. Let us further assume

that the gravitational background  0, associated with its Hamilto-
nian H0, is stationary and integrable12, so as to remap the physical
coordinates (x,v) to the (orbit labelling) angle-action coordinates
(✓,J) (Goldstein 1950; Born 1960; Binney & Tremaine 2008). In
a cosmic context, we will later allow for a secular evolution of H0,
in order to account for the growth of the disc. Along the (assumed)
unperturbed motions, the actions J are conserved, while the angles
✓ are 2⇡�periodic. One can then introduce the intrinsic frequen-
cies of the system ⌦ as

⌦ = ✓̇ =
@H0

@J
. (C1)

Since the disc is assumed to be in a quasi-stationary state, it can
be described by a distribution function (DF) f(J , ✓, t), with the
normalisation convention

R
dxdvf=Mtot, where Mtot is the total

active mass of the system. Environmental and internal source of
stochastic source of perturbations will drive distorsion of the orbital
structure of the stars on secular timescales via so called quasi-linear
theory, which derivation can be sketched as follows. Let us expand
this DF into a slowly varying component, F (I, t) and a rapidly
varying one, �f(I, ✓(t)) as follows

f = F (I, t) + �f(I, ✓(t)) , subject to
@�f

@t
� @F

@t
, (C2)

and insert this expansion into Boltzmann’s equation

@f

@t
+ {H0 + � , f} = 0 , (C3)

where { } stands for Poisson bracket. Let us now angle-average
this equation so as to produce two sets of equation for F and �f

@F

@t
= �h[�f, � ]i , and

@�f

@t
+ {H0, �f}+ {� , F} = 0 .

(C4)
Inserting the second equation into the first, and a bit of algebra
(Weinberg 2001; Fouvry et al. 2015) allows us to recast into an
anisotropic diffusion equation of the form

@F

@t
=

@

@J
·
X

m

mDm(J)m· @F
@J

�
, (C5)

where the index m2Z3 corresponds to the Fourier coefficients as-
sociated with the Fourier transform w.r.t. the angles ✓. In equa-
tion (C5), the diffusion coefficients Dm(J) are given by

Dm(J) =
1

2

X

p,q

 
(p)
m  

(q)⇤
m


[I�cM]

�1· bC·[I�cM]
�1

�

pq

. (C6)

C1 Orbital diffusion coefficient

In equation (C6), the response matrix cM and the cross-power per-
turbations bC are functions of actions and temporal frequencies
! which should be evaluated at the resonant frequency m·⌦.
Here I stands for the identity matrix. Equation (C6) for the dif-
fusion coefficients involves potential basis elements  (p), which
are introduced following Kalnajs matrix method (Kalnajs 1976).
Indeed, to solve the non-local Poisson’s equation, one introduces

12 We note that in the thickened geometry, integrability is not warranted by
symmetry, so that we are effectively assuming that the disc is thin enough
so that it can be approximated to be integrable; see Weinberg (2015) for a
discussion.

© 0000 RAS, MNRAS 000, 000–000

Logistic map Hamiltonian
Gravitational Wake

No fine tuning !

all discs are fairly thin whatever the feedback

Chemistry of emergence… introduce tides
 
Dissipation converts kinetic instability point into an attractor.  
Dressed Reaction-Diffusion equation (cf morphogenesis)

Now let us take into account for the vertical secular diffusion of the  cold component   

Rapid correction 
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Pre-existing disk stars get thicker  
with time due to heating

Galaxy keeps forming in // 
 young thin-disk stars

As a result,  the vertical distribution  
(scale heights of the two components from fit)  
do not change since  self-regulation controls both processes 

 Both star formation and vertical orbital diffusion regulated by (Q ) confounding factor. 
 
Stellar thick disc =  secular remnant of (self regulated) disc settling process. 

→ 1

Q  1 confounding factor for joint thick+thin growth∼

Vertical orbital diffusion

SF efficiency

Ddressed ∝ Draw/ϵ2(Q)
ηdressed ∝ ηraw/ϵ2(Q)

 

Figure 3. Decomposition of star particles into disordered and ordered (disc) components in an              
example galaxy at redshift z=1. The six panels on the left show the total (disordered +                
ordered) and decomposed images of the same galaxy. A threshold value of e >0.5 is used to                
identify star particles that form the ordered component of the galaxy. The images are in the                
rest-frame r -band. The high resolution images reveal a realistically-thin disc consistent with            
observational data22,23. The two panels on the right show an independent analysis. They are              
not based on e parameters but on the two component fits to the radial and vertical profiles of                  
the galaxy. The details are described in Supplementary Material. A simple two-component fit             
reasonably reproduces the radial profile with a disc-to-total ratio of 0.58. The bottom             
right-hand panel shows the vertical light-profile fit with two exponential components. By            
fitting at 1.44 kpc from the galaxy centre, which is the scale-length of the disc, we find that a                   
combination of two exponential components matches the vertical profile well. These           
components can be interpreted as the thin and thick discs of the galaxy.  
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



On galactic scales, the shape of initial powerspectrum is such that galaxies inherit stability 
from non-linear scale coupling to the  LSS via cold flows, which sets up the circumgalactic engine. 

When secular processes take over, gravitational wakes tightens a self-regulating loop, driving 
the discs towards marginal stability, while pumping free rotational energy from the  CGM. 

Homeostatic thin disks are emerging structures: They are made possible by shocks, star 
formation, feedback & turbulence controlled by gravity.    
  

CONCLUSIONS
Robust gravity-driven top-down causation : no fine tuning required   

when the control loop fails  quantify morphological diversity→



Conclusion:

We should care 
 about the  

cosmic web!

cosmic web = metric set by eigframe [ ∂2ρ
∂xi∂xj ]

sad



Merci !



d
dt

=δD (1− ) + Δ

 
Dissipation converts kinetic instability point into an attractor.   
Now let us take into account for the vertical secular diffusion of the  cold component   
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Figure A1. @tf = D�f + ⌘f(f0 � f)

absurd but not a given

APPENDIX A: NEW

APPENDIX B: OPEN RING MODE

D-: Let us consider an open system obeying Vlazov’s equation with
a first order source term

@F

@t
+ {H,F} = se , (B1)

Solving equation (B1) perturbatively, with F = F0 + f , a formal
solution read

f(J1,w1, t1)=

Z
dJ2dw2dt2G(J1,w1|J2,w2, t1�t2)se(J2,w2, t2) ,

(B2)
where the (Green) propagator obeys:

G(J1,w1|J2,w2, ⌧) =

Z

B

d!
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e
�i!⌧

X

k1k2

i e
i(k1·w1�k2·w2)

(! � k1 ·⌦1)
⇥

 
�
k1
k2

(2⇡)3
�D(J1�J2) +

k1 ·rJ1F

(! � k2 ·⌦2)Dk1k2(J1,J2,!)

!
, (B3)

and following Heyvaerts (2010), we defined

1

Dk1k2(J1,J2,!)
=

X

↵,�

 
↵
k1
(J1)

�
"
�1

(!)
�↵�

 
�⇤
k2

(J2) , (B4)

with

"
↵�

(!) = �
↵� � (2⇡)

3
X

k1

Z
dJ1 

↵⇤
k1

(J1) 
�
k1
(J1)

k1 ·rJ1F

! � k1 ·⌦1

·

The first term in the brace of (B3) represents the balistic displace-
ment of the perturbation (each harmonic phase-mixing at its own
frequency while keeping actions fixed) while the last term its dress-
ing.

this works only for perturbations following the unperturbed
orbits of the system. Let us integrate over rings to get the open set
of ring equation.

APPENDIX C: ORBITAL DIFFUSION

this will possibly go away unless we write open secular diffusion
Let us first consider an isolated stellar self-gravitating disc embed-
ded in a dark halo and its fluctuating cosmic environment and per-
turbed by supernovae feedback, turbulence and GMC driven shot
noise. We will consider the impact of dissipative processes and
the input from the cosmic environment later. Let us further assume

that the gravitational background  0, associated with its Hamilto-
nian H0, is stationary and integrable12, so as to remap the physical
coordinates (x,v) to the (orbit labelling) angle-action coordinates
(✓,J) (Goldstein 1950; Born 1960; Binney & Tremaine 2008). In
a cosmic context, we will later allow for a secular evolution of H0,
in order to account for the growth of the disc. Along the (assumed)
unperturbed motions, the actions J are conserved, while the angles
✓ are 2⇡�periodic. One can then introduce the intrinsic frequen-
cies of the system ⌦ as

⌦ = ✓̇ =
@H0

@J
. (C1)

Since the disc is assumed to be in a quasi-stationary state, it can
be described by a distribution function (DF) f(J , ✓, t), with the
normalisation convention

R
dxdvf=Mtot, where Mtot is the total

active mass of the system. Environmental and internal source of
stochastic source of perturbations will drive distorsion of the orbital
structure of the stars on secular timescales via so called quasi-linear
theory, which derivation can be sketched as follows. Let us expand
this DF into a slowly varying component, F (I, t) and a rapidly
varying one, �f(I, ✓(t)) as follows

f = F (I, t) + �f(I, ✓(t)) , subject to
@�f

@t
� @F

@t
, (C2)

and insert this expansion into Boltzmann’s equation

@f

@t
+ {H0 + � , f} = 0 , (C3)

where { } stands for Poisson bracket. Let us now angle-average
this equation so as to produce two sets of equation for F and �f

@F

@t
= �h[�f, � ]i , and

@�f

@t
+ {H0, �f}+ {� , F} = 0 .

(C4)
Inserting the second equation into the first, and a bit of algebra
(Weinberg 2001; Fouvry et al. 2015) allows us to recast into an
anisotropic diffusion equation of the form

@F

@t
=

@

@J
·
X

m

mDm(J)m· @F
@J

�
, (C5)

where the index m2Z3 corresponds to the Fourier coefficients as-
sociated with the Fourier transform w.r.t. the angles ✓. In equa-
tion (C5), the diffusion coefficients Dm(J) are given by

Dm(J) =
1

2

X

p,q

 
(p)
m  

(q)⇤
m


[I�cM]

�1· bC·[I�cM]
�1

�

pq

. (C6)

C1 Orbital diffusion coefficient

In equation (C6), the response matrix cM and the cross-power per-
turbations bC are functions of actions and temporal frequencies
! which should be evaluated at the resonant frequency m·⌦.
Here I stands for the identity matrix. Equation (C6) for the dif-
fusion coefficients involves potential basis elements  (p), which
are introduced following Kalnajs matrix method (Kalnajs 1976).
Indeed, to solve the non-local Poisson’s equation, one introduces

12 We note that in the thickened geometry, integrability is not warranted by
symmetry, so that we are effectively assuming that the disc is thin enough
so that it can be approximated to be integrable; see Weinberg (2015) for a
discussion.
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New point of equilibrium with

finite disc thickness

Reaction-Diffusion equation (cf morphogenesis) Logistic map Hamiltonian

{ {Cooling Heating

Chemistry of emergence… introduce heating

Fokker Planck orbital diffusion

d
dt

= 𝒞( )+ℋ( )

𝒞( ) = 𝒞′ −
1
2

|𝒞′ ′ | ( )2

star formation stellar feedback

Alternative derivation:  heating versus cooling in-balance

orbital diffusion

(blurring/churning/heating)

ℋ( ) = ∇2

A&A proofs: manuscript no. LB_Thick

Fig. 1: Evolution of an epicyclic orbit (top panel) as one respectively
increases its radial action Jr (middle panel) or its vertical action Jz

(bottom panel). As expected, the radial (resp. vertical) excursions of the
orbit increase with increasing Jr (resp. Jz).

defined by the implicit relation

@ e↵

@R

�����
(Rg,0)
= 0 , (14)

so that Rg(J�) corresponds to the radius for which stars with an
angular momentum J� are on exactly circular orbits. In addition,
this circular orbit is described at the angular fequency ⌦� given
by

⌦2
�(Rg) =

1
Rg

@ 0

@R

�����
(Rg,0)
. (15)

In the neigborhourhood of circular orbits, the Hamiltonian from
equation (12) may be expanded as

H0 =
1
2


p

2
R
+p

2
z

�
+ e↵(Rg, 0)+

2

2
(R�Rg)2+

⌫2

2
z

2 , (16)

where the symmetry of the potential  0 w.r.t. the plane z=0 was
used. In equation (16), the epicyclic frequencies  and ⌫ were
introduced as

2(Rg) =
@ e↵

@R2

�����
(Rg,0)

; ⌫2(Rg) =
@2 e↵

@z2

�����
(Rg,0)
. (17)

In equation (16), one should note that the radial and vertical mo-
tions have been decoupled and correspond to harmonic librations.
Therefore, up to initial phases, there exist two amplitudes AR and
Az such that R(t)=Rg+AR cos(t) and z(t)=Az cos(⌫t). The two
corresponding actions Jr and Jz are then given by

Jr =
1
2
A

2
R

; Jz =
1
2
⌫A

2
z
. (18)

Therefore, (Jr, Jz)= (0, 0) corresponds to exactly circular orbits.
Increasing Jr (resp. Jz) tends to increase the amplitude of the
radial (resp. vertical) oscillations, corresponding to hotter or-
bits, see figure 1. One should also note that within the epicyclic
approximation, the intrinsic frequencies ⌦= (⌦�, , ⌫) only de-
pend on Rg and are assumed to be independent of Jr and Jz.
Such a degeneracy significantly simplifies the resonance condi-
tion �D(m1 ·⌦1�m2 ·⌦2) present in the Balescu-Lenard equa-
tion (2). The final step is now to construct an explicit map-
ping between the physical coordinates (R, �, z, pR, p�, pz) and

(✓R, ✓�, ✓z, Jr, Jz, J�) (Lynden-Bell & Kalnajs 1972; Palmer 1994;
Binney & Tremaine 2008) which at first order takes the form
8>>>>>><
>>>>>>:

R = Rg+AR cos(✓R) ,

� = ✓��
2⌦�


AR

Rg
sin(✓R) ,

z = Az cos(✓z) .

(19)

This mapping will be used to compute the Fourier transform
w.r.t. the angles as defined in equation (6). Finally, throughout the
calculations, it will be assumed that the disc’s quasi-stationary
DF takes initially the form of a quasi-isothermal DF (Binney &
McMillan 2011) given by

F(Rg, Jr, Jz) =
⌦�⌃

⇡�2
r

exp

� Jr

�2
r

� ⌫

2⇡�2
z

exp

� ⌫Jz

�2
z

�
, (20)

where the functions ⌃, ⌦�, , ⌫, �r and �z have to be evaluated at
Rg. Equation (20) involves ⌃ the projected active surface density
of the disc associated with the system’s density ⇢, such that
⌃(R)=

R
dz ⇢(R, z). It also involves �r (resp. �z), which quantifies

the radial (resp. vertical) velocity dispersion of the stars at a given
radius. Such a DF becomes the Schwarzschild DF in the epicyle
limit (see (4.153) in Binney & Tremaine 2008).

3.2. Thick WKB basis

FPC15, in the context of razor-thin discs, showed how one could
construct a biorthonormal basis of tightly wound potential and
density elements and use it to obtain explicit expressions for the
drift and di↵usion coe�cients of the Balescu-Lenard equation. In
the current paper, these results will be generalised to thick discs
by constructing their vertical components. Some of the upcoming
calculations will not be detailed as they can be found in FPC15,
and we will mainly focus on the new vertical component. In the
context of collisionless secular evolution, Fouvry et al. (2016b)
presents a similar generalisation of the WKB formalism to thick
discs: details on some of the upcoming calculations may be found
therein. Using the cylindrical coordinates (R, �, z), let us define
the basis elements

 [k�,kr ,R0,n](R, �, z) = A 
[k�,kr ,R0]
r (R, �) [kr ,n]

z
(z) . (21)

In equation (21), A is an amplitude which will be determined
later on to ensure the correct normalisation of the basis elements,
and  

[k�,kr ,R0]
r corresponds to the same in-plane dependence of

the razor-thin tightly wound basis elements introduced in FPC15,
which reads

 
[k�,kr ,R0]
r (R, �) = ei(k��+krR) BR0 (R) , (22)

where the radial window function BR0 is defined as

BR0 (R) =
1

(⇡�2)1/4 exp

� (R�R0)2

2�2

�
. (23)

The thickened basis elements from equation (21) are indexed by
four numbers: k� is an integer which quantifies the number of
azimuthal patterns of the basis elements, kr corresponds to the
radial frequency of the basis elements, while R0 is the radius
within the disc around which the window BR0 is centred. Finally,
in this thick context, a final integer index n�1 was introduced,
which numbers the vertical dependences, as detailed below. In
equation (23), a decoupling scale�was also introduced, which, as
explained in FPC15, ensures the biorthogonality of the basis. The
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36Bring home message: dressing redefine clocks 

Turbulence

galactic accretion

galactic accretion

Turbulence
SN explosion

Turbulence

SN explosion

SF SF

SFSF

FS

SF

SF
SF

SF

SN explosion

minor merger

Self-regulation boosted by proximity to marginal stability
radiated

 entropy 


→Q→Q

strong wake

Wake drastically boost orbital frequencies, 
tightening control loops

New dynamical equilibrium



Synopsis of thin disc emergence: 0/2

Feedback

Star formation

Gravity

Turbulence 

Cosmic infallProximity 

to Q 1  + CGM∼

amplifies  
heating/cooling 


efficiency

stiffens disc &

convergence  to  Q 1∼

amplifies

wakes 



38Recent aternative views

open (spherical) box where free energy driven by contraction induced by unstable disc

this induces radial transport and generates the energy to feed the turbulence which regulates star formation 



39Complement: is a disc alive? vaguely!

Interestingly,  though  anecdotical,  the  thin  discs 
possesses  at  least  three  out  of  four  pillars  recently 
required  by  some authors  (Wong & Bartlett  2020)  to 
define pre-biotic systems:
 i) they are open dissipative structures; 
ii) auto-catalytic; 
iii) homeostatic, 
iv) but not (quite) learning. 

May be in a  neg-entropic (information) sense: 
as the stellar disc grows, it accumulates (stellar) order, 
which  makes  its  effective  Toomre  parameter  less 
sensitive to the environment: it has learnt! 



40Disc settling: timeline of a thin galactic disc  
New Horizon Simulation

Thin discs in cosmological simulations operate as though they are isolated: this needs explaining. 



41Synopsis of thin disc emergence: 1/2

• Why do disc settle ? Because Q 1 

• But Why does Q 1?  Because tighter control loop ( ) via wake  

• But how does it impact settling? Because wake also stiffens coupling

→

→ tdyn ≪ 1

New Horizon

Ring toy model



 

Figure 3. Decomposition of star particles into disordered and ordered (disc) components in an              
example galaxy at redshift z=1. The six panels on the left show the total (disordered +                
ordered) and decomposed images of the same galaxy. A threshold value of e>0.5 is used to                
identify star particles that form the ordered component of the galaxy. The images are in the                
rest-frame r -band. The high resolution images reveal a realistically-thin disc consistent with            
observational data22,23. The two panels on the right show an independent analysis. They are              
not based on e parameters but on the two component fits to the radial and vertical profiles of                  
the galaxy. The details are described in Supplementary Material. A simple two-component fit             
reasonably reproduces the radial profile with a disc-to-total ratio of 0.58. The bottom             
right-hand panel shows the vertical light-profile fit with two exponential components. By            
fitting at 1.44 kpc from the galaxy centre, which is the scale-length of the disc, we find that a                   
combination of two exponential components matches the vertical profile well. These           
components can be interpreted as the thin and thick discs of the galaxy.  
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

42Disc settling preserves double thick/thin profile

Once in secular mode, the self regulated loop  

stratifies vertically stars by age,  while preserving the total double sech2 profile  



43Discussion
Bring home message

• Assumes disc can respond thermally fast enough

• Leap of faith in dynamical range (SF controlled by turbulent injection scale)

• Ignore extension of disc  + bars /bulge  + life halo (locality)


• Feedback+SF physics transpires to self-regulated disc geometry via wake!

• Gas inflow yields emergence via homeostasis: rotation matters!

• CGM = free energy reservoir: top down causation from cosmic coherence

• regulation can be broken via  change in vorticity and mass content of CGM. 


• Proximity to cliff (Q<1) essential

• Close link to self-organised criticality/Maximum entropy production

• No absolute transition mass 


• Variation of inflow that the disc’s tolerate 
 before instability /contraction ? (cf red giants)




44Gyroscopic equation 

·ni = Ω({nj}) × ni , with Ω({nj}) = ∑
j,ℓ

Pℓ (ni ⋅ nj) nj ( r<

r> )
ℓ

i,j



★Revisit paradigm:  impact of large scale anisotropy   

• Galaxy properties driven by past lightcone of tidal tensor

• Non-linear evolution impacted by scale coupling /shocks/ differential delays  
 

hfNL(IC)i 6= fNL(hICi)

hfNL(IC)i✓,� 6= fNL(hICi✓,�)

@2 /@xi@xj

@2 /@xi@xj

Spherical collapse does not capture filamentary tides...   

galaxy growth will be impacted by 
all components of  Tidal tensor

(not just trace, also
eigenvectors+other minors)

≠ scales
 ≠ environments

All the more true for the gas



46Bike counter-steering: casper+ gyroscopic effect

In order to turn left driver must  turn right!

(c) veritassium 22



47Spherical versus partial collapse

3 flows

shell crossing

multi flows

shell crossing

Hahn & al 

Virialised halo

partially 
collapsed  
filament



48Link to Mandelbrot Set (Veritassium 2021)



Geometry of flow: Eulerian view @ high resolution.

void

wall

filament

CGM



Order out of chaos: radiating away entropy near marginal stability 3
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Figure 2. The distribution of galaxies as a function of 1/Q and M? (left panel) and v/� and M? (right panel). From the left panel, we conclude that more
massive disc galaxies are less numerous but closer to marginal stability (Q ⇠ 1). From the right panel, we conclude that more massive discs have higher v/�,
hence the fraction, f3, of galaxies with v/� higher than 3 and 1 resp. (the ratio of the integral of the galactic counts (in red) over the dark region, to that over
the light region) increases with M?. The two tends can be mapped one onto the other given the relationship between Toomre’s Q number and the v/� of discs
given by equation (4).

m?, while fb is a rising function m? (more massive discs are
more maximal), we may conclude self consistently that (at fixed
d
2
n/dm?diQ) the growth of iQ with m? translates to a rise of s

with m? (at fixed d
2
n/dm?ds), or vice versa. julien mentions that

0 < iQ  1 is effectively bounded whereas s isn’t so we may need
to restrict our analysis to s > 1, i.e the subset of galaxies which are
discs.

We therefore argue that the mapping between the two trends
can be achieved while assuming that the driving mechanism is self
regulation towards marginal stability as a function of cosmic time.

Note that in this formalisation we have marginalised over en-
vironment and the dark halo mass M as discussed below. Note also
that the relevant Q number is the effective one, taking into account
both the stellar and the gas component. Note finally that as far as
the cosmic evolution is concerned both scale with (1+z)

1/3 which
also suggests that one process drives the other.

2.3 Why is marginal stability an attractor?

2.3.1 A necessary condition for Q ⇠ 1

Broadly speaking, the theory of disc settling should be the (cos-
mic) dual of that of disc thickening, in a situation where the mass,
kinematic and geometry of the disc and source of stochasticities
all evolve with cosmic time. For instance, the velocity dispersion
are impacted by the formation of new stars on quasi circular orbits.
The nature and cosmic variation of the fluctuation (which in this
work also include e.g. potential fluctuations induced by stellar feed-
back, or shot noise from transients GMCs) must be extracted from
the simulations. Over the past two decades, various authors have
derived the corresponding secular diffusion equation motivated by
quasi-linear theory, which in turn relies on a time decoupling argu-
ment which assumes that on dynamical timescales the distribution
function of the disc is frozen, while on cosmic timescales the lin-
ear response is instantaneous. Qualitatively, the theory stipulates
that the rate of diffusion scales like the (canonical angular) power-
spectra of the force fluctuation along the unperturbed orbits. Hence
understanding disc settling ‘only’ requires characterising the rele-

vant power spectra. Should these processes be decorrelated1, the
power spectrum of the sum of the processes is simply the sum of
the powerspectra. As will be shown below it is not only a matter of
amplitude but also a question of frequency mismatch.

2.3.2 A sufficient condition for Q ⇠ 1

The emergence of thin disks corresponds to self-organisation
within a two-fluids system driven by maximum entropy fluxes: an
unlikely structure (a thin disk) emerges from a stochastic process
by evacuating all redundant entropy by radiation. The principle pro-
vides a physical selection principle favouring what seems an un-
likely outcome. A Necessary condition for the virtuous quietening
cycle is provided by frequency detuning (the disc has become mas-
sive enough so that its natural frequencies decouple from the or-
bital parameters of cosmic perturbations) and the availability of a
reservoir of free (kinetic) energy and fuel for star formation. Self
regulation yields order via MEP thanks to the efficient coupling of
the two stellar and gas component via the mean field fluctuations
near marginal stability.

In the self-regulated regime where the system is the most re-
sponsive (close to marginal stability) it radiates energy away most
efficiently thanks to the large amplitude of the wakes triggered by
potential fluctuations. Given a significant source of cold gas and
free (rotational) energy in the CGM, the galactic disc self-organizes
to maximize its rate of entropy production and switches from being
driven by nurture to being driven by nature. Near marginal stability
the dressed potential fluctuations are stronger hence the dynami-
cal time is shorter. Quasi linear (secular) evolution is accelerated
accordingly. Feedback and shock in turbulence provides means to
radiate away stochasticity (if the process were adiabatic it would
stall) while simultaneously inducing star formation, which drives
the disc back to marginal stability. The SF efficiency implemented
in modern sub grid physics has a stabilising effect through delayed
SN triggered turbulence: the closer Qe↵ is to one the stronger the

1 which should not strictly be true since e.g. SNe and turbulence in the
gaseous disc are correlated with gas rich infall
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50Numerical equivalence, given Toomre(v/ )σ

fsettle = Ratio of the integral of the galactic counts  over dark (orange or 
green) regions to that over the light region increases with M⋆

Correspondance best expressed while looking  at PDF( Q , )  and PDF(  , )M⋆ V/σ M⋆

𝒩k
3

𝒩k
1

= f3(Mk)
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Inhomogeneous Balescu-Lenard equation

• Inhomogeneous Balescu-Lenard equation
Heyvaerts (2010), Chavanis (2012)

@ F (J1, t)

@t
= ⇡(2⇡)d
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@
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·
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m1,m2

m1

Z
dJ2
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| Dm1,m2 (J1,J2, m1 ·⌦1 )|2

m1 ·

@

@J1
�m2 ·

@

@J2

�
F (J1, t) F (J2, t)

�
.

• Some properties:
I F (J , t) : Orbital distorsion in action space.

I 1/N : Driven by finite�N e↵ects.

I @/@J1· : Divergence of a flux, i.e. conservation.

I m1 : Discrete Fourier vectors - Anistropic di↵usion.

I �D : Resonance condition for distant encounters.

I 1/Dm1,m2 : Self-gravitating dressing (squared).

I m1 ·⌦1 : Secular di↵usion at resonance.

=) Master equation for self-induced orbital distortion.
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An example of secular evolution

• Sellwood’s 2012 numerical experiment
I Stationnary stable tapered Mestel disc

I N�body code with 500M particles

I Appearance of transient spiral waves

I Archetype of radial migration

Initial stable/stationary DF Evolved DF

Sellwood (2012)J�

Jr

J�

Jr

Secular di↵usion in action-space
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5 CONCLUSION

The cosmic appearance of thin galactic disks implies a fine-tuning
between cooling mechanisms (e.g. coplanar infall of gas), and
heating processes (merging of small virialised objects, turbulence,
deflection on molecular clouds etc). Cosmic evolution seems to
conspire to promote a redshift-dependant transition mass between
cosmic-driven morphology on the one hand (through mergers,
strong feedback and turbulence), to secularly-driven morphology
on the other hand (which promotes self-regulation around an effec-
tive Toomre Q number close to one). More specifically, our finding
are the following

• We measure that Q ⇠ 1 is an attractor for disc settling. It
is an attractor because polarisation (near marginal stability) yields
a tighter (faster) control loop for self regulating processes (tur-
bulence, SN, star formation), and efficient entropy radiation. The
tightness of this loop controlled by the amplitude of the fluctu-
ating gravitational potential. Since these fluctuations are dressed
by gravitational wakes, the closer the disc is to marginal stability
the stronger the wake, the shorter the effective dynamical time, the
tighter the loop, the closer the disc to marginal stability.
• The transition mass appearing in the fit of Q scales likes the

mass of non-linearity, which defines the local dynamical clock, re-
flecting the idea that for more massive discs (in units of that mass)
secular processes can operate more swiftly and efficiently. This
transition translates into a fraction of settled discs as a function
of stellar mass and redshift which match the observed one.
• The closer the disc to Q ⇠ 1, the stronger the gravitational

coupling between rings, the more damped out of plane oscillation,
the more settled the disc.
• The gravitational torquing between the gas and stellar com-

ponents and dissipation within the former component can be ac-
counted for via a two set of rings or two sets of WKB wave model.
Both models provide means to understand how the stellar can con-
verge towards low entropy states.
• Once in secular mode, the self regulated loop also stratifies

vertically stars by age, while preserving the sech profile of the ex-
isting thick disc. This is achieved because both star formation and
vertical orbital diffusion are regulated by the same confounding
factor which stirs cold gas and diffuse the stellar orbital structure.
As such, the stellar thick disc is simply the secular remnant of the
disc settling process.

Note that while the process behind disc settling is retrospec-
tively straightforward (the key ingredient being being gravitational
polarisation), it does nonetheless require a range of regulating bary-
onic processes (turbulence, feedback, star formation) to play their
role in driving the disc towards marginal stability, together with or-
bital detuning and the availability for free energy in the gas stored
in the CGM.

do we need negative diffusion explicitely to also thin the disc
beyond its dewarping Self-regulation is a term used in a variety of
contexts to indicate the presence of competing mechanisms, that
manage to bring and keep a system in a quasi-steady state. Thus a
system under self-regulation is expected to evolve slowly.

Massive galactic disks are an emerging process from the hi-
erarchical formation of structures (a priori a chaotic process). The
emergence of an improbable ordered structure (a massive thin disc
in co-rotation) is paradoxically made possible by shocks and tur-
bulence induced in the gaseous component of the disc, which can
radiate most of the entropy generated, and sets up a self-regulation
loop of increasing efficiency over the course of cosmic time.

we need to cite PichonAubert2006 for open systems
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APPENDIX A: ORBITAL DIFFUSION

Let us consider a stellar self-gravitating disc embedded in its fluctu-
ating cosmic environment and perturbed by supernovae feedback,
turbulence and GMC driven shot noise. Let us further assume that
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The fact that thin discs in cosmological simulations operate essentially as though they are isolated is quite remarquable and needs explaining. 
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