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MareNostrum ~10 Mpc
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Large scale structures

~10 Mpc

The NewHorizon Simulation
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The cosmic web has an impact on galaxy

morphology
Peak-filament
X —_
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From above Lateral view

The New Horizon Simulation




i Large,scéle structures

The morphology of a galaxy is
dictated by its merger history, as
well as the evolution of its
environment.

It is in particular sensible to
coalescence of filaments, which
bring cold gas necessary to star
formation.
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Can we predict the main characteristics
of the universe directly from its initial
conditions? ?

Planck
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Can we make statistical predictions based solely on the

conditions?
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The spherical collapse model

Collapse into a cosmic object

Isotropic density (galaxy, cluster)

field Yes
. — . o> 0.7
No T

Matter diffusion through
the expansion of the
l universe
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The spherical collapse model
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The spherical collapse model
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The spherical collapse model
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The cosmic web as critical points

At every point of the field, we take the average density in a sphere of increasing radius

This amounts to smoothing the field with a top-hat filter.

Initial field Slightly smoothed field Strongly smoothed field

/\.\/\ /'\'\ PN Densité seuil

We may link the critical points of the field (minima, maxima, saddle points) to the particular
points of the cosmic web (voids, nodes, walls and filaments)
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The spherical collapse model gives a correspondance
betweem the density/smoothing and the cosmic
time/mass of objects.

In particular, the smoothing radius monotonically
Increases with time at the peaks, and is thus a proxy
for time.
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Mergers and critical events

Density (arbitrary)
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Vé and VVI =0
in 1D
z Smoothing g
g > z
Position Position
. r T~
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Critical point Voids Walls Filaments Peaks

Signature

j — -—+ - — =
of the Hessian Tt T

Saddle point Sadqllg—maxmum Maximum
critical event o

Vé=0anddet(VVs) =0
Replacing the top-hat filter with a Gaussian filter, we may get analytical expressions for statistical properties of events.
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Statistic analysis from critical event
theory

Cadiou+2020

Smoothing scale

Time

Merging history of a cosmological
object, obtained from simulations

TTTJTTT[TTT TTT LI LI T
[TTrprrT] [ I

Marulli+2009
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How can we recover the pair of
peaks involved in a merging
event?
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Attraction cones We use the distance from the critical
points to decide in which objet a critical
event merges.
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What cone opening angle should we consider ?

To answer this question, we analyse the mixed two point correlation function between critical events

and peaks.
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Topological mergers in 1D

In one dimension, the peak associated to the merging of a critical event is
the adjacent peak.

AN AN
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Topological mergers in 1D

Smoothing scale

A

/ Maximum line
Am

Minimum line

® Critical events

Bmin Cmax
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Topological mergers in 1D

[ / ) \
— Maximum line

— Minimum line

Minimum line of a merger

\ o\ —— Surviving peak

e Critical event
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Topological mergers in 2D (and 3D), using the skeleton

A+B
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Comparison with cones (in 1D)

Mean difference between number of topological mergers
and number of mergers in a cone of angle

The opening angle should be
around 4 smoothing units

Power spectrum

_— ns = O
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Can we use critical event theory to make
pertinent cosmological predictions?
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The morphology of a galaxy is linked to
its merger history, as well as the
characteristics of these mergers (mass,
number, time).

We use the spherical collapse model to
assign a coherent mass to mergers
associated to a critical event.
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Mass accreted by mergers
Mass is proportional to the cube of the smoothing radius
_ _ 3
M=pxV xpXxXR
The existence time of an object is a decreasing function of the overdensity of the peak that is associated to it.

z=1 c

0

We wish to compare the mass of two merging objects at a given time, taking care to not
count mass twice.

A
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The double pointer method

Smoothing scale

A

Surviving
peak line

Merging
Void line peak line
>

position
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The double pointer method

Smoothing scale

A : .
Spherical collapse time

} t = f(5)

=

redshift lines

=

position
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The double pointer method

Smoothing scale

A
M=pxVxpxR In3D

the surviving peak

.

Mass radius of }

Mass radius of
the merging peak

/\h

_—

—
. _ position
Mass in this area

is counted twice

N ’ . r
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The double pointer method

Smoothing scale

A

Rpeak /

Rmerger------4-r—-—----

>
xpeak xmerger position
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Mass ratio (log)

0.5

0.1

Probability density function of density/mass ratio
of double pointer mergers
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First comparison to cosmological simulations

Simulation cosmologique CDF of redshift at which the last major merger occured
in a halo's past history
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Conclusions

Critical event theory provides a useful framework to make predictions about the
geometry of mergers from first principle.

Perspectives
* Filament-filament and wall-wall mergers o [ JO ®
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Thank you!
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Fonctions de correlation & deux points mixtes pie#févénement
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